Insulated Gate Bipolar Mode Transistor (e.g., Igbt; Igt; Comfet) (epo) Patents (Class 257/E29.197)
  • Publication number: 20100038675
    Abstract: A power semiconductor device that realizes high-speed turnoff and soft switching at the same time has an n-type main semiconductor layer that includes lightly doped n-type semiconductor layers and extremely lightly doped n-type semiconductor layers arranged alternately and repeatedly between a p-type channel layer and an n+-type field stop layer, in a direction parallel to the first major surface of the n-type main semiconductor layer. A substrate used for manufacturing the semiconductor device is fabricated by forming trenches in an n-type main semiconductor layer 1 and performing ion implantation and subsequent heat treatment to form an n+-type field stop layer in the bottom of the trenches. The trenches are then filled with a semiconductor doped more lightly than the n-type main semiconductor layer for forming extremely lightly doped n-type semiconductor layers. The manufacturing method is applicable with variations to various power semiconductor devices such as IGBT's, MOSFET's and PIN diodes.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 18, 2010
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Koh Yoshikawa
  • Publication number: 20100032713
    Abstract: Current density in an insulated gate bipolar transistor (L-IGBT) may be increased by adding a second gate, and the corresponding MOS transistors, to the source area, which increases the base current compared to a L-IGBT with a single MOS gate. The current density may be further increased by extending the base of the bipolar transistor in the L-IGBT vertically to the bottom surface of the silicon on insulator (SOI) film in which the L-IGBT is fabricated. Adding a buffer diffused region around the sinks in the source improves the base current spatial uniformity, which improves the safe operating area (SOA) of the L-IGBT. A L-IGBT of either polarity may be formed with the inventive configurations. A method of forming the inventive L-IGBT is also disclosed.
    Type: Application
    Filed: August 6, 2009
    Publication date: February 11, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki KAWAHARA, Philip Leland HOWER
  • Publication number: 20100032711
    Abstract: A p-type region is provided on a first n-type region. A second n-type region is provided on the p-type region, spaced apart from the first n-type region by the p-type region. A gate electrode serves to form an n-channel between the first and second n-type regions. A first electrode is electrically connected to each of the p-type region and the second n-type region. A second electrode is provided on the first n-type region such that it is spaced apart from the p-type region by the first n-type region and at least a part thereof is in contact with the first n-type region. The second electrode is made of any of metal and alloy and serves to inject holes into the first n-type region.
    Type: Application
    Filed: December 29, 2008
    Publication date: February 11, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shinji Aono, Junichi Moritani
  • Publication number: 20100032712
    Abstract: A power semiconductor device has a top surface and an opposed bottom surface below a part of which is a thick portion of semiconductor substrate. At least a portion of a drift region of the device has either no or only a thin portion of semiconductor substrate positioned thereunder. The top surface has a high voltage terminal and a low voltage terminal connected thereto to allow a voltage to be applied laterally across the drift region. At least two MOS (metal-oxide-semiconductor) gates are provided on the top surface. The device has at least one relatively highly doped region at its top surface extending between and in contact with said first and second MOS gates. The device has improved protection against triggering of parasitic transistors or latch-up without the on-state voltage drop or switching speed being compromised.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 11, 2010
    Applicant: Cambridge Semiconductor Limited
    Inventors: Florin UDREA, Vasantha PATHIRANA, Tanya TRAJKOVIC, Nishad UDUGAMPOLA
  • Patent number: 7659576
    Abstract: A punch-through type IGBT generally has a thick p++-type collector layer. Therefore, the FWD need be externally attached to the IGBT when the IGBT is used as a switching element in an inverter circuit for driving a motor load, and thus the number of processes and components increases. In the invention, trenches are formed penetrating through a collector layer and reaching a buffer layer. A collector electrode is formed in the trenches, too. With this structure, a current path is formed between an emitter electrode and the collector electrode without through the collector layer and functions as the FWD.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: February 9, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Kikuo Okada, Kojiro Kameyama
  • Publication number: 20100027172
    Abstract: A semiconductor device for ESD protection includes a semiconductor substrate of a first conductivity type and a well region of a second conductivity type formed within the substrate. The well region is characterized by a first depth. The device includes an MOS transistor, a first bipolar transistor, and a second bipolar transistor. The MOS transistor includes a first lightly doped drain (LDD) region of a second depth within the well region, and a drain region and an emitter region within in the first LDD region. The emitter region is characterized by a second conductivity type. The first bipolar transistor is associated with the emitter region, the first LDD region, and the well region, and is characterized by a first trigger voltage. The second bipolar transistor is associated with the first LDD region, the well region, and the substrate, and is characterized by a second trigger voltage.
    Type: Application
    Filed: June 11, 2009
    Publication date: February 4, 2010
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Chi Kang Liu, Ta Lee Yu, Quan Li
  • Patent number: 7652307
    Abstract: In a semiconductor device of the present invention, a MOS transistor is disposed in an elliptical shape. Linear regions in the elliptical shape are respectively used as the active regions, and round regions in the elliptical shape is used respectively as the inactive regions. In each of the inactive regions, a P type diffusion layer is formed to coincide with a round shape. Another P type diffusion layer is formed in a part of one of the inactive regions. These P type diffusion layers are formed as floating diffusion layers, are capacitively coupled to a metal layer on an insulating layer, and assume a state where predetermined potentials are respectively applied thereto. This structure makes it possible to maintain current performance of the active regions, while improving the withstand voltage characteristics in the inactive regions.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: January 26, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shuichi Kikuchi, Kiyofumi Nakaya, Shigeaki Okawa
  • Patent number: 7652350
    Abstract: A semiconductor device including a horizontal unit semiconductor element, the horizontal unit semiconductor element including: a) a semiconductor substrate of a first conductivity type; b) a semiconductor region of a second conductivity type formed on the semiconductor substrate; c) a collector layer of the first conductivity type formed within the semiconductor region; d) a base layer of the first conductivity type having an endless shape and formed within the semiconductor region such that the base layer is off the collector layer but surrounds the collector layer; and e) a first emitter layer of the second conductivity type formed in the base layer, the horizontal unit semiconductor element controlling, within a channel region formed in the base layer, movement of carriers between the first emitter layer and the collector layer, wherein the first emitter layer is formed by plural unit emitter layers which are formed along the base layer.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: January 26, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazunari Hatade
  • Publication number: 20100001783
    Abstract: An embodiment of a power device having a first current-conduction terminal, a second current-conduction terminal, a control terminal receiving, in use, a control voltage of the power device, and a thyristor device and a first insulated-gate switch device connected in series between the first and the second conduction terminals; the first insulated-gate switch device has a gate terminal connected to the control terminal, and the thyristor device has a base terminal. The power device is further provided with: a second insulated-gate switch device, connected between the first current-conduction terminal and the base terminal of the thyristor device, and having a respective gate terminal connected to the control terminal; and a Zener diode, connected between the base terminal of the thyristor device and the second current-conduction terminal so as to enable extraction of current from the base terminal in a given operating condition.
    Type: Application
    Filed: May 18, 2006
    Publication date: January 7, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Cesare Ronsisvalle, Vincenzo Enea
  • Publication number: 20100001315
    Abstract: A semiconductor device includes a first diffusion region of a second conductivity type formed in an upper portion of a semiconductor substrate of a first conductivity type, a second diffusion region formed in a surface portion of the first diffusion region, a third diffusion region of the second conductivity type formed a predetermined distance spaced apart from the second diffusion region in the surface portion of the semiconductor substrate, a fourth diffusion region of the first conductivity type formed adjacent to the third diffusion region and electrically connected to the third diffusion region, a gate electrode formed on a part between the first diffusion region and the third diffusion region, and an insulating film formed thereon.
    Type: Application
    Filed: May 28, 2009
    Publication date: January 7, 2010
    Inventors: Masaaki OKITA, Kazuyuki Sawada, Yuji Harada, Saichirou Kaneko, Hiroto Yamagiwa
  • Publication number: 20090315072
    Abstract: In a lateral IGBT structure equipped with an emitter terminal, comprising two or more second conductivity type base layers, per one collector terminal, the second conductivity type base layer in the emitter region is covered by a first conductivity type layer which has a higher impurity concentration than the drift layer, and width L1 of the gate electrode located between two adjacent emitters is 4 ?m or less, or in addition to that, width L2 of the opening for leading out an emitter electrode located between two adjacent gate electrodes is 3 ?m or less.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Applicant: Hitachi, Ltd.
    Inventors: Shinji Shirakawa, Junichi Sakano, Kenji Hara
  • Publication number: 20090309131
    Abstract: An IGBT transistor includes a drift region, at least one body region housed in the drift region and having a first type of conductivity, and a conduction region, which crosses the body region in a direction perpendicular to a surface of the drift region and has the first type of conductivity and a lower resistance than the body region. The conduction region includes a plurality of implant region, arranged at respective depths from the surface of the drift region.
    Type: Application
    Filed: May 11, 2006
    Publication date: December 17, 2009
    Applicant: STMicroelectronics S.r.l.
    Inventors: Davide Giuseppe Patti, Guiditta Settanni
  • Publication number: 20090309130
    Abstract: The IGBT is described here that exhibits high breakdown voltage, low on-voltage together with high turn-off speed. The collector of IGBT is formed on the backside of the wafer which has n type float zone. Methods for the p-type collector is implemented by depositing a layer of BSG which is 0.05˜0.1 um on the backside of the wafer and removing it after short time deposition. A thin and high surface concentration p+ layer acts as P type collector of the IGBT is formed on the bottom surface of the wafer. The back metal electrode is sintered to form ohmic contact on the P type collector with high surface concentration. The hole injection efficiency is decreased with a thin layer p+ layer which hat means no P implantation is needed to form the collector and the speed performance of the IGBT is therefore improved.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 17, 2009
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventors: Fu-Yuan Hsieh, CuiXia Wang, Ju Chen, Lin Xu
  • Publication number: 20090302346
    Abstract: A surface between gate electrodes in an MOS gate structure is patterned so that missing portions are partially provided in surfaces of n+ emitter regions to thereby enlarge surface areas of p+ contact regions surrounded by the surfaces of the n+ emitter regions. In this manner, a highly reliable MOS type semiconductor device is provided which is improved in breakdown tolerance by suppressing an increase in the gain of a parasitic transistor caused by photo pattern defects produced easily in accordance with minute patterning in a process design rule.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventor: Tomoyuki YAMAZAKI
  • Patent number: 7629626
    Abstract: One of the aspects of the present invention is to provide a semiconductor device, which includes a semiconductor layer of a first conductive type having first and second surfaces. The semiconductor layer includes a base region of a second conductive type formed in the first surface and an emitter region of the first conductive type formed in the base region. Also, the semiconductor device includes a buffer layer of the first conductive type formed on the second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity therein of approximately 5×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity therein of approximately 1×1017 cm?3 or more. Further, the ratio of the maximal concentration of the collector layer to the maximal concentration of the buffer layer being greater than 100.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 8, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Eisuke Suekawa
  • Publication number: 20090294799
    Abstract: A voltage mitigating element mitigating a voltage applied across a gate insulating film in an off state of an insulated gate bipolar transistor (IGBT) is arranged to a gate electrode node of a P-channel MOS transistor provided for suppressing flow-in of holes at the time of turn-off of the IGBT. Withstanding voltage characteristics are improved and an occupation area thereof is reduced while maintaining switching characteristics and a low on-resistance of an insulated gate bipolar transistor.
    Type: Application
    Filed: September 8, 2008
    Publication date: December 3, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Tomohide TERASHIMA
  • Patent number: 7626232
    Abstract: SiC-IGBTs, which have an inversion-type channel with high channel resistance and have high on-voltage due to an influence from the surface state of the interface between a gate insulating film and a base layer, are required to decrease the on-voltage. An embedded collector region is partially formed in a base layer which is formed on an emitter layer of a SiC semiconductor. A channel layer is formed on the base layer and the embedded collector region to constitute an accumulation-type channel. Consequently, at on time, holes are accumulated in the upper layer portion of the channel layer so that a low-resistant channel is formed. Current by the holes flows to the emitter layer through a channel from the collector region and becomes a base current for an npn transistor composed of the embedded collector region, the base region and the emitter region.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: December 1, 2009
    Assignee: The Kansai Electric Power Co., Inc.
    Inventors: Katsunori Asano, Yoshitaka Sugawara
  • Publication number: 20090289690
    Abstract: A semiconductor device with switch electrode and gate electrode and a method for switching a semiconductor device. One embodiment provides a semiconductor substrate with an emitter region, a drift region, a body region and a source region. The drift region is formed between the emitter and the body region while the body region is formed between the drift and the source region. A first trench structure extends from the source region at least partially into the drift region. The first trench structure includes a gate electrode arranged next to the body region and a switch electrode arranged in portions next to the drift region, wherein the switch and gate electrodes are electrically insulated from each other in the trench structure. A first gate driver is electrically connected to the gate electrode while a second gate driver is electrically connected to the switch gate.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 26, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Thomas Raker
  • Patent number: 7622754
    Abstract: A p-type collector layer is formed on a reverse side of an n-type high-resistivity first base layer, a p-type second base layer is formed on an obverse side of the first base layer, an emitter layer is formed on the second base layer, gate electrodes are formed inside trenches extending in a direction and intruding through the emitter layer and the second base layer into intermediate depths of the first base layer, with gate insulating films in between, a collector electrode is connected to the collector layer, an emitter electrode is connected to the emitter layer, the first base layer and the second base layer, the emitter layer is composed of first emitter layers extending along the trenches in the direction, and second emitter layers extending in a perpendicular direction for a ladder form interconnection between first emitter layers, and the base contact layer has a higher impurity density than the second base layer, and envelopes the second emitter layers.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 24, 2009
    Assignee: Rohm Co., Ltd.
    Inventor: Hiroyuki Tamada
  • Publication number: 20090283798
    Abstract: A semiconductor device includes an n-conductive type semiconductor substrate having a main side and a rear side, a p-conductive type layer arranged over the main side of the substrate, a main side n-conductive type region arranged in the p-conductive type layer, a rear side n-conductive type layer arranged over the rear side of the substrate, a first trench which reaches the substrate and penetrates the main side n-conductive type region and the p-conductive type layer, a second trench which reaches an inside of the p-conductive type layer, a second electrode layer, which is embedded in the second trench and connected to the p-conductive type layer. Hereby, the semiconductor device, in which the recovery property of a diode cell can be improved without damaging the property of a MOS transistor cell or an IGBT cell and the surge withstand property does not deteriorate, can be obtained.
    Type: Application
    Filed: June 19, 2008
    Publication date: November 19, 2009
    Applicant: DENSO CORPORATION
    Inventors: Yukio Tsuzuki, Makoto Asai
  • Publication number: 20090283799
    Abstract: According to one embodiment, a semiconductor device comprises a body of a first conductivity type having a source region and a channel, the body being in contact with a top contact layer. The device also comprises a gate arranged adjacent the channel and a drift zone of a second conductivity type arranged between the body and a bottom contact layer. An integrated diode is formed partially by a first zone of the first conductivity type within the body and being in contact with the top contact layer and a second zone of the second conductivity type being in contact with the bottom contact layer. A reduced charge carrier concentration region is formed in the drift zone having a continuously increasing charge carrier lifetime in the vertical direction so that the charge carrier lifetime is lowest near the body and highest near the bottom contact layer.
    Type: Application
    Filed: May 13, 2008
    Publication date: November 19, 2009
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 7618870
    Abstract: The present invention provides, in one embodiment, a transistor (100). The transistor (100) comprises a doped semiconductor substrate (105) and a gate structure (110) over the semiconductor substrate (105), the gate structure (110) having a gate corner (125). The transistor (100) also includes a drain-extended well (115) surrounded by the doped semiconductor substrate (105). The drain-extended well (115) has an opposite dopant type as the doped semiconductor substrate (105). The drain-extended well (115) also has a low-doped region (145) between high-doped regions (150), wherein an edge of the low-doped region (155) is substantially coincident with a perimeter (140) defined by the gate corner (125). Other embodiments of the present invention include a method of manufacturing a transistor (200) and an integrated circuit (300).
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: November 17, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Shanjen Pan, Sameer Pendharkar, James R. Todd
  • Publication number: 20090278166
    Abstract: A semiconductor device in which both an IGBT element region and a diode element region exist in the same semiconductor substrate includes a low lifetime region, which is formed in at least a part of a drift layer within the diode element region and shortens the lifetime of holes. A mean value of the lifetime of holes in the drift layer that includes the low lifetime region is shorter within the IGBT element region than within the diode element region.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Inventors: Akitaka SOENO, Yukihiro Hisanaga
  • Publication number: 20090278167
    Abstract: A semiconductor device includes a first chip and a second chip. The first chip includes a first conductivity type channel power MOSFET. The second chip includes a second conductivity type channel power MOSFET. The first chip and the second chip are integrated in such a manner that a second-surface drain electrode of the first chip and a second-surface drain electrode of the second chip face to each other and are electrically coupled with each other through a conductive material.
    Type: Application
    Filed: April 21, 2009
    Publication date: November 12, 2009
    Applicant: DESNO CORPORATION
    Inventor: Shoji Ozoe
  • Publication number: 20090262559
    Abstract: A semiconductor device includes: a high breakdown voltage semiconductor element including a switching element and a JFET element; and a sense element. The sense element includes a first drift region of a first conductivity type, a first base region of a second conductivity type, a first source region of a first conductivity type, a first gate insulating film, a first drain region of a first conductivity type, a sense electrode electrically connected to the first source region, a first gate electrode, and a first drain electrode electrically connected to the first drain region. The first gate electrode of the sense element and the second gate electrode of the switching element are connected to each other. The first drain electrode of the sense element and the electrode shared by the switching element and the JFET element are connected to each other.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 22, 2009
    Inventor: Saichirou KANEKO
  • Publication number: 20090257249
    Abstract: An energy transmission device includes: a semiconductor device formed on a first semiconductor substrate; a semiconductor integrated circuit including a reverse current preventing diode and a control circuit; a DC voltage source; and a transformer. The reverse current preventing diode includes a reverse current preventing layer of a second conductivity type formed at a surface of a second semiconductor substrate, and a well layer of a first conductivity type formed in the second semiconductor substrate and covering the reverse current preventing layer. The transformer includes a primary winding connected in series with the semiconductor device and the DC voltage source, and a first secondary winding connected to a load. The energy transmission device is configured so that electric power is supplied from the first secondary winding of the transformer to the load. A second drain electrode of the semiconductor device is electrically connected to the reverse current preventing layer.
    Type: Application
    Filed: April 9, 2009
    Publication date: October 15, 2009
    Inventor: Saichirou KANEKO
  • Publication number: 20090242930
    Abstract: A lateral high-breakdown voltage semiconductor device is provided in which the breakdown voltages of elements as a whole are improved, while suppressing increases in cell area. A track-shape gate electrode surrounds a collector electrode extending in a straight line, a track-shape emitter electrode surrounds the gate electrode, and a track-shape first isolation trench surrounds the emitter electrode. A second isolation trench surrounds the first isolation trench. The region between the first isolation trench and the second isolation trench is an n-type isolation silicon region. The isolation silicon region is at the same potential as the emitter electrode. In the cross-sectional configuration traversing the gate electrode, the depth of the p base region in an interval corresponding to an arc-shape portion of the gate electrode is shallower than the depth of the p base region in an interval corresponding to a straight-line portion of the gate electrode.
    Type: Application
    Filed: March 26, 2009
    Publication date: October 1, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventor: Hong-fei LU
  • Publication number: 20090242931
    Abstract: A semiconductor device includes: a substrate; an active element cell area including IGBT cell region and a diode cell region; a first semiconductor region on a first side of the substrate in the active element cell area; a second semiconductor region on a second side of the substrate in the IGBT cell region; a third semiconductor region on the second side in the diode cell region; a fourth semiconductor region on the first side surrounding the active element cell area; a fifth semiconductor region on the first side surrounding the fourth semiconductor region; and a sixth semiconductor region on the second side below the fourth semiconductor region. The second semiconductor region, the third semiconductor region and the sixth semiconductor region are electrically coupled with each other.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 1, 2009
    Applicant: DENSO CORPORATION
    Inventors: Yukio Tsuzuki, Kenji Kouno
  • Publication number: 20090218621
    Abstract: A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
    Type: Application
    Filed: July 27, 2006
    Publication date: September 3, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Frank Pfirsch, Anton Mauder, Armin Willmeroth, Hans-Joachim Schulze, Stefan Sedlmaier, Markus Zundel, Franz Hirler, Arunjai Mittal
  • Publication number: 20090212320
    Abstract: Semiconductor devices and semiconductor apparatuses including the same are provided. The semiconductor devices include a body region disposed on a semiconductor substrate, gate patterns disposed on the semiconductor substrate and on opposing sides of the body region, and first and second impurity doped regions disposed on an upper surface of the body region. The gate patterns may be separated from the first and second impurity doped regions by, or greater than, a desired distance, such that the gate patterns do not to overlap the first and second impurity doped regions in a direction perpendicular to the first and second impurity doped regions.
    Type: Application
    Filed: July 31, 2008
    Publication date: August 27, 2009
    Inventors: Won-joo Kim, Dae-kil Cha, Tae-hee Lee, Yoon-dong Park
  • Publication number: 20090212322
    Abstract: A vertical semiconductor device includes a semiconductor body, and first and second contacts on opposite sides of the semiconductor body. A plurality of regions are formed in the semiconductor body including, in a direction from the first contact to the second contact, a first region of a first conductivity type, a second region of a second conductivity type; and a third region of the first conductivity type. The third region is electrically connected to the second contact. A semiconductor zone of the second conductivity type and increased doping density is arranged in the second region. The semiconductor zone separates a first part of the second region from a second part of the second region. The semiconductor zone has a maximum doping density exceeding about 1016 cm?3 and a thickness along the direction from the first contact to the second contact of less than about 3 ?m.
    Type: Application
    Filed: May 7, 2009
    Publication date: August 27, 2009
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Josef Niedernostheide, Hans-Joachim Schulze
  • Publication number: 20090206365
    Abstract: A semiconductor device includes a semiconductor substrate; a first base region of a first conductivity type provided in the semiconductor substrate; a buffer region of the first conductivity type provided on a lower surface of the first base region and having an impurity concentration higher than an impurity concentration of the first base region; an emitter region of a second conductivity type provided on a lower surface of the buffer region; a second base region of the second conductivity type selectively provided on an upper surface of the first base region; a diffusion region of the first conductivity type selectively provided on an upper surface of the second base region; a control electrode; a first main electrode; and a second main electrode. A junction interface between the buffer region and the first base region has a concave portion and a convex portion.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 20, 2009
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masanori Tsukuda, Ichiro Omura
  • Publication number: 20090206366
    Abstract: Disclosed is a semiconductor device including: an N-type RESURF region formed in a P-type semiconductor substrate; a P-type base region formed in an upper portion of the semiconductor substrate so as to be adjacent to the RESURF region; an N-type emitter/source region formed in the base region so as to be apart from the RESURF region; a P-type base connection region formed in the base region so as to be adjacent to the emitter/source region; a gate insulating film and a gate electrode overlying the emitter/source region, the base region, and the RESURF region; and a P-type collector region formed in the RESURF region so as to be apart from the base region. Lattice defect is generated in the semiconductor substrate such that a resistance value of the semiconductor substrate is twice or more the resistance value of the semiconductor substrate that depends on the concentration of an impurity implanted in the semiconductor substrate.
    Type: Application
    Filed: October 22, 2008
    Publication date: August 20, 2009
    Inventors: Kazuyuki Sawada, Yuji Harada, Masahiko Niwayama, Saichirou Kaneko, Yoshimi Shimizu
  • Publication number: 20090194786
    Abstract: A semiconductor device includes deep first field limiting rings, shallow second field limiting rings, insulation films covering each surface portion of each of the first and the second field limiting rings, and conductive field plates each in contact with a surface of each of the first and the second field limiting rings. Each of the field plates project over a surface of each of the insulation films between the first field limiting rings and the second field limiting rings.
    Type: Application
    Filed: February 3, 2009
    Publication date: August 6, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventors: Susumu IWAMOTO, Takashi KOBAYASHI
  • Publication number: 20090194785
    Abstract: A p-type body region and an n-type buffer region are formed on an n? drift region. An n++ emitter region and a p++ contact region are formed on the p-type body region in contact with each other. A p++ collector region is formed on the n-type buffer region. An insulating film is formed on the n? drift region, and a gate insulating film is formed on the n++ emitter region, the p-type body region, and the n drift region. A gate electrode is formed on the insulating film and the gate insulating film. A p+ low-resistivity region is formed in the p-type body region and surrounding the interface between the n++ emitter region and between the p-type body region and the p++ contact region. The p-type body region has two local maxima of an impurity concentration profile at the interface between the body region and the gate insulating film.
    Type: Application
    Filed: January 9, 2009
    Publication date: August 6, 2009
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventors: Hong-Fei Lu, Mizushima Tomonori
  • Publication number: 20090189181
    Abstract: A semiconductor device having an IGBT includes: a substrate; a drift layer and a base layer on the substrate; trenches penetrating the base layer to divide the base layer into base parts; an emitter region in one base part; a gate element in the trenches; an emitter electrode; and a collector electrode. The one base part provides a channel layer, and another base part provides a float layer having no emitter region. The gate element includes a gate electrode next to the channel layer and a dummy gate electrode next to the float layer. The float layer includes a first float layer adjacent to the channel layer and a second float layer apart from the channel layer. The dummy gate electrode and the first float layer are coupled with a first float wiring on the base layer. The dummy gate electrode is isolated from the second float layer.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 30, 2009
    Applicants: DENSO CORPORATION, Fuji Electric Device Technology Co., Ltd.
    Inventors: Masaki Koyama, Yoshifumi Okabe, Makoto Asai, Takeshi Fujii, Koh Yoshikawa
  • Patent number: 7566947
    Abstract: Disclosed is a semiconductor device with a bipolar transistor and method of fabricating the same. The device may include a collector region in a semiconductor substrate. A base pattern may be disposed on the collector region. A hard mask pattern may be disposed on the base pattern. The hard mask pattern may include a buffering insulation pattern and a flatness stopping pattern stacked in sequence. An emitter electrode may be disposed in a hole that locally exposes the base pattern, penetrating the hard mask pattern. A base electrode may contact an outer sidewall of the hard mask pattern and may be disposed on the base pattern. The flatness stopping pattern may contain an insulative material with etching selectivity to the buffering insulation pattern, the emitter electrode, and the base electrode.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Bong-Gil Yang
  • Publication number: 20090184339
    Abstract: A semiconductor device includes: an insulating film provided on a back surface of a semiconductor substrate; a plurality of isolation regions provided to reach the insulating film from a main surface of the semiconductor substrate; at least a first semiconductor layer and a second semiconductor layer which are electrically insulated from each other by the isolation regions in the semiconductor substrate; a first voltage applied terminal electrically connected to a front surface of the first semiconductor layer; a second voltage applied terminal electrically connected to a front surface of the second semiconductor layer; a selector circuit receiving voltages from the first voltage applied terminal and the second voltage applied terminal, and supplying an output in accordance with a combination of the voltages; and a conductive layer provided so as to contact with the insulating film provided to the back side of the semiconductor substrate.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 23, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masakazu Tashibu, Katsu Honna, Atsushi Jinnai
  • Publication number: 20090184340
    Abstract: A semiconductor device is provided in which a semiconductor substrate can be prevented from being broken while elements can be prevented from being destroyed by a snap-back phenomenon. After an MOS gate structure is formed in a front surface of an FZ wafer, a rear surface of the FZ wafer is ground. Then, the ground surface is irradiated with protons and irradiated with two kinds of laser beams different in wavelength simultaneously to thereby form an N+ first buffer layer and an N second buffer layer. Then, a P+ collector layer and a collector electrode are formed on the proton-irradiated surface. The distance from a position where the net doping concentration of the N+ first buffer layer is locally maximized to the interface between the P+ collector layer and the N second buffer layer is set to be in a range of 5 ?m to 30 ?m, both inclusively.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 23, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventors: Michio NEMOTO, Haruo NAKAZAWA
  • Publication number: 20090184338
    Abstract: A semiconductor device having the present high withstand voltage power device IGBT has at a back surface a p collector layer with boron injected in an amount of approximately 3×1013/cm2 with an energy of approximately 50 KeV to a depth of approximately 0.5 ?m, and an n+ buffer layer with phosphorus injected in an amount of approximately 3×1012/cm2 with an energy of 120 KeV to a depth of approximately 20 ?m. To control lifetime, a semiconductor substrate is exposed to protons at the back surface. Optimally, it is exposed to protons at a dose of approximately 1×1011/cm2 to a depth of approximately 32 ?m as measured from the back surface. Thus snapback phenomenon can be eliminated and an improved low saturation voltage (Vce (sat))-offset voltage (Eoff) tradeoff can be achieved.
    Type: Application
    Filed: July 17, 2008
    Publication date: July 23, 2009
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yoshiaki HISAMOTO
  • Publication number: 20090166673
    Abstract: Conduction between source and drain or emitter and collector regions is an important characteristic in transistor operation, particularly for lateral bipolar transistors. Accordingly, techniques that can facilitate control over this characteristic can mitigate yield loss by promoting the production of transistors that have an increased likelihood of exhibiting desired operational performance. As disclosed herein, well regions are established in a semiconductor substrate to facilitate, among other things, control over the conduction between the source and drain regions of a lateral bipolar transistor, thus mitigating yield loss and other associated fabrication deficiencies. Importantly, an additional mask is not required in establishing the well regions, thus further mitigating (increased) costs associated with promoting desired device performance.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Texas Instruments Incorporated
    Inventor: Kamel Benaissa
  • Publication number: 20090159928
    Abstract: A power semiconductor device including source and drain regions located in a lateral arrangement in a first portion of the device, and at least one current providing cell located in a second portion of the device and spaced apart from the first portion at least by a substrate region of a first conductivity type.
    Type: Application
    Filed: October 16, 2006
    Publication date: June 25, 2009
    Applicant: ECO SEMICONDUCTORS LTD
    Inventors: Sankara Narayanan Ekkanath Madathil, David William Green
  • Publication number: 20090140289
    Abstract: Each of first base regions of sequentially layered first IGBT and second IGBT has a peripheral section in the vicinity of the side face of the semiconductor substrate. Each of the IGBTs includes a P-type peripheral base region that is adjacent to the peripheral section of the first base region of the N-type to form a diode and a diode electrode that is formed on an upper face of the peripheral section of the first base region, thereby electrically connecting the diode electrode and a collector electrode of each of the IGBTs. When the semiconductor device is ON, current flows at the center side of the semiconductor substrate separated from the side face. When current in a reverse direction is generated when the semiconductor device is OFF, current in a reverse direction flows in the vicinity of the side face of the semiconductor substrate.
    Type: Application
    Filed: March 22, 2006
    Publication date: June 4, 2009
    Applicant: Sanken Electric Co., Ltd.
    Inventor: Katsuyuki Torii
  • Patent number: 7542317
    Abstract: The power conversion apparatus uses the semiconductor device. Said semiconductor device includes a first group of power semiconductor elements at least one of which is electrically connected between a first potential and a third potential, a second group of power semiconductor elements at least one of which is electrically connected between a second potential and the third potential, and a third group of power semiconductor elements at least one of which is electrically connected between the first potential and the third potential. The second group is disposed between the first group and third group. Thereby, a low-loss semiconductor device having both inductance reducibility and heat generation balancing capability and also an electric power conversion apparatus using the same is provided.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: June 2, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Katsunori Azuma, Toshiaki Morita, Hiroshi Hozoji, Kazuhiro Suzuki, Toshiya Satoh, Osamu Otsuka
  • Patent number: 7531888
    Abstract: A lateral Insulated Gate Bipolar Transistor (LIGBT) includes a semiconductor substrate and an anode region in the semiconductor substrate. A cathode region of a first conductivity type in the substrate is laterally spaced from the anode region, and a cathode region of a second conductivity type in the substrate is located proximate to and on a side of the cathode region of the first conductivity type opposite from the anode region. A drift region in the semiconductor substrate extends between the anode region and the cathode region of the first conductivity type. An insulated gate is operatively coupled to the cathode region of the first conductivity type and is located on a side of the cathode region of the first conductivity type opposite from the anode region. An insulating spacer overlies the cathode region of the second conductivity type.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 12, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Publication number: 20090114946
    Abstract: A semiconductor has an IGBT active section and a control circuit section for detecting an IGBT abnormal state. A collector region is formed on the back surface side (i.e., on the IGBT collector side) in a selective manner, namely right under the IGBT active section.
    Type: Application
    Filed: October 23, 2008
    Publication date: May 7, 2009
    Applicant: FUJI ELECTRIC DEVICE TECHNOLOGY CO., LTD.
    Inventor: Katsunori UENO
  • Publication number: 20090108288
    Abstract: A semiconductor device includes a semiconductor substrate that includes a plurality of section having different thicknesses. The sections include a first section having a first thickness and a second section having a second thickness, the second section is the thinnest section among all the sections, and the first thickness is greater than the second thickness. A plurality of isolation trenches penetrates the semiconductor substrate for defining a plurality of element-forming regions in the first section and the second section. A plurality of elements is located at respective ones of the plurality of element-forming regions. The elements include a double-sided electrode element that includes a pair of electrodes separately disposed on the first surface and the second surface, and the double-sided electrode element is located in the second section.
    Type: Application
    Filed: October 23, 2008
    Publication date: April 30, 2009
    Applicant: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Tetsuo Fujii, Kenji Kouno
  • Patent number: 7521755
    Abstract: A trench IGBT is disclosed which includes a semiconductor substrate having formed therein a set of cell trenches formed centrally and a set of annular guard trenches concentrically surrounding the cell trenches. The cell trenches receive cell trench conductors via cell trench insulators for providing IGBT cells. The guard trenches receive guard trench conductors via guard trench insulators for enabling the IGBT to withstand higher voltages through mitigation of field concentrations. Capacitive coupling conductors overlie the guard trench conductors via a dielectric layer, each for capacitively coupling together two neighboring ones of the guard trench conductors. The capacitive coupling conductors are easily adjustably variable in shape, size and placement relative to the guard trench conductors for causing the individual guard trench conductors to possess potentials for an optimal contour of the depletion layer.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: April 21, 2009
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Tetsuya Takahashi
  • Publication number: 20090095979
    Abstract: A power module includes a substrate having first and second main substrate surfaces; a semiconductor device disposed on the first main substrate surface, and having a first main surface on which a first main electrode is formed, and a second main surface on which a second main electrode in contact with the first main substrate surface is formed; a heat conduction portion disposed on the first main substrate surface in a residual region of a region on which the semiconductor device is disposed; and an upper cooling portion disposed on the heat conduction portion.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 16, 2009
    Applicant: Rohm Co., Ltd.
    Inventors: Masao Saito, Takukazu Otsuka, Keiji Okumura
  • Publication number: 20090057710
    Abstract: An insulated gate bipolar transistor according to an embodiment includes a first conductive type collector ion implantation area in a substrate; a second conductive type buffer layer, including a first segment buffer layer and a second segment buffer layer, on the first conductive collector ion implantation area; a first conductive type base area on the second conductive type buffer layer; a gate on the substrate at a side of the first conductive type base area; a second conductive type emitter ion implantation area in the first conductive type base area; an insulating layer on the gate; an emitter electrode electrically connected to the second conductive type emitter ion implantation area; and a collector electrode electrically connected to the first conductive collector ion implantation area.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 5, 2009
    Inventor: Sang Yong Lee