Detail Of Nonsemiconductor Component Other Than Light-emitting Semiconductor Device (epo) Patents (Class 257/E33.055)
  • Patent number: 8558217
    Abstract: A light emitting diode includes a substrate, a carbon nanotube layer, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode, and a second electrode. The first semiconductor layer, the active layer, and the second semiconductor layer are stacked on one side of the substrate in that order. The first semiconductor layer is adjacent to the substrate. The carbon nanotube layer is located between the first semiconductor layer and the substrate. The first electrode is electrically connected to the first semiconductor layer. The second electrode is electrically connected to the second semiconductor layer.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 15, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8558254
    Abstract: Improved arrays of high voltage vertical-emitting LEDs that generate substantially lower heat than conventional LED arrays are provided. In particular, the present invention provides an array of high-voltage vertical LEDs each of which includes a first electrode positioned on a light-emitting face and a second electrode. A conductive matrix surrounds each LED and electrically communicates with each of the electrodes while an electrically-insulating material is positioned between adjacent diodes such that a first electrical current path is defined between the second and first electrodes through each diode. An isolating material is positioned in the conductive matrix between adjacent LEDs to isolate the adjacent second electrodes from one another. Further positioned between adjacent diodes is a material capable of permanently lowering its resistance to provide an alternate electrical pathway following a failure of an individual LED. High reliability high voltage vertical LED arrays are thereby provided.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: October 15, 2013
    Assignee: Hong Kong Applied Science and Technology Research Institute Company Limited
    Inventors: Wing Yan Ho, Enboa Wu
  • Patent number: 8558250
    Abstract: Embodiments of displays with embedded MEMS sensors and related methods are described herein. Other embodiments and related methods are also disclosed herein.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: October 15, 2013
    Assignee: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of Arizona State University
    Inventors: Sameer M. Venugopal, Narendra V. Lakamraju
  • Patent number: 8552449
    Abstract: Provided is a package of a light emitting diode. The package according to an embodiment includes a package of a light emitting diode, the package comprising: a base layer including an entire top surface that is substantially flat; a light emitting diode chip on the base layer; a lead frame electrically connected to the light emitting diode chip; and a reflective coating layer comprising titanium oxide, wherein a top surface of the reflective coating layer is substantially parallel to a top surface of the base layer, and wherein ends of the reflective coating layer and base layer are aligned with each other.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: October 8, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bo Geun Park
  • Publication number: 20130256705
    Abstract: The present invention discloses a light emitting diode (LED) light bar structure, which is applied to a backlight module of edge lighting. The LED light bar structure comprises a circuit board, a first row light source and a second row light source. The first row light source comprises a plurality of first LEDs; the second row light source comprises a plurality of second LEDs; and the first LEDs of the first row light source alternately continue with the second LEDs of the second row light source along the longitude direction of the circuit board to keep the lights entering into the light guide plate continuously, so as to prevent the light guide plate from light shadow “Mura” phenomenon in the light guide plate near the LEDs, and it can suit the design trend of narrow frame of liquid crystal panel.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 3, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventor: Jianfa Huang
  • Patent number: 8546829
    Abstract: A semiconductor light emitting device and a method for making the semiconductor light emitting device are described. The semiconductor light emitting device includes an epitaxial structure having a first type doped layer, a light emitting layer, and a second type doped layer. The epitaxial structure may further include an undoped layer. A substrate is bonded to at least one surface of the epitaxial structure with an adhesive layer. One or more posts are located in the adhesive layer. The posts may have different widths depending on the location of the posts and/or the posts may only be located under certain portions of the epitaxial structure.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 1, 2013
    Assignees: Phostek, Inc., NCKU Research and Development Foundation
    Inventors: Ray-Hua Horng, Heng Liu, Yi-An Lu
  • Patent number: 8546839
    Abstract: A light emitting diode includes a substrate, a first semiconductor layer, an active layer and a second semiconductor layer. The first semiconductor layer, the active layer and the second semiconductor layer are stacked on one side of the substrate in that order. The first semiconductor layer is oriented to the substrate. A number of channels are defined between the first semiconductor layer and the substrate.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 1, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8525154
    Abstract: Provided is a light-emitting device which has a simple structure and can be manufactured in a simple process, has increased light coupling efficiency and brightness, and can reduce adverse effects of optical resonance on a view angle and emission spectrum. The light-emitting device includes a substrate; a light-emitting diode formed on the substrate; and an optical resonance layer formed outside the light-emitting diode that induces resonance of light emitted from the light-emitting diode.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: September 3, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yoon-Chang Kim, Young-Woo Song, Sang-Hwan Cho, Ji-Hoon Ahn, Joon-Gu Lee, So-Young Lee, Jong-Seok Oh, Jae-Heung Ha
  • Patent number: 8525193
    Abstract: A layered structure for use with a high power light emitting diode system comprises an electrically insulating intermediate layer interconnecting a top layer and a bottom layer. The top layer, the intermediate layer, and the bottom layer form an at least semi-flexible elongate member having a longitudinal axis and a plurality of positions spaced along the longitudinal axis. The at least semi-flexible elongate member is bendable laterally proximate the plurality of positions spaced along the longitudinal axis to a radius of at least 6 inches, twistable relative to its longitudinal axis up to 10 degrees per inch, and bendable to conform to localized heat sink surface flatness variations having a radius of at least 1 inch. The top layer is pre-populated with electrical components for high wattage, the electrical components including at least one high wattage light emitting diode at least 1.0 Watt per 0.8 inch squared.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: September 3, 2013
    Assignee: Metrospec Technology LLC
    Inventors: Wm. Todd Crandell, Anthony Mitchell Johnson, Tony Stephen Schweitzer, H. Vic Holec
  • Patent number: 8513690
    Abstract: A light emitting diode structure includes an electrically conductive substrate, a first lighting structure having a first n-type semiconductor layer, a first active layer and a first p-type semiconductor layer and a second lighting structure having a second n-type semiconductor layer, a second active layer and a second p-type semiconductor layer. The first n-type semiconductor layer is electrically connected with the second p-type semiconductor layer and the first p-type semiconductor layer is electrically connected with the second n-type semiconductor layer. A first transparent, conductive layer is formed on the first lighting structure and a second transparent, conductive layer is formed on the second lighting structure. The first transparent, conductive layer and the second transparent, conductive layer are connected together to combine the first lighting structure with the second lighting structure.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: August 20, 2013
    Assignee: Foxsemicon Integrated Technology, Inc.
    Inventor: Chih-Ming Lai
  • Publication number: 20130200333
    Abstract: The present invention is to provide a semiconductor light-emitting element. The element comprises a substrate and a nanostructural layer. The nanostructural layer is formed on the substrate and comprises a plurality of void-embedded cortex-like nanostructures, wherein the volumetric porosity of the nanostructural layer is ranged from 30% to 59%. Compared with the prior art, the present invention can not only improve the crystalline quality of epitaxial layers but also enhance the external quantum efficiency (EQE) of the semiconductor light-emitting element.
    Type: Application
    Filed: August 6, 2012
    Publication date: August 8, 2013
    Inventor: Jer-Liang Yeh
  • Patent number: 8492789
    Abstract: A light-emitting diode comprises a light-emitting diode chip having a first semiconductor layer, a first electrode, an active layer formed on the first semiconductor layer, a second semiconductor layer formed on the active layer and a second electrode formed on the second semiconductor layer. The first semiconductor layer, the active layer, the second semiconductor layer and the second electrode sequentially compose a stacked multilayer. A blind hole penetrates the second electrode, the second semiconductor layer, the active layer and inside the first semiconductor layer. The first electrode is disposed on the first semiconductor layer inside the blind hole. A first supporting layer and a second supporting layer are respectively disposed on the first electrode and the second electrode, wherein the first supporting layer and the second supporting layer are separated from each other. A method for manufacturing the light-emitting diode is also provided in the disclosure.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 23, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Tzu-Chien Hung, Chia-Hui Shen
  • Patent number: 8492242
    Abstract: Methods of forming devices, including LED devices, are described. The devices may include fluorinated compound layers. The methods described may utilize a plasma treatment to form the fluorinated compound layers. The methods described may operate to produce an intermetallic layer that bonds two substrates such as semiconductor wafers together in a relatively efficient and inexpensive manner.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: July 23, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Owen Fay, Xiao Li, Josh Woodland, Shijian Luo, Jaspreet Gandhi, Te-Sung Wu
  • Publication number: 20130161652
    Abstract: A light emitting diode (LED) includes a substrate, a buffer layer and an epitaxial structure. The substrate has a first surface with a patterning structure formed thereon. The patterning structure includes a plurality of projections. The buffer layer is arranged on the first surface of the substrate. The epitaxial structure is arranged on the buffer layer. The epitaxial structure includes a first semiconductor layer, an active layer and a second semiconductor layer arranged on the buffer layer in sequence. The first semiconductor layer has a second surface attached to the active layer. A distance between a peak of each the projections and the second surface of the first semiconductor layer is ranged from 0.5 ?m to 2.5 ?m.
    Type: Application
    Filed: August 8, 2012
    Publication date: June 27, 2013
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: Ya-Wen LIN, Po-Min TU, Shih-Cheng HUANG, Chia-Hung HUANG, Shun-Kuei YANG
  • Publication number: 20130146899
    Abstract: A complementary metal-oxide semiconductor (CMOS) sensor with an image sensing unit integrated therein is provided. The CMOS sensor includes a first substrate, a CMOS circuit, and a sensing device. The first substrate has the image sensing unit formed thereon. The CMOS circuit is disposed on the first substrate and has a receiving space. The sensing device is disposed in the receiving space. The image sensing unit is located at a position from which the image sensing unit can monitor the sensing device. Accordingly, the image sensing unit monitors the sensing device by sensing its image.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 13, 2013
    Applicant: National Chip Implementation Center National Applied Research Laboratories
    Inventors: Ying-Zong JUANG, Hann-Huei Tsai, Hsin-Hao Liao, Chen-Fu Lin
  • Publication number: 20130147727
    Abstract: Disclosed are a touch screen integrated organic light emitting display device which has a thin profile and is implemented in a flexible type and a method for fabricating the same. The touch screen integrated organic light emitting display device includes a film substrate, a first etch stopper layer and a first buffer layer sequentially formed on the film substrate, a thin film transistor array including thin film transistors formed on the first buffer layer, organic light emitting diodes connected to the thin film transistors, a passivation layer covering the thin film transistor array and the organic light emitting diodes, a touch electrode layer contacting the passivation layer, a second buffer layer and a second etch stopper layer sequentially formed on the touch electrode layer, and a polarizing plate formed on the second etch stopper layer.
    Type: Application
    Filed: August 22, 2012
    Publication date: June 13, 2013
    Applicant: LG DISPLAY CO., LTD.
    Inventors: Jae-Do LEE, Ho-Won CHOI
  • Publication number: 20130134470
    Abstract: Disclosed herein is a light emitting diode package module, including: a substrate; a light emitting diode package formed on the substrate; an instrument member formed below the substrate; and a magnetic body formed on the substrate, the light emitting diode package, or the instrument member.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 30, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Sang Hyun SHIN
  • Patent number: 8450764
    Abstract: A light-emitting apparatus has a light-emitting device and a supporting board. The light-emitting device has a pair of n-electrodes with a p-electrode therebetween, on the same plane. The supporting board includes an insulating substrate on which positive and negative electrodes are formed, opposing to the p- and n-electrodes of the light-emitting device, respectively. Bonding members bond the p- and n-electrodes with the positive and negative electrodes, respectively. The positive electrode on the supporting board is formed within the width region of the p-electrode and narrower in width than the width of the p-electrode, in a cross-section along a line extending through the pair of n-electrodes. The negative electrodes oppose to the n-electrodes, respectively, with the same widths, or with that side face of each of the negative electrodes which faces the positive electrode being retracted outwardly from that side face of each of the n-electrodes which faces the p-electrode.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 28, 2013
    Assignee: Nichia Corporation
    Inventors: Ryo Suzuki, Tadao Hayashi
  • Publication number: 20130130420
    Abstract: A laser lift-off method for LEDs forms an elevation difference structure on a conversion substrate corresponding to one isolation zone of an epitaxial layer before epitaxy is formed on the conversion substrate to form the epitaxial layer. The elevation difference structure can release stress between the material interfaces, thus can reduce broken probability while lifting off the conversion substrate and epitaxial layer via laser and further improve production yield.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Inventors: Fu-Bang CHEN, Ruei-Sian Zeng, Chih-Sung Chang
  • Patent number: 8431938
    Abstract: Disclosed is a light emitting device. The light emitting device includes a light emitting structure comprising an active layer to generate first light, a first conductive semiconductor layer on the active layer, and a second conductive semiconductor layer on the active layer so that the active layer is disposed between the first and second conductive semiconductor layers, wherein a portion of the light emitting structure is implanted with at least one element which generates second light from the first light.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 30, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Yong Tae Moon
  • Patent number: 8432947
    Abstract: A semiconductor light emitting device includes: a stacked body including a first and a second semiconductor layers of a first and second conductivity types respectively, and a light emitting layer provided between thereof; a first and a second electrodes in contact with the first and second semiconductor layers respectively. Light emitted is resonated between first and second end surfaces of the stacked body opposed in a first direction. The second semiconductor layer includes a ridge portion and a wide portion. A width of the ridge portion along a second direction perpendicular to the first and the stacking directions is narrower on the second electrode side than on the light emitting layer side. A width of the wide portion along the second direction is wider than the ridge portion.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Maki Sugai, Shinji Saito, Rei Hashimoto, Yasushi Hattori, Shinya Nunoue
  • Patent number: 8421085
    Abstract: According to one embodiment, a semiconductor light-emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light-emitting layer, a third semiconductor layer and a first electrode. The light-emitting layer is provided between the first and second semiconductor layers. The third semiconductor layer is provided on opposite side of the first semiconductor layer from the light-emitting layer, has a lower impurity concentration than the first semiconductor layer, and includes an opening exposing part of the first semiconductor layer. The first electrode is in contact with the first semiconductor layer through the opening. The third semiconductor layer further includes a rough surface portion which is provided on opposite side from the first semiconductor layer and includes a surface asperity larger than wavelength in the third semiconductor layer of peak wavelength of emission light emitted from the light-emitting layer.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Katsuno, Yasuo Ohba, Mitsuhiro Kushibe, Kei Kaneko, Shinji Yamada
  • Publication number: 20130087791
    Abstract: A display device and a fabrication method thereof are provided. The display device includes a first metal layer disposed on a display area and a peripheral area. An insulating layer covers the first metal layer. A patterned semiconductor layer is disposed on the insulating layer at the display area. A second metal layer is disposed on the patterned semiconductor layer and the insulating layer at the peripheral area. A transparent conductive layer directly covers the second metal layer. A protective layer completely covers the second metal layer, the patterned semiconductor layer and the transparent conductive layer. The protective layer includes a first portion, a second portion and a through hole, wherein the first portion has a height which is higher than a height of the second portion.
    Type: Application
    Filed: March 15, 2012
    Publication date: April 11, 2013
    Inventors: Rong-Bing WU, Chien-Hao WU, Po-Hsiao CHEN
  • Patent number: 8415702
    Abstract: A reflector for a GaN-based light-emitting device, method for manufacturing the reflector and GaN-based light-emitting device including the reflector are provided. The reflector is formed on a p-type GaN-based epitaxial layer and includes: a whisker crystal of un-doped GaN, formed on a surface of the p-type GaN-based epitaxial layer with a predefined density distribution and at a position that corresponds to a dislocation defect of an epitaxial layer; and a metal reflective layer, formed on both the p-type GaN-based epitaxial layer and the whisker crystal. The whisker of un-doped GaN is positioned on the dislocation defect of the p-type GaN-based epitaxial layer, so that the Ag reflective layer can be separated from the dislocation defect of the p-type GaN-based epitaxial layer, thereby effectively preventing Ag from moving inside the dislocation defect via electromigration, and largely decreasing the possibility of current leakage of the light-emitting device including the Ag reflector.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 9, 2013
    Assignee: Xiamen Sanan Optoelectronics Technology Co., Ltd.
    Inventors: Qunfeng Pan, Jyh-Chiarng Wu, Kechuang Lin
  • Patent number: 8410503
    Abstract: A new light emitting device is disclosed, including a polarizing surface layer, a light emitting layer which emits light at a wavelength, and a light transformation layer disposed between the light emitting layer and the reflective layer, wherein the light emitting layer is disposed between the reflective layer and the polarizing surface layer, and an optical thickness between the light emitting layer and the reflective layer is less than a value of five times of a quarter of the wavelength.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 2, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jih-Fu Wang, Chia-Hsin Chao, Chen-Yang Huang, Han-Tsung Hsueh, Chun-Feng Lai, Wen-Yung Yeh, Chien-Jen Sun
  • Patent number: 8405119
    Abstract: An organic light emitting diode (OLED) lighting apparatus is disclosed. In one embodiment, the apparatus includes i) a substrate main body including a light emitting area and a sealing area surrounding the light emitting area, ii) an OLED disposed on the light emitting area of the substrate main body, iii) a sealant disposed on the sealing area of the substrate main body and iv) an encapsulation substrate encapsulating the OLED, wherein the encapsulation substrate comprises first and second surfaces opposing each other. The apparatus may further include a heat dissipating wire configured to dissipate heat generated by the OLED. The heat dissipating wire includes a heat absorption portion disposed on the first surface of the encapsulation substrate and contacting the sealant, a heat dissipating portion disposed on the second surface, and a coupling portion interconnecting the absorption portion and the heat dissipating portion.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 26, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Young-Mo Koo, Ok-Keun Song, Hyuk-Sang Jun, Yong-Han Lee, Jae-Goo Lee
  • Publication number: 20130069090
    Abstract: The organic electroluminescent device according to the embodiment has: anode and cathode electrodes placed apart from each other, a red and green light-emitting layer and a blue light-emitting layer, and a spacer layer having a thickness of 3 nm to 20 nm inclusive. The light-emitting layers are placed apart from each other and positioned between the electrodes. The spacer layer is positioned between the light-emitting layers, and includes a carrier transport material containing molecules capable of being oriented in the in-plane and vertical direction with an orientational order parameter of ?0.5 to ?0.2 inclusive.
    Type: Application
    Filed: March 14, 2012
    Publication date: March 21, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomoaki SAWABE, Isao Takasu, Tomio Ono, Toshiya Yonehara, Shintaro Enomoto
  • Patent number: 8399906
    Abstract: The invention discloses an AlGaInP-based LED with double reflective layers and a fabrication method thereof. The method includes: providing a temporary substrate; forming an epitaxial layer on a front of the temporary substrate; forming a distributed Bragg reflector on the epitaxial layer; forming an some openings in the distributed Bragg reflector, such that the arrangement of the distributed Bragg reflector is grid-like and a portion of a top of the epitaxial layer is exposed; forming a reflective metal layer on the distributed Bragg reflector and on the exposed portion of the top of the epitaxial layer, to fill the openings; bonding a permanent substrate onto the reflective metal layer; removing the temporary substrate; forming a first electrode and a second electrode at a bottom of the epitaxial layer and a top of the permanent substrate, respectively; and dicing to obtain the AlGaInP-based LED chips.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 19, 2013
    Assignee: Xiamen Sanan Optoelectronics Technology Co., Ltd.
    Inventors: Chiahao Tsai, Suhui Lin, Lingfeng Yin, Jiansen Zheng, Kechuang Lin
  • Publication number: 20130062646
    Abstract: A system for fabricating light emitting diode (LED) dice includes a wavelength conversion layer contained on a substrate on an adhesive layer configured to have reduced adhesiveness upon exposure to a physical energy, such as electromagnetic radiation or heat. The system also includes a curing apparatus configured to reduce the adhesiveness of the adhesive layer to facilitate removal of the wavelength conversion layer from the substrate, and an attachment apparatus configured to remove the wavelength conversion layer from the substrate and to attach the wavelength conversion layer to a light emitting diode (LED) die. A method for fabricating light emitting diode (LED) dice includes the steps of exposing the adhesive layer on the substrate to the physical energy to reduce the adhesiveness of the adhesive layer, removing the wavelength conversion layer from the substrate, and attaching the wavelength conversion layer to the light emitting diode (LED) die.
    Type: Application
    Filed: May 17, 2012
    Publication date: March 14, 2013
    Applicant: SemiLEDS OPTOELECTRONICS CO., LTD.
    Inventors: JUI-KANG YEN, De-Shuo Chen
  • Patent number: 8395182
    Abstract: A light emitting device according to the embodiment includes a substrate; a protective layer on the substrate; a electrode layer on the protective layer; a light emitting structure disposed on the electrode layer to generate light and provided with a first semiconductor layer, an active layer under the first semiconductor layer, and a second conductive semiconductor layer under the active layer; and a first electrode having a first end disposed on a top surface of the light emitting structure and a second end disposed on the protective layer. The protective layer comes into Schottky contact with at least one of the electrode layer and the first electrode.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 12, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hwan Hee Jeong, Sang Youl Lee, Ji Hyung Moon, June O Song, Kwang Ki Choi
  • Publication number: 20130056712
    Abstract: Devices that include one or more functional semiconductor elements that are immersed in static electric fields (E-fields). In one embodiment, one or more electrets are placed proximate the one or more organic, inorganic, or hybrid semiconductor elements so that the static charge(s) of the electret(s) participate in creating the static E-field(s) that influences the semiconductor element(s). An externally applied electric field can be used, for example, to enhance charge-carrier mobility in the semiconductor element and/or to vary the width of the depletion region in the semiconductor material.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 7, 2013
    Applicant: VERSATILIS LLC
    Inventor: Ajaykumar R. Jain
  • Publication number: 20130056735
    Abstract: An organic light-emitting display apparatus includes a thin film transistor on a display region of a substrate, the thin film transistor faces an encapsulation member, an organic light-emitting device on the display region that includes an intermediate layer having an organic emission layer, a sealing member that is between the substrate and the encapsulation member and that surrounds the display region, an internal circuit unit between the display region and the sealing member, a passivation layer that extends to cover the internal circuit unit, a pixel defining layer on the passivation layer, and a getter between the substrate and the encapsulation member, and the getter at least partially overlaps the internal circuit unit.
    Type: Application
    Filed: March 9, 2012
    Publication date: March 7, 2013
    Inventors: Seong-Kweon HEO, Ki-Nyeng Kang, Jong-Hyun Choi
  • Patent number: 8390017
    Abstract: An optical device for a semiconductor based lamp includes a base and a semiconductor based light-emitting device mounted on the base. A transparent body encapsulates the semiconductor based light-emitting device. A reflective surface is in contact with the transparent body and covers a predetermined region on a top of the transparent body. The reflective surface has an opening. At least a portion of the transparent body protrudes through the opening in the reflective surface. Light emitted from the semiconductor based light-emitting device transmits upwardly through the opening in the reflective surface.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 5, 2013
    Assignee: Pinecone Energies, Inc.
    Inventor: Keh Shium Liu
  • Patent number: 8390019
    Abstract: A semiconductor device in which degradation due to permeation of water and oxygen can be limited, e.g., a light emitting device having an organic light emitting device (OLED) formed on a plastic substrate, and a liquid crystal display using a plastic substrate. A layer to be debonded, containing elements, is formed on a substrate, bonded to a supporting member, and debonded from the substrate. A thin film is thereafter formed on the debonded layer. The debonded layer with the thin film is adhered to a transfer member. Cracks caused in the debonded layer at the time of debonding are thereby repaired. As the thin film in contact with the debonded layer, a film having thermal conductivity, e.g., film of aluminum nitride or aluminum nitroxide is used. This film dissipates heat from the elements and has the effect of preventing deformation and change in quality of the transfer member, e.g., a plastic substrate.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Mayumi Mizukami
  • Publication number: 20130049006
    Abstract: Gold is used as a micromask to roughen a gallium nitride (GaN) surface in an LED device. In one example, a mesh of ITO (Indium Tin Oxide) is formed on a GaN layer. The mesh has holes that extend down to the GaN. A layer of silicon dioxide is deposited so that it covers the GaN at the bottoms of the holes. A layer of gold is formed over the oxide. A thermal treatment causes the gold to ball up into small gold features. These gold features are used as a micromask in a subsequent etching step. Areas of the bottoms of the holes that are not covered by a gold feature are etched. Etching occurs through the oxide and down into the GaN. The roughening process involves no silver, and involves no harsh cleaning solvents or processes that might otherwise have been used were the micromask made of silver.
    Type: Application
    Filed: January 26, 2012
    Publication date: February 28, 2013
    Applicant: Bridgelux, Inc.
    Inventor: Syn-Yem Hu
  • Patent number: 8384106
    Abstract: A light emitting device may comprise a first semiconductor layer having a first and second surfaces, the first and second surfaces being opposite surfaces, the first semiconductor layer having a plurality of semiconductor columns extending from the second surface, the plurality of semiconductor columns being separated from each other; a light emitting structure formed over the first semiconductor layer, the light emitting structure including a first conductive semiconductor layer, an active layer and a second semiconductor layer, the light emitting structure having a side surface and an exposed side surface of a semiconductor column closest to the side surface of the light emitting structure being non-aligned with the side surface of the light emitting structure; and a substrate provided adjacent to the plurality of semiconductor columns.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: February 26, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Woo Sik Lim
  • Publication number: 20130045556
    Abstract: A device includes a textured substrate having a trench extending from a top surface of the textured substrate into the textured substrate, wherein the trench comprises a sidewall and a bottom. A light-emitting device (LED) includes an active layer over the textured substrate. The active layer has a first portion parallel to the sidewall of the trench and a second portion parallel to the bottom of the trench.
    Type: Application
    Filed: October 1, 2012
    Publication date: February 21, 2013
    Applicant: TSMC Solid State Lighting Ltd.
    Inventor: TSMC Solid State Lighting Ltd.
  • Patent number: 8378376
    Abstract: The present application describes a vertical light-emitting diode (VLED) and its manufacture method that use the combination of a reflective layer, a transparent conducting layer and transparent dielectric layer as structural layers for promoting uniform current distribution and increasing light extraction. In the VLED, a transparent conducting layer is formed on a first outer surface of a stack of multiple group III nitride semiconductor layers. A transparent dielectric layer is then formed on a side of the transparent conducting layer opposite the side of the multi-layer structure. A first electrode structure is then formed on the transparent dielectric layer in electrical contact with the transparent conducting layer via a plurality of contact windows patterned through the transparent dielectric layer. The transparent conducting layer and the transparent dielectric layer are used as structural layers for improving light extraction.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 19, 2013
    Assignee: Tekcore Co., Ltd.
    Inventors: Wei-Jung Chung, Shih-Hung Lee, Cheng-Hsien Li, Wen-Hsien Lin, Nien-Tze Yeh
  • Patent number: 8368086
    Abstract: A light-emitting device has a first cladding layer, an active layer formed above the first cladding layer, a second cladding layer formed above the active layer, a gain region, and a reflecting part. The active layer has first and second side surfaces parallel to each other. The gain region has a first end surface disposed on the first side surface. The gain region also has a second end surface disposed inside from the second side surface and angled relative to the second side surface. The second end surface, the gain region and the first end surface are provided in a first normal direction relative to the second end surface. The reflecting part is disposed next to the second end surface.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 5, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Michifumi Nagawa
  • Patent number: 8368110
    Abstract: A side view light emitting diode (LED) package structure includes a package housing, a side view LED chip and a thermal conductive member. The side view LED chip is enclosed by the package housing and an emitting direction of the side view LED chip is perpendicular to a thickness direction of a substrate. The thermal conductive member connected with the side view LED chip is disposed inside the package housing and a portion of which extends out of a dissipation opening of the package housing to be exposed so that heat of the side view LED chip is dissipated.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: February 5, 2013
    Assignee: Everlight Electronics Co., Ltd.
    Inventors: Yi-Tsuo Wu, Chung-Chuan Hsieh, Chia-Hsien Chang
  • Publication number: 20130028280
    Abstract: Disclosed herein is a semiconductor laser element including: on a substrate, a laser structure section configured to include a semiconductor laminated structure having an n-type semiconductor layer, active layer and p-type semiconductor layer in this order, and a p-side electrode on top of the p-type semiconductor layer; a pair of resonator edges provided on two opposed lateral sides of the semiconductor laminated structure; and films made of a non-metallic material having a thermal conductivity higher than that of surrounding gas, and provided in the region of the top side of the laser structure section including the positions of the resonator edges.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 31, 2013
    Applicant: SONY CORPORATION
    Inventors: Kazuhiro Hongo, Koji Fukumoto
  • Patent number: 8362516
    Abstract: An excellent light emitting element capable of improving problems caused by a material having high light-reflectivity and susceptible to electromigration, especially Al used for the electrode. FIG. 2A depicts semiconductor light emitting element having a first and second electrodes 20 and 30 disposed at a same surface side respectively on a first and second conductive type semiconductor layer 11 and 13. In the electrode disposing surface, the first electrode 20 comprises a first base part 23 and a first extended part 24 extending from the first base part, and a plurality of separated external connecting parts 31 of the second electrode 30 arranged side by side in extending direction of the first extended part.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 29, 2013
    Assignee: Nichia Corporation
    Inventors: Yoshiki Inoue, Masahiko Sano
  • Patent number: 8354284
    Abstract: An exemplary LED module includes a base, an anisotropic conductive film on the base, multiple LED dies on the anisotropic conductive film, multiple first electrodes between the base and the anisotropic conductive film, and multiple second electrodes on the LED dies. The LED dies are arranged in multiple rows by multiple columns. The first electrodes each are elongated and parallel to each other. The second electrodes each are elongated and parallel to each other. The LED dies of each column are connected to one of the first electrodes electrically. Each second electrode is electrically coupled to the LED dies of one row.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: January 15, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Publication number: 20130009185
    Abstract: The invention provides a light emitting device which uses a color conversion layer, with high light emission efficiency and a low driving voltage. The light emitting device includes a light emitting element having a pair of electrodes and a layer containing an organic compound sandwiched between the pair of electrodes, and a color conversion layer which absorbs light emitted from the light emitting element and emits light with a longer wavelength than a wavelength of the absorbed light. A portion of the layer containing an organic compound includes a buffer layer containing a composite material including an organic compound having a hole transporting property and a metal compound. The thickness of the buffer layer is determined so that the light emission efficiency becomes high.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 10, 2013
    Inventors: Shunpei Yamazaki, Tomoe Matsubara
  • Publication number: 20130009188
    Abstract: This disclosure provides a light-emitting device including a patterned substrate and the manufacturing method thereof. The patterned substrate has a plurality of depressions and/or extrusions for scattering light emitted from a light-emitting layer. Each of the plurality of depressions and/or extrusions comprises a top portion, a bottom portion, and a sidewall portion enclosing the top portion and the bottom portion, and at least part of the sidewall portion comprises a curve. Ina preferred embodiment, the light-emitting device further comprises a rough surface formed on at least one of the top portion, the bottom portion, and the sidewall portion.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Inventors: Ta-Cheng Hsu, Ya-Lan Yang, Ying-Yong Su, Ching-Shian Yeh, Chao-Shun Huang, Ya-Ju Lee
  • Patent number: 8350275
    Abstract: An optoelectronic device assembly can include: a coated element and an electroactive cell on the coated element, wherein the electroactive cell is selected from the group consisting of a light emitting diode and a photovoltaic cell. The coated element can include: transparent thermoplastic substrate and a protective weathering layer. The transparent thermoplastic substrate can include a material selected from the group consisting of aromatic polycarbonate and polyester, and combinations including at least one of the foregoing materials. The protective weathering layer can have a UV absorbance loss rate at 330 nm of less than or equal to 0.15 A/year as estimated from filtered xenon arc exposure and/or having a rate of erosion of less than or equal to 5 ?m per year as estimated from filtered xenon arc exposure.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 8, 2013
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventors: Min Yan, James Edward Pickett, Rebecca Suzanne Northey
  • Patent number: 8350254
    Abstract: A polymer electroluminescent device is provided. The device includes an anode, a light-emitting layer, a cation-containing water-soluble polymer layer and a cathode formed in this order on a substrate wherein the cation-containing water-soluble polymer layer is formed by wet coating. The cation-containing water-soluble polymer layer as a secondary thin film layer is not dissolved in a solvent for the formation of the underlying light-emitting layer to prevent intermixing between the two layers, thereby enabling the formation of a multilayer structure by wet coating. In addition, the cation-containing water-soluble polymer layer attracts electrons injection from the cathode by an attractive Coulomb force to effectively increase the mobility of the electrons while blocking high-mobility holes from the anode at an interface between the light-emitting layer and the water-soluble layer. Further provided is a method for fabricating the electroluminescent device.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: January 8, 2013
    Assignee: Kyungsung University Industry Cooperation Foundation
    Inventors: Dong Kyu Park, Hyung Suk Woo, Tae-Woo Kwon, Seong-Jin Cho
  • Publication number: 20130001620
    Abstract: A high-quality light-emitting device having low power consumption, capability of emitting light of a bright color, and less luminance unevenness is provided. Provided is a light-emitting device in which a plurality of light-emitting units each include a light-emitting element which includes a layer (EL layer) containing an organic compound between a first electrode and a second electrode. The first electrode is separated between light-emitting elements. The EL layer includes a layer (light-emitting layer) containing a light-emitting substance and a layer containing a donor substance and an acceptor substance provided between the first electrode and the light-emitting layer. An inversely tapered partition is provided only between adjacent light-emitting units emitting light of different colors.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Inventors: Nozomu Sugisawa, Kaoru Hatano, Shunpei Yamazaki
  • Publication number: 20130001596
    Abstract: A method and apparatus for providing electro-static discharge (ESD) protection to light emitting diode (LED) systems on printed circuit boards (PCBs). Protection is provided by ESD diodes deposited on the PCBs configured as flexible substrates. Various deposition techniques are employed including chemical vapor deposition, pulsed laser deposition and atomic layer deposition.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: OSRAM SYLVANIA INC.
    Inventors: Adam M. Scotch, David W. Hamby
  • Publication number: 20130005063
    Abstract: A substrate treatment device includes a substrate processing chamber where a plasma treatment process is performed, a rib structure provided in an upper portion of the substrate processing chamber, the rib structure having a form of a three-dimensional structure bent along at least one direction, dielectric material structures, each having an edge fixed to the rib structure; and an antenna provided in a portion of each of dielectric materials facing an exterior of the substrate treatment device, the antenna being connected with a high frequency power source and forming an inductive electromagnetic field in the substrate processing chamber.
    Type: Application
    Filed: November 21, 2011
    Publication date: January 3, 2013
    Inventor: Jae-Ho YANG