Fuel Cell, Subcombination Thereof, Or Method Of Making Or Operating Patents (Class 429/400)
  • Patent number: 8735012
    Abstract: A fuel cell system which includes a fuel distribution structure that uniformly distributes vaporizing fuel to a fuel cell is provided. As the fuel travels in a flow field channel in the fuel distribution structure, it is substantially converted to a vapor by the heat of the fuel cell operation in such a manner that the resulting vapor pressure works to substantially uniformly distribute fuel evenly outwardly across substantially the entire active area of the anode aspect of one or more membrane electrode assemblies in the system, and whereby localized, uneven “hot spots” of fuel at the anode aspects are substantially prevented. A pair of enthalpy exchanger and heat spreader assemblies include a cathode current collector element that also has a heat spreader plate that collects and redirects heat in the fuel cell system, the assembly acting to manage the heat, temperature and condensation in the fuel cell system.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: May 27, 2014
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: David Leach, Michael L. Chen, Charles M. Carlstrom, Jr., Constantinos Minas, Keith G. Brown, Robert Miller, James K. Prueitt, John E. Meschter, Amit Chaugule, Russel H. Marvin, Mark C. Mendrick
  • Patent number: 8722262
    Abstract: The invention relates to a method and to a device for discharging used operating media of a fuel cell (1) in a fuel cell system (20), at least some of which are explosive, comprising a sensor unit (30) for examining the operating media discharged from an operating space (27). In order to discharge the used operating media from the fuel cell system independently of the operation of the fuel cell system and taking safety regulations into account, a mixing zone (32) is provided for mixing the operating media with a scavenging medium (28) to obtain waste air (33), wherein the operating space (27) is closed by a fan (29), and the sensor unit (30) is disposed downstream of the mixing zone (32), viewed in the flow direction of the waste air (33).
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 13, 2014
    Assignee: Fronius International GmbH
    Inventors: Martin Buchinger, Mario Krumphuber, Werner Rumpl, Thomas Schmitsberger, Ewald Wahlmueller
  • Patent number: 8716356
    Abstract: The present invention relates to novel polyazoles, a proton-conducting polymer membrane based on these polyazoles and its use as polymer electrolyte membrane (PEM) for producing membrane-electrode units for PEM-fuel cells, and also other shaped bodies comprising such polyazoles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 6, 2014
    Assignee: BASF Fuel Cell GmbH
    Inventors: Gordon Calundann, Brian Benicewicz, Jochen Baurmeister
  • Patent number: 8709666
    Abstract: A microbial fuel cell comprising a cathode module, an anode module, a means for feeding source water to the anode module, and a means for feeling air to the source water after said anode module, wherein the source water is introduced in the anode module and discharged at the cathode module, a membrane is not used to transfer electrons, and the source water does not flow through a layer between the cathode and anode modules, such as glass wool or beads.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 29, 2014
    Inventors: Donald W. Crookes, Ciro DiMeglio
  • Patent number: 8697296
    Abstract: A separator includes sandwiching sections for sandwiching electrolyte electrode assemblies. A fuel gas channel and an oxygen-containing gas channel are formed in each of the sandwiching sections. Further, the separator includes first bridges connected to the sandwiching sections and a manifold connected to the first bridges. A fuel gas supply channel is formed in the first bridge for supplying the fuel gas to the fuel gas channel. A fuel gas supply passage extends through the manifold in the stacking direction for supplying the fuel gas to the fuel gas supply channel. At the time of starting operation, the heated air is distributed to the oxygen-containing gas channel and the fuel gas channel through a circumferential portion of the electrolyte electrode assembly.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 15, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tomio Miyazaki
  • Patent number: 8679687
    Abstract: The present invention aims to provide a hydrogen generating method for generating hydrogen-containing gas little contaminated with nitrogen, CO, etc., by decomposing fuel containing an organic compound at low temperature while requiring the supply of no or little electric energy from an external source, and a hydrogen generating system based on the method. A hydrogen generating system based on the method can work under multiple conditions: (a) it works under a condition where electric energy is withdrawn from the hydrogen generating cell with the fuel electrode (12) serving as a negative electrode and the oxidizing electrode (14) as a positive electrode; and (b) it works under another condition where external electric energy is provided to the hydrogen generating cell with the fuel electrode (12) serving as cathode and the oxidizing electrode (14) as anode.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: March 25, 2014
    Assignee: GS Yuasa International Ltd.
    Inventors: Ryoichi Okuyama, Yoshihiro Yamamoto, Masashi Motoi, Katsuji Ashida
  • Patent number: 8669013
    Abstract: The present invention relates to processes and apparatuses for generating electrical power from certain non-gaseous carbonaceous feedstocks through the integration of catalytic hydromethanation technology with fuel cell technology.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: March 11, 2014
    Assignee: Greatpoint Energy, Inc.
    Inventors: Charles Allen Powell, Pattabhi K. Raman, Earl T. Robinson, Avinash Sirdeshpande
  • Patent number: 8663862
    Abstract: An FC voltage increasing converter includes a plurality of converter parts having reactors. Regarding the first of the plurality of converter parts provided with a thermistor, the output starts to be limited when the temperature detected by the thermistor reaches a limitation starting temperature, which is obtained based on a reference heat-resistant temperature, which is obtained by subtracting an error of the thermistor from a specification heat-resistant temperature of each of the reactors. Meanwhile, regarding the second, third and fourth of the plurality of converter parts not provided with thermistors, the outputs start to be limited when the temperature detected by the thermistor reaches a limitation starting temperature obtained based on an allowable temperature, which is obtained by subtracting a characteristic-variation temperature of the reactor from the reference heat-resistant temperature of the reactor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe
  • Patent number: 8663851
    Abstract: A fuel cell system includes a plurality of solid oxide fuel cells arranged in a fuel cell stack, an integrated heat exchanger/reformer operable to partially reform an anode feed prior to entry into the fuel cell stack, an anode tailgas oxidizer, and an offgas flow path extending away from an anode side of the fuel cell stack and having a first branch to selectively combine offgas from the anode side of the fuel cell stack with fuel from a fuel source to comprise the anode feed to the fuel cell stack and a second branch to supply offgas from the anode side of the fuel cell stack to the anode tailgas oxidizer. The integrated heat exchanger/reformer transfers heat from the oxidized offgas from the anode tailgas oxidizer to the anode feed before the anode feed enters the anode side of the fuel cell stack. The offgas from the anode tailgas oxidizer provides the sole heat source for the anode feed traveling through the integrated heat exchanger/reformer.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: March 4, 2014
    Assignee: Modine Manufacturing Company
    Inventor: Jeroen Valensa
  • Patent number: 8663435
    Abstract: The method for producing the optical semiconductor of the present disclosure includes a mixing step of producing a mixture containing a reduction inhibitor and a niobium compound that contains at least oxygen in its composition; a nitriding step of nitriding the mixture by the reaction between the mixture and a nitrogen compound gas; and a washing step of isolating niobium oxynitride from the material obtained through the nitriding step by dissolving chemical species other than niobium oxynitride with a washing liquid. The optical semiconductor of the present disclosure substantially consists of niobium oxynitride having a crystal structure of baddeleyite and having a composition represented by the composition formula, NbON.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 4, 2014
    Assignee: Panasonic Corporation
    Inventors: Takahiro Suzuki, Takaiki Nomura, Satoru Tamura, Kazuhito Hato, Noboru Taniguchi, Kenichi Tokuhiro, Nobuhiro Miyata
  • Patent number: 8652699
    Abstract: This fuel cell system is for suppressing a backflow of water from an exhaust pipe outlet that discharges a reactant-off gas, without decreasing the performance and fuel consumption of a fuel cell, the exhaust pipe being configured to switch between a main discharge pipe and a sub discharge pipe by a switching means to discharge the reactant-off gas. The sub discharge pipe includes a rising gradient portion formed to incline upwards above a gradient of the main discharge pipe and a falling gradient portion formed to incline downwards at the downstream of the rising gradient portion. The switching valve switches to allow the reactant-off gas to be discharged from the main discharge pipe if an amount of reactant-off gas to be discharged is equal to or above a threshold value of an amount of discharge, and allow the reactant-off gas to be discharged from the sub discharge pipe if the amount of reactant-off gas to be discharged is below the threshold value of the amount of discharge.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keigo Suematsu, Tomotaka Ishikawa, Yuichi Sakajo
  • Patent number: 8652691
    Abstract: A method of making a metal interconnect for an electrolytic cell stack includes oxidizing the metal interconnect prior to providing the oxidized metal interconnect into the electrolytic cell stack. A pre-oxidized metal interconnect for an electrolytic cell stack would not substantially further oxidize upon exposure to a subsequent oxidizing ambient at a temperature of at least 900° C. prior to or after being provided into the electrolytic cell stack.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: February 18, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Martin Perry, Matthias Gottmann
  • Patent number: 8652664
    Abstract: A fuel cell sealing plate taking-out method that may include taking out a sealing plate from a stack of sealing plates one by one while an air layer exists between adjacent sealing plates of the stack of fuel cells. A protrusion may be formed beforehand at one or more surfaces of each sealing plate. Due to the air layer existing between adjacent sealing plates, it may be possible to take out the sealing plate one by one from the stack of sealing plates.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shiro Akiyama, Shigemitsu Nomoto
  • Patent number: 8647782
    Abstract: A fuel cell system is provided that can establish, for a long time period, a stack to an idling stop state. The fuel cell system includes: an idling stop control means for setting the stack to an idling stop state by, decreasing both a supplied amount of air to the stack and generated electric current produced from the stack to less than during the idling power generation; and a discharge valve control means for determining whether there is a necessity to discharge nitrogen or generated water inside of the anode system, and for opening the purge valve or drain valve in a case of there being a necessity. The discharge valve control means shortens valve open times (PO2, DO2) of the purge valve and drain valve during idling stop to less than the valve open times (PO1, DO1) thereof during idling power generation.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: February 11, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Chihiro Wake, Yuji Matsumoto
  • Publication number: 20140038064
    Abstract: Provided are: steel for solid oxide fuel cells, which is capable of ensuring sufficient oxidation resistance even if a predetermined amount of nitrogen is contained therein; and a member for solid oxide fuel cells, which uses the steel for solid oxide fuel cells. This steel for solid oxide fuel cells having excellent oxidation resistance contains, in mass %, 0.022% or less (including 0%) of C, 0.01-0.05% of N, 0.01% or less (including 0%) of 0, 0.15% or less (including 0%) of Al, 0.15% or less (including 0%) of Si, 0.1-0.5% of Mn, 22.0-25.0% of Cr, 1.0% or less (excluding 0%) of Ni, 1.5% or less (including 0%) of Cu, 0.02-0.12% of La and 0.01-1.50% of Zr with La+Zr being 0.03-1.60%, and 1.5-2.5% of W, with the balance made up of Fe and impurities. The ratio of Zr/(C+N) in mass % is preferably 10 or more.
    Type: Application
    Filed: April 20, 2012
    Publication date: February 6, 2014
    Applicant: HITACHI METALS, LTD.
    Inventors: Nobutaka Yasuda, Toshihiro Uehara, Shigenori Tanaka, Kazuhiro Yamamura
  • Patent number: 8642218
    Abstract: A coating including a silica-based material having pendent functional groups.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: February 4, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Tina T. Salguero, Thomas B. Stanford, Jennifer J. Zinck
  • Patent number: 8637193
    Abstract: In some embodiments, the present disclosure provides a fuel cell catalyst having a catalyst surface bearing a non-occluding layer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a sub-monolayer of iridium. In some embodiments, the present disclosure provides a fuel cell catalyst comprising a catalyst surface bearing a layer of iridium having a planar equivalent thickness of between 1 and 100 Angstroms. In some embodiments, the fuel cell catalyst comprises nanostructured elements comprising microstructured support whiskers bearing a thin film of nanoscopic catalyst particles. The layer of iridium typically has a planar equivalent thickness of between 1 and 100 Angstroms and more typically between 5 and 60 Angstroms. The fuel cell catalyst typically comprises no electrically conductive carbon material and typically comprises at least a portion of the iridium in the zero oxidation state.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: January 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. L. Steinbach, George D. Vernstrom, Mark K. Debe, Radoslav Atanasoski
  • Patent number: 8637171
    Abstract: The invention relates to a device comprising a reactor, where the reactor comprises an anode compartment and a cathode compartment, and where the anode compartment comprises a) an anodophilic micro-organism capable of oxidizing an electron donor compound, and b) a living plant or part thereof. The invention also relates to a method for converting light energy into electrical energy and/or hydrogen, where a feedstock comprising an electron donor compound is introduced into the device.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: January 28, 2014
    Assignee: Plant-e Knowledge B.V.
    Inventors: Hubertus Victor Marie Hamelers, David Petrus Bonifacius Theodorus Bernardus Strik, Jan Frederik Hendrik Snel, Cees Jan Nico Buisman
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8631653
    Abstract: A system for generating electricity including a water storage tank coupled to a heat exchanger and an oxygen generator. The oxygen generator separates water into oxygen and hydrogen and flows each element to the heat exchanger. The heat exchanger includes a fuel cell and a tube that water flows through adjacent the fuel cell. The operation of the fuel cell results in a by product of heat. The heat from the fuel cell is then transferred to water flowing through the tube and the water is converted to steam. The steam drives a turbine generator to produce electricity. The fuel cell generates water in its processing that is returned to the water storage tank.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: January 21, 2014
    Inventors: Nikolai Henss, Ferdinand Henss
  • Publication number: 20140017575
    Abstract: A method for applying a metal on a substrate comprises: a) applying a coating by treatment in a plasma, comprising a compound selected from alkanes up to 10 carbon atoms, and unsaturated monomers, and b1) producing polymers on the surface of said substrate, said polymers comprising carboxylic groups and adsorbed ions of a second metal, reducing said ions to the second metal, or alternatively b2) producing polymers on the surface, bringing the surface of said substrate in contact with a dispersion of colloidal metal particles of at least one second metal, and c) depositing said first metal on said second metal. Advantages include that materials sensitive to for instance low pH or solvents can be coated. Substrates including glass, SiO2 with very few of no abstractable hydrogen atoms as well as polymer materials containing halogen atoms can be coated with good adhesion.
    Type: Application
    Filed: November 16, 2011
    Publication date: January 16, 2014
    Applicant: CUPTRONIC TECHNOLOGY LTD.
    Inventors: Sven Göthe, Björn Atthoff, Karl-Gunnar Larsson
  • Patent number: 8628707
    Abstract: A system for making carbon foam anodes including a digestion vessel in communication with a coal feedstock unit for producing a digested coal; a mold having an interior for accepting the digested coal to produce an ungraphitized carbon foam anode having a desired shape; a pressure unit in communication with the mold for producing an increased pressure within the interior of said mold; a heating element in communication with the mold to provide heat to the mold sufficient to convert the digested coal into the ungraphitized carbon foam anode; and a graphitization oven for graphitizing the ungraphitized carbon foam anode to produce the carbon foam anode. The present invention further includes methods for making carbon foam anodes.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: January 14, 2014
    Assignee: Carbonxt Group Limited
    Inventors: Randall J. Harris, Damian Wales
  • Publication number: 20140009003
    Abstract: Various embodiments enable the operation of fuel cell system support equipment using variable frequency drives and power from fuel cells and/or grid power sources.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 9, 2014
    Inventors: Arne Ballantine, Ranganathan Gurunathan, Chad Pearson, Rajesh Gopinath, Carl Cottuli, James Daniel Smith
  • Patent number: 8623565
    Abstract: A current producing cell has anode flow plates 22 and cathode flow plates 20. Each of the flow plates 20, 22 defines a membrane face 26, a collector face 24, and a center axis C perpendicular to the membrane face 26 and the collector face 24. Each of the collector faces 24 define a plurality of cooling channels 74, 76, 78 and a plurality of transport channels 62, 64. The cooling channels 74, 76, 78 of the cathode flow plates 20 extend radially relative to the center axis C thereof to overlap the transport channels 62, 64 of the anode flow plates 22.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: January 7, 2014
    Inventors: Susanta K. Das, Jayesh Kavathe, K. Joel Berry
  • Patent number: 8617767
    Abstract: Methods and systems for electrical determination and adjustment of the fuel concentration in direct methanol fuel cells (DMFC) are provided.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 31, 2013
    Assignee: IRD Fuel Cells A/S
    Inventors: Madeleine Odgaard, Steen Yde-Andersen, Joergen Sehjerning Lundsgaard
  • Patent number: 8617760
    Abstract: A method including providing an ion conductive membrane and deactivating a selected region of the membrane.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: December 31, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Matthew M. Fay, Bebe T. Dobulis, Timothy J. Fuller
  • Publication number: 20130330638
    Abstract: One embodiment may include a product including a substrate and a stress spring over the substrate. The stress spring may be constructed and arranged over the substrate so that the stress spring prevents or limits damage or undesirable effects caused by subsequent operations performed on the substrate or upon subsequent exposure of the substrate to high strain conditions. The stress spring may include a layer including an alloy or polymer.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: GAYATRI VYAS DADHEECH, MARK W. VERBRUGGE
  • Patent number: 8603690
    Abstract: A system and method for quickly heating a fuel cell stack at fuel cell system start-up. The fuel cell system includes a three-way valve positioned in the anode exhaust that selectively directs the anode exhaust gases to the cathode input of the fuel cell stack so that hydrogen in the anode exhaust gas can be used to heat the fuel cell stack. During normal operation when the fuel cell stack is at the desired temperature, the three-way valve in the anode exhaust can be used to bleed nitrogen to the cathode exhaust.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven D. Burch, Bruce J. Clingerman, Abdullah B. Alp, Jon R. Sienkowski, James K Leary, Victor W. Logan, Daniel I Harris
  • Patent number: 8603684
    Abstract: The present invention concerns a fuel cell comprising a cathode in a cathode region of the cell and an anode in an anode region of the cell, the cathode being separated from the anode by an ion selective polymer electrolyte membrane, the cathode region of the cell being supplied in use thereof with an oxidant and a liquid low molecular weight fuel wherein at least some of the liquid low molecular weight fuel in use crosses the polymer electrolyte membrane to supply the anode region of the cell with liquid low molecular weight fuel, the cell being provided with means for generating an electrical circuit between the cathode and the anode.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 10, 2013
    Assignee: Acal Energy Limited
    Inventors: Andrew Martin Creeth, Emma Farndon
  • Patent number: 8603703
    Abstract: A method for embedding a hydrophilic and electrically conductive layer into a flow field plate or bipolar plate for a fuel cell. In one embodiment, the layer is niobium doped titanium oxide in a powder form. The method includes mixing the powder material in a suitable solution, such as a solvent. The solution is deposited on a substrate, such as a stainless steel substrate, by any suitable process, such as brushing. The substrate is then heated so that the solvent evaporates to leave a coating of the powder material. The substrate is then positioned in a die press and is stamped to the shape of the bipolar plate, where the stamping operation embeds the powder material into an outer surface of the bipolar plate.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel E. Rodak, Yang T. Cheng, Mei Cai, Martin S. Ruthkosky
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Patent number: 8592091
    Abstract: In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 26, 2013
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Mirko Frank, Claas Mueller, Jochen Kerres
  • Patent number: 8586251
    Abstract: A fuel cell system (1) having a cell stack (2) for the carrying out of electrochemical reactions is provided which is provided with inlets (3a, 3b) for an oxidant (5) and for fuel gas (6) and with outlets (4a, 4b) for exhaust gases (7a, 7b). The fuel cell system (1) additionally includes an apparatus (10) having a gas-permeable structure which contains a substance which reacts with gaseous chromium species, wherein the apparatus is in communication with at least one of the outlets to direct exhaust gases through the apparatus and to separate chromium species which are carried along by the exhaust gases.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 19, 2013
    Assignee: Hexis AG
    Inventors: Andreas Mai, Dirk Haberstock, Roland Denzler, Josef Sfeir
  • Patent number: 8580418
    Abstract: Fibrous materials composed of activated carbon fibers and methods for their preparation are described. Electrodes comprising the fibrous materials are also disclosed.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 12, 2013
    Assignee: NanoCarbons LLC
    Inventor: Rudyard Istvan
  • Patent number: 8557448
    Abstract: The fuel cell of the invention includes an electrolyte assembly, and a separator having one face as a gas flow path-forming face with a gas flow path formed thereon to allow flow of a reactive gas and the other face, which is reverse to the one face, as a refrigerant flow path-forming face with a refrigerant flow path formed thereon to allow flow of a refrigerant. The gas flow path-forming face of the separator has multiple linear gas flow paths that are arranged in parallel to one another, and a gas flow path connection structure that divides the multiple linear gas flow paths into plural linear gas flow path groups and connects at least part of the plural linear gas flow path groups in series.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Yuichi Yagami, Jiro Aizaki, Junichi Shirahama, Sogo Goto, Tsuyoshi Takahashi, Tomokazu Hayashi
  • Patent number: 8557473
    Abstract: Crosslinked sulfonated triblock copolymers exhibit lower methanol permeability and good physical strength relative to the perfluorinated proton conductive membranes typically used in Direct Methanol Fuel Cells. Examples of triblock copolymers that can be used as fuel cell membranes include SEBS, SIBS, and SEPS. The chemically cross-linked and sulfonated SIBS, SEBS, and SEPS exhibit lower swelling and tolerate higher sulfonation levels than the un-cross-linked counterparts. These copolymers are easily sulfonated using known procedures and can be manufactured at a fraction of the cost of the typical perfluorinated proton conductive membranes.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 15, 2013
    Assignee: Bose Corporation
    Inventor: Agota F. Fehervari
  • Patent number: 8557450
    Abstract: A fuel cell system (1), especially in a motor vehicle, includes at least one fuel cell (2) for generating electricity, at least one reformer (3) for generating a reformat gas, a fuel supply means (13) for feeding fuel to the reformer (3), a recycling means (83), which has a recycling line (31) connected to the reformer (3) for feeding anode waste gas of the fuel cell (2) to the reformer (3), and an air supply means (17), which has an air line (18) connected to the reformer (3) separately from the recycling line (31) for feeding air to the reformer (3). To increase performance, the fuel supply means (13) may be designed such that fuel can be introduced with it into the recycling line (31).
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 15, 2013
    Assignee: Eberspächer Climate Control Systems GmbH & Co. KG
    Inventor: Andreas Kaupert
  • Patent number: 8551664
    Abstract: A fuel cell system is disclosed that employs a humidifier and an oxygen sensor for measuring the oxygen concentration in the cathode exhaust gas from the fuel cell stack to determine a system diagnostic, such as a fluid leak from or across the humidifier.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: October 8, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas W. Tighe, Robert L. Fuss, Robert N. Carter, Bruce J. Clingerman
  • Patent number: 8551663
    Abstract: A power generator includes a hydrogen producing fuel and a hydrogen storage element. A fuel cell having a proton exchange membrane separates the hydrogen producing fuel from ambient. A valve is positioned between the hydrogen storage element and the hydrogen producing fuel and the fuel cell. Hydrogen is provided to the fuel cell from the hydrogen storage element if demand for electricity exceeds the hydrogen producing capacity of the hydrogen producing fuel.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 8, 2013
    Assignee: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Publication number: 20130260263
    Abstract: A mobile energy carrier with which energy in the form of materials from zones distributed widely throughout the world, for example with a large amount of solar energy, wind energy or other CO2-neutral energy, for example the equator, can be transported to zones where there is a high energy requirement, for example Europe.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventor: Günter SCHMID
  • Patent number: 8546028
    Abstract: The present invention relates to a method for charging the cell by electrodeposition of metal fuel on the anode thereof.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel Hayes
  • Patent number: 8546035
    Abstract: Provided is a fuel cell system capable of ensuring responsiveness during acceleration even when a motor with a smaller torque as compared to the related art is used. A control apparatus reduces the revolution speeds of motors of an air compressor, a circulation pump and a cooling pump by a coasting operation, without performing a regenerative control, when a load required from a fuel cell (electrical power required by various motors and auxiliary apparatuses) is being reduced and a travel speed is equal to or higher than a set speed. With such a configuration, even when a driver later reaccelerates a vehicle by, for example, pressing down an accelerator, required acceleration force is smaller as compared to the related art, and thus a motor with a small torque can be employed.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 1, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koji Katano
  • Patent number: 8546036
    Abstract: A fuel cell includes separators sandwiching electrolyte electrode assemblies. Each of the separators includes a fuel gas supply section, four first bridges extending radially outwardly from the fuel gas supply section, sandwiching sections connected to the first bridges, and flow rectifier members provided between adjacent sandwiching sections. A fuel gas supply passage extends through the center of the fuel gas supply section. Each of the sandwiching sections has a fuel gas channel and an oxygen-containing gas channel. The flow rectifier members rectify the flow of the oxygen-containing gas supplied from the oxygen-containing gas supply passage to the electrolyte electrode assemblies.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Bunichi Saito, Yukihiko Kiyohiro
  • Patent number: 8546002
    Abstract: A yeast biofilm microbial fuel cell has anode and cathode chambers, each containing an electrolyte medium, separated by a proton conducting membrane. A baker's yeast biofilm is induced to form on the anode under electrical poising. A method of making the MFC includes adding baker's yeast and yeast nutrient fuel source to the anode solution, connecting a resistor across the anode and cathode to enable current flow through the resistor for a selected time for poising the anode and formation of the anodic yeast biofilm, replacing the anode solution with a fresh quantity of yeast-free solution, adding fuel source to the solution, and continuing to run the MFC for a selected time under resistance. The steps of replacing the anode solution, adding fuel source and running the cell under load are repeated until the baker's yeast has formed a suitable anodic biofilm.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: October 1, 2013
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Rahul Ganguli, Vivek Mehrotra
  • Patent number: 8546026
    Abstract: Disclosed are a gas-liquid separator, a hydrogen generating apparatus, and a fuel cell generation system, having the same. The gas-liquid separator can include an inflow path, into which a fluid material having a liquid and a gas flows; a centrifugal path, connected to the inflow path to receive the fluid material and formed spirally such that the fluid material is separated into the liquid and the gas by difference in centrifugal forces, an outer side of the centrifugal path having stronger affinity for the liquid than an inner side of the centrifugal path; and an outflow path, connected to the centrifugal path and discharging the liquid and the gas, which have been separated in the centrifugal path. With the present invention, it is possible to efficiently separate gas such as hydrogen and liquid such as a electrolyte solution without complex devices.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 1, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Eon-Soo Lee, Jae-Hyuk Jang, Hye-Yeon Cha
  • Patent number: 8530104
    Abstract: A method of operating a fuel cell system including stopping power generation of a fuel cell which generates electric power using a fuel gas and an oxidizing gas, filling and keeping a combustible gas in a cathode of the fuel cell after said step, supplying the oxidizing gas to the cathode, supplying the combustible gas discharged from the cathode in response to the previous step to a combustor capable of heating a fuel generator for generating the fuel gas or an exhaust pipe connected to the combustor via a branch passage branching from an oxidizing gas passage located downstream of the cathode, diluting the combustible gas supplied to the combustor or the exhaust pipe with air supplied to the combustor or exhaust gas supplied to the exhaust pipe such that the combustible gas has a concentration lower than a combustion lower limit, and discharging the diluted combustible gas to atmosphere.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 10, 2013
    Assignee: Panasonic Corporation
    Inventors: Masataka Ozeki, Akinari Nakamura, Yoshikazu Tanaka
  • Patent number: 8530100
    Abstract: A method of surface treating a separator plate of a fuel cell comprises reacting the separator plate with an aqueous solution of hydrogen peroxide. The aqueous solution of hydrogen peroxide comprises one or more salts of one or more transition metals. The one or more transition metals have variable oxidation states. This method makes the surface of the separator plate hydrophilic (˜35 deg contact angle of water) and improves its electrical conductivity. The method of surface treating a separator plate (e.g., a graphite and/or graphite composite plate) of a fuel cell can further comprise a method of modifying wettability of the separator plate comprising treating the separator plate with a solution comprising one or more silanes. In another embodiment, a method of modifying wettability of a separator plate (e.g.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: September 10, 2013
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Dmitri Vdovine, Natalia Kremliakova, Andrei Bogdanov
  • Patent number: 8530106
    Abstract: A fuel cell assembly is disclosed, the fuel cell assembly including a plurality of fuel cell plates arranged in a stack, each fuel cell plate having reactant inlets and outlets and a coolant inlet and outlet; a first terminal plate disposed at a first end of the stack of the fuel cell plates; and a barrier layer disposed between one of the plurality of fuel cell plates and the first terminal plate to provide a thermal barrier therebetween, wherein the barrier layer includes a first portion having a first thermal conductivity and a second portion having a second thermal conductivity.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: September 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric J. Connor, Todd D. Bogumil
  • Patent number: 8530114
    Abstract: A solid oxide fuel cell (SOFC) interconnect comprises a metal sheet with an air side and a fuel side in accordance with an embodiment of the present invention. The metal sheet comprises a metallic composite having a matrix. The matrix comprises a first metal. The metal sheet also comprises a plurality of discontinuous, elongated, directional reinforcement wires. The reinforcement wires comprise a second metal that is immiscible in the first metal. An oxidation protection layer is disposed on the air side of the metal sheet.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: September 10, 2013
    Assignee: The Boeing Company
    Inventor: Brad L. Kirkwood
  • Patent number: 8507142
    Abstract: A fuel cell system includes a cell stack, a secondary battery, and a controller including a CPU, a main switch, and a stop button. After the main switch is turned OFF, if there is no power generation stopping command from the stop button, the CPU stops power generation in the cell stack after continuing power generation in the cell stack until a charge rate of the secondary battery becomes not lower than a first threshold value. If the charge rate is not lower than a second threshold value and is lower than the first threshold value, generation in the cell stack is stopped in response to the power generation stopping command from the stop button. If the charge rate is lower than the second threshold value, power generation in the cell stack is continued to charge the secondary battery until the charge rate becomes not lower than the second threshold value.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: August 13, 2013
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Yasuyuki Muramatsu