Fuel Cell, Subcombination Thereof, Or Method Of Making Or Operating Patents (Class 429/400)
  • Patent number: 8293407
    Abstract: An electrode which can be used in a fuel cell having improved power generation performance and high durability, and a fuel cell having such an electrode, are provided. An electrode having catalyst layers arranged on both surfaces of an electrolyte membrane, wherein the electrode is characterized in that an electrode binder used for constituting the catalyst layers contains a cross-linked compound (X) having a silicon-oxygen bond, a polymer material (Y) containing an acid group, and an aqueous dispersion (Z) containing a thermoplastic resin.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 23, 2012
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Yoshiharu Konno, Toshihito Miyama, Hideyasu Nakajima, Masashi Kanoh
  • Patent number: 8293428
    Abstract: A gas diffusion electrode material of the present invention includes: a porous body (1) formed of continuous and discontinuous polytetrafluoroethylene microfibers (2) and having three-dimensionally continuous micropores (4); and a conductive material (3) supported on the porous body (1). Moreover, a density of the polytetrafluoroethylene microfiber (2) is lower in a surface region (1A) of a cross section of the porous body (1) than in an intermediate region (1B) of the cross section. In accordance with the present invention, the polytetrafluoroethylene having the predetermined three-dimensional structure is used, and so on. Therefore, it is possible to provide a gas diffusion electrode material excellent in power generation characteristics and durability.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: October 23, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Shinji Yamamoto, Miyuki Terado, Masahiro Yamamoto, Kenichi Ochiai
  • Patent number: 8293425
    Abstract: The polymer electrolyte fuel cell of the invention includes: an electrolyte membrane that is made of a solid polymer; catalyst electrode layers that are arranged and formed on two opposed faces of the electrolyte membrane; gas separators that form reactive gas supply flow paths to allow passage of reactive gases subjected to an electrochemical reaction to the catalyst electrode layers; a holder element that is located on periphery of the electrolyte membrane and the catalyst electrode layers to support at least the electrolyte membrane; an expansion element that is linked with the holder element to be expandable in an electrolyte membrane surface direction; and a fixation element that is linked with the expansion element to be fixed to the gas separators. This arrangement effectively prevents deterioration of the electrolyte membrane, due to expansion or contraction of the electrolyte membrane in the polymer electrolyte fuel cell.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tatsuo Kawabata
  • Patent number: 8283082
    Abstract: A fuel cell system includes a fuel cell, a battery, and a DC/DC converter capable of connecting the fuel cell and the battery on a power feeding circuit. A method of starting operation of the fuel cell system includes the steps of connecting a bypass line connected to a battery for bypassing the DC/DC converter to the power feeding circuit, and directly supplying electrical energy from the battery to an air compressor of an oxygen-containing gas supply apparatus through the bypass line in a state where the fuel cell is disconnected from the power feeding circuit.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 9, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kuniaki Ojima, Satoshi Aoyagi
  • Publication number: 20120248032
    Abstract: A curable composition comprising: (i) 2.5 to 50 wt % crosslinker comprising at least two acrylamide groups; (ii) 20 to 65 wt % curable ionic compound comprising an ethylenically unsaturated group and an anionic group; (iii) 15 to 45 wt % solvent; and (iv) 0 to 10 wt % of free radical initiator; wherein the composition has a pH of 0.8 to 12. The compositions are useful for preparing ion exchange membranes.
    Type: Application
    Filed: December 9, 2010
    Publication date: October 4, 2012
    Applicant: FUJIFILM MANUFACTURING EUROPE BV
    Inventors: Bastiaan Van Berchum, Jacko Hessing, Harro Antheunis
  • Patent number: 8278001
    Abstract: A direct oxidation fuel cell (DOFC) having a liquid fuel and an anode electrode configured to generate power. The anode electrode includes a gas diffusion layer (GDL) and a microporous layer, such that a decrease in the porosity of the GDL achieves an increase in the power density of the DOFC.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 2, 2012
    Assignees: Panasonic Corporation, The Penn State Research Foundation
    Inventors: Seung Hun Jung, Chao-Yang Wang, Takashi Akiyama
  • Patent number: 8277983
    Abstract: The present invention relates to novel polyazoles, a proton-conducting polymer membrane based on these polyazoles and its use as polymer electrolyte membrane (PEM) for producing membrane-electrode units for PEM-fuel cells, and also other shaped bodies comprising such polyazoles.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: October 2, 2012
    Assignee: BASF Fuel Cell GmbH
    Inventors: Gordon Calundann, Brian Benicewicz, Jochen Baurmeister
  • Patent number: 8277982
    Abstract: The invention provides a hydrogen activating material, which includes as a major constituent an iron-semiconductor alloy containing iron and semiconductor components. It also provides a consumption controlling material for water-soluble electrolyte chemical cells and fuel cells. In addition a hydrogen activating method is also provided.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 2, 2012
    Inventor: Yasuo Sakakura
  • Patent number: 8273485
    Abstract: Fuel cells having an efficient means of thermal insulation such that all of the components requiring high temperature operation are contained within a single housing and whereby such thermal insulation is disposed exterior to such housing.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 25, 2012
    Assignee: Lilliputian Systems, Inc.
    Inventors: Samuel B. Schaevitz, Aleksander Franz, Roger Barton, Alan P. Ludwiszewski
  • Publication number: 20120237846
    Abstract: The invention relates to an apparatus (1) for converting chemical energy into electrical energy and/or electrical energy into chemical energy with a housing (2, 3, 3a), which is open towards at least one side (6) and in which a pressure chamber (4) is formed, and with at least one electrochemically active cell (5) for energy conversion, which extends from the open side (6) of the housing (2, 3, 3a) into the housing (2, 3, 3a), wherein the open side (6) is closed by a plate (7, 31), which holds and/or supplies power to the cell (5). A sealing element (8, 9) is arranged between the housing (2, 3, 3a) and the plate (7, 31), closes the open side (6) of the housing (2, 3, 3a) in a fluid-tight and/or gas-tight manner so as to form the pressure chamber (4) and is formed at least partially from an elastic material.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 20, 2012
    Inventors: Michael Brodmann, Martin Greda, Cristian Mutascu, Jeffrey Roth
  • Publication number: 20120234867
    Abstract: A dispensing apparatus including a product dispenser in which product is dispensed by manual movement of an activation mechanism as, for example, by moving a lever with a person's hand, arm or foot. The dispensing apparatus includes an electrical generator for generating electrical energy as a result of the manual movement of the activation mechanism, preferably by electromagnetic induction or electrochemistry. The electrical energy from the generator is utilized in the dispensing apparatus to power a data communication unit for receiving information about the product dispenser and transmitting the information to a receiver, preferably but not necessarily wirelessly.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Inventor: Heiner Ophardt
  • Patent number: 8268512
    Abstract: In a manufacturing method for an electrode-membrane-frame assembly in a fuel cell, a first frame member and an electrolyte membrane member are arranged in a first mold for injection molding such that the edge of the electrolyte membrane member is arranged on the first frame member, a second mold is arranged to form a resin flow passage for forming a second frame member which is in contact with the first frame member by interposing the electrolyte membrane member, and a part of the edge of the electrolyte membrane member is pressed and fixed to the first frame member by a presser member mounted on the second mold and a molding resin material is injected into the resin flow passage to form a second frame member.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Takashi Morimoto, Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Mitsuo Yoshimura
  • Patent number: 8268490
    Abstract: Catalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the catalyst layers are also disclosed. A catalyst layer of the invention includes an electrode substrate and an electrocatalyst on the surface of the electrode substrate, and the electrocatalyst is formed of a metal compound obtained by hydrolyzing a metal salt or a metal complex.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: September 18, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8268470
    Abstract: The present invention relates to a ventilator of fuel-cell vehicles for ventilating hydrogen in the hydrogen-system unit area arranging a hydrogen circulating device in the fuel-cell vehicles boarding the fuel cell. The ventilator of fuel-cell vehicle includes a first ventilating device for taking ventilating air in from a front side of the fuel-cell vehicle to hydrogen-system unit area arranging the fuel cell, the hydrogen supply device, and the hydrogen exhaust device in the center of front and rear direction of the fuel-cell vehicle; and a second ventilating device for sucking the ventilating air taken in from the rear end of vehicle body of the fuel-cell vehicle to the hydrogen-system unit area.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: September 18, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Mitsunori Matsumoto, Masahiro Matsutani
  • Patent number: 8268494
    Abstract: A fuel cell system comprising: a fuel cell 1 having a fuel gas passage 1D and an oxidizing gas passage 1E; a fuel gas feeder 2; an oxidizing gas feeder 3; a fuel gas exhaust passage 8; an oxidizing gas exhaust passage 9; a test gas feeder 20 configured to feed a test gas to either the fuel gas passage 1D or the oxidizing gas passage 1E; a flow rate detector 5 configured to detect the flow rate of the test gas; a first passage blocking device 4; and a controller 10, wherein said controller 10 controls said first passage blocking device 4 to block off the passage and controls the test gas feeder 2 to feed the test gas to said fuel cell 1, thereby obtaining a detected value from the flow rate detector 5 or an airtightness value that is numerical information into which the detected value is converted.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Hideo Kasahara, Soichi Shibata, Hideo Ohara, Yoshikazu Tanaka
  • Patent number: 8268493
    Abstract: The present disclosure relates to in-situ, line-of-sight measurements of partial pressure and temperature associated with at least one flow channel of a fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) is employed for measurements for which water transition states sensitive to temperature and partial pressure are utilized. Measurements are achievable for a fuel cell operating under both steady-state and time-varying load conditions. For steady-state operation, the water partial pressure increases with increasing current density on a cathode side of the fuel cell due to production of water by electrochemical reaction. Temperature in a gas phase remains relatively constant since the fuel cell housing temperature is controlled externally. For non-steady-state operation of the fuel cell through a time-varying current profile, the water partial pressure responds to the load changes rapidly and follows a current profile.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: September 18, 2012
    Assignee: University of Connecticut
    Inventors: Baki M. Cetegen, Michael W. Renfro, Saptarshi Basu
  • Patent number: 8263290
    Abstract: The invention is directed to iridium oxide based catalysts for use as anode catalysts in PEM water electrolysis. The claimed composite catalyst materials comprise iridium oxide (IrO2) and optionally ruthenium oxide (RuO2) in combination with a high surface area inorganic oxide (for example TiO2, Al2O3, ZrO2 and mixtures thereof). The inorganic oxide has a BET surface area in the range of 50 to 400 m2/g, a water solubility of lower than 0.15 g/l and is present in a quantity of less than 20 wt. % based on the total weight of the catalyst. The claimed catalyst materials are characterized by a low oxygen overvoltage and long lifetime in water electrolysis. The catalysts are used in electrodes, catalyst-coated membranes and membrane-electrode-assemblies for PEM electrolyzers as well as in regenerative fuel cells (RFC), sensors, and other electrochemical devices.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: September 11, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Andreas Schleunung, Peter Biberbach
  • Patent number: 8257466
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 4, 2012
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 8241798
    Abstract: A method and an apparatus is provided for increasing biofilm formation and power output in microbial fuel cells. An anode material in a microbial fuel cell has a three-dimensional and ordered structure. The anode material fills an entire anode compartment, and it is arranged to allow fluid flow within the anode compartment. The power output of microbial fuel cells is enhanced, primarily by increasing the formation and viability of electrogenic biofilms on the anodes of the microbial fuel cells. The anode material in a microbial fuel cell allows for the growth of a microbial biofilm to its natural thickness. In the instance of members of the Geobacteraceae family, the biofilm is able grow to a depth of about 40 microns.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Tina T. Salguero, Jocelyn Hicks-Garner, Souren Soukiazian
  • Patent number: 8241796
    Abstract: An electrode for use in a fuel cell consists of a porous plastic substrate, a conductive layer and a catalyst layer, in which the substrate is hydrophilic. Preferably the substrate has a water wicking rate no less than 40 mm per 600 s. Such an electrode may be used in a fuel cell, with an electrolyte chamber (8) defined between two opposed electrodes (11, 12), the electrodes having the catalyst layers (5) facing away from the electrolyte in contact with respective gas chambers (7, 9). Preferably the electrolyte is maintained at a negative pressure during operation.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: August 14, 2012
    Assignee: AFC Energy plc
    Inventors: Otto F. Carlisle, Gerard P. T. Sauer
  • Patent number: 8237312
    Abstract: A technique includes operating a converter to convert a first voltage produced by an electrochemical cell stack in a power producing mode into a second voltage. The technique includes operating the converter to convert a third voltage into a fourth voltage to drive the electrochemical cell stack in a pumping mode.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 7, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Jeffrey W. Schrieber, David Robertson
  • Patent number: 8232010
    Abstract: A process for the production of hydrogen for micro fuel cells, comprises the successive steps of: continuously supplying a catalytic bed with an aqueous solution of sodium borohydride, the catalytic bed being made of at least one metal chosen among cobalt, nickel, platinum, ruthenium with obtainment of hydrogen and of a by-product comprising sodium metaborate, continuously recovering the hydrogen thus obtained and supplying, with said hydrogen as it is as obtained, a micro fuel cell which transforms hydrogen into electric energy. An apparatus provides continuous supply of hydrogen to a micro fuel cell. An integrated system structured for continuously producing and supplying hydrogen to a micro fuel cell and for converting the continuously supplied hydrogen into electric energy.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 31, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberta Giuffrida, Marco Antonio Salanitri, Giuseppe Emanuele Spoto, Stefania Calamia, Salvatore Leonardi, Salvatore Coffa, Roberta Zito
  • Patent number: 8231717
    Abstract: An oxidizing gas purification apparatus (1) for a fuel cell (7) has a compressor (2) that compresses oxidizing gas and sends the oxidizing gas; a cooling apparatus (4), disposed downstream from the compressor (2), that cools the oxidizing gas passing therethrough; an adsorbent unit (5b), disposed downstream from the cooling apparatus (4), that houses an adsorbent (5a) that adsorbs impurities included in the oxidizing gas sent from the cooling apparatus (4) at a prescribed adsorption temperature and releases the adsorbed impurities at a prescribed thermal regeneration temperature that is above the prescribed adsorption temperature by control of the operation of the cooling apparatus (4) to cool the oxidizing gas that has a temperature above the prescribed adsorption temperature and that is sent from the compressor (2).
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: July 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Fujitani
  • Patent number: 8232761
    Abstract: A two-stage voltage step-up converter and energy storage system is utilized for harvesting trickling electrons from benthic microbe habitats. A relatively random low voltage from the microbial fuel cell (less than about 0.8 VDC) is provided to the first stage step-up converter, which stores power in a first output storage device. A first comparator circuit turns on the second stage step-up converter to transfer energy from the first output storage device to a second output storage device. A second comparator circuit intermittently connects the load to the second output storage device. After initial start-up, the system is self-powered utilizing the first and second output devices but may use a battery for the initial start-up, after which an automatic switch can switch the battery out of the circuit.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: July 31, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Daniel P. Thivierge, Promode R. Bandyopadhyay
  • Patent number: 8227117
    Abstract: Electrodes and electrocatalyst layers incorporating modified carbon products. The modified carbon products may advantageously enhance the properties of an electrode or electrode layer, leading to more efficiency within the a fuel cell or similar device.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: July 24, 2012
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Gordon L. Rice, James Caruso, James Brewster, Rimple Bhatia, Paul Napolitano, Bogdan Gurau
  • Patent number: 8216727
    Abstract: A proton exchange membrane is obtained which can give an excellent power generation characteristic when the membrane is applied to, in particular, a fuel cell wherein high-concentration methanol is used as a fuel. In the aromatic hydrocarbon based proton exchange membrane of the invention, the ion exchange capacity is set into the range of 0.6 to 1.3 meq/g. Moreover, the area swelling rate for a 30% by mass methanol aqueous solution at 40° C. is set into the range of 2 to 30%. Preferably, a sulfonic acid group is bonded to an aromatic ring of the aromatic hydrocarbon based polymer contained in the aromatic hydrocarbon based proton exchange film. Preferably, the aromatic hydrocarbon based polymer is a polyarylene ether based polymer.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: July 10, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Masahiro Yamashita, Yoshimitsu Sakaguchi, Kota Kitamura
  • Patent number: 8216743
    Abstract: A fuel cell system including, among other things, one or more of a fuel cell, a fuel reservoir, a current collecting circuit, a plenum, or a system cover. The fuel reservoir is configured to store fuel, and may include a regulator for controlling an output fuel pressure and a refueling port. A surface of the fuel reservoir may be positioned adjacent a first fuel cell portion. The current collecting circuit is configured to receive and distribute fuel cell power and may be positioned adjacent a second fuel cell portion. The plenum may be formed when the fuel reservoir and the first fuel cell portion are coupled or by one or more flexible fuel cell walls. The system cover allows air into the system and when combined when a fuel pressure in the plenum, may urge contact between the fuel cell and the current collecting circuit.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: July 10, 2012
    Assignee: Société BIC
    Inventors: Gerard F McLean, Jeremy Schrooten, Joerg Zimmermann, Mark Petersen, Paul Sobejko
  • Patent number: 8202637
    Abstract: A fuel cell sealing plate taking-out method that may include forming an air layer between adjacent sealing plates and taking out a sealing plate from a stack of sealing plates one by one. A protrusion may be formed beforehand at one or more surfaces of each sealing plate. Also, a sealing plate taking-out apparatus having a suction pad and a projection that protrudes more than the suction pad toward the sealing plate. Due to the air layer formed between adjacent sealing plates, it may be possible to take out the sealing plate one by one from the stack of sealing plates.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: June 19, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shiro Akiyama, Shigemitsu Nomoto
  • Patent number: 8202661
    Abstract: A fuel cell system for receiving input fuel, input water and input oxidant comprising a humidifying assembly for combining the input fuel with input water to produce humidified fuel, a fuel cell having an anode for receiving the humidified fuel and a cathode for receiving the input oxidant, and a power load controller for controlling a power load on the fuel cell system based on a power output set point and changes in the detected load.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: June 19, 2012
    Assignee: FuelCell Energy, Inc.
    Inventors: Joseph Daly, William Livingood, Ramakrishnan Venkataraman, Mohammad Farooque
  • Patent number: 8202655
    Abstract: A method is provided for reducing degradation in a fuel cell assembly, including at least one fuel cell with a PBI membrane, during standby, operation. The method may include electrochemically consuming an oxidant from a cathode coupled to the PBI membrane in response to a disconnection of an external load and supplying fuel to remove or electrochemically consume any back-diffused oxidant to the associated fuel cell sufficient to replace or consume the back-diffused oxidant while the external load is removed, and/or also may include controlling a standby temperature of the fuel cell. In this way, it may be possible to avoid increased cell voltage decay associated with degradation of the PBI in a simple and cost effective system.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: June 19, 2012
    Assignee: ClearEdge Power, Inc.
    Inventors: Yang Song, Zakiul Kabir, Craig Evans, Lin Qiu, Donald L. Maricle
  • Patent number: 8197975
    Abstract: A fuel cell system includes a fuel cell unit, a reformer with a catalyst and heat pipes around the catalyst, and a combustor connected to the heat pipes. A first fuel pipe sends fuel into the reformer. The fuel is reformed in the reformer. A first air port sends air into the reformer. An anode pipe sends the reformed fuel into the fuel cell unit. The chemical reaction of the reformed fuel occurs in the fuel cell unit. A cathode pipe sends the air into the fuel cell unit. A residual reformed fuel pipe sends residual reformed fuel into the combustor. A hot air pipe sends hot air into the combustor. The residual reformed fuel pipe is mixed with the hot air and burned in the combustor. A second fuel pipe sends more fuel into the combustor if necessary. A second air port sends air into the combustor if necessary.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: Atomic Energy Council Institue of Nuclear Research
    Inventors: Tzu-Hsiang Yen, Wen-Tang Hong, Yu-Ching Tsai, Hung-Yu Wang, Wei-Ping Huang, Ming-Dar Lin, Chen-Po Lai, Cheng-Nan Huang
  • Patent number: 8192876
    Abstract: The invention relates to a method for operating a fuel cell system in a mode of reduced power output. The fuel cell system comprises a fuel cell stack (BS) having at least one fuel cell (BZ) with an anode (A), a cathode (K), and a proton exchange membrane, anode and cathode inlets, anode and cathode outlets, and a hydrogen and air supply. In order not to adversely affect the life span of the fuel cell system, the air supply to the cathode (K) is interrupted during the changeover to the mode of reduced power output, and an electric voltage (U) of the fuel cell stack (BS) is reduced by means of a current pulse.
    Type: Grant
    Filed: September 22, 2007
    Date of Patent: June 5, 2012
    Assignee: Daimler AG
    Inventors: Volker Schempp, Hans-Frieder Walz, Joerg Schuetz
  • Patent number: 8190354
    Abstract: A fuel efficiency measurement system includes a fuel supply tank for supplying hydrogen to be used as a fuel to a fuel cell of the vehicle during measurement of fuel efficiency and a precision electronic balance for detecting a weight of the fuel supply tank so as to perform the measurement of fuel efficiency based on a vehicle driving distance and a change in weight of the fuel supply tank measured by the electronic balance during measurement of fuel efficiency. According to the fuel efficiency measurement system, it is possible to more accurately calculate fuel efficiency without using hydrogen of a hydrogen tank installed in the vehicle.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 29, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Young Woo Jung, Jeong Kyu Park, Hyung Seuk Oh, Chang Hwan Ye
  • Patent number: 8187560
    Abstract: Steam, partial oxidation and pyrolytic fuel reformers (14 or 90) with rotating cylindrical surfaces (18, 24 or 92, 96) that generate Taylor Vortex Flows (28 or 98) and Circular Couette Flows (58, 99) for extracting hydrogen from hydrocarbon fuels such as methane (CH4), methanol (CH3OH), ethanol (C2H5OH), propane (C3H8), butane (C4H10), octane (C8H18), kerosene (C12H26) and gasoline and hydrogen-containing fuels such as ammonia (NH3) and sodium borohydride (NaBH4) are disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 29, 2012
    Assignee: Global Energy Science, LLC
    Inventor: Halbert Fischel
  • Patent number: 8187767
    Abstract: A polymer electrolyte membrane or gas diffusion electrode includes an ion-conducting polymeric material which includes moieties of formula (A) which are substituted on average with more than 1 and 3 or fewer groups (e.g. sulphonate groups) which provide ion-exchange sites and hydrogen atoms of said moieties are optionally substituted, wherein each X in said moieties of formula A independently represent an oxygen or sulphur atom. The ion conducting polymeric material is suitably prepared by controllably sulphonating a polymeric material using about 100% sulphuric acid at 34° C. to 36° C.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 29, 2012
    Assignee: Victrex Manufacturing Limited
    Inventors: Peter Charnock, John N. Devine, Brian Wilson
  • Patent number: 8182953
    Abstract: A fuel cell system capable of reducing time spent before actual execution of low-temperature countermeasure processing is provided. At the time of activation, a control unit for the fuel cell system refers to, for example, a detected FC temperature and judges whether or not the low-temperature countermeasure processing is necessary for the activation. If the control unit determines that the low-temperature countermeasure processing is necessary, it controls an output voltage of the fuel cell to be a target voltage for the low-temperature countermeasure processing, without having the fuel cell enter an OCV state, and then executes the low-temperature countermeasure processing.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: May 22, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kota Manabe
  • Patent number: 8182950
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 22, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Patent number: 8185214
    Abstract: A fuel cell system control system includes a fuel cell system and a controller. The controller includes a display and a processor configured to execute a program for managing an operation of a fuel cell state machine having a plurality of states and capable of executing logic to execute state transitions, and a fuel cell failure detection and correction program, configured to detect one or more fuel cell system failures and correct each detected failure while the fuel cell system continues to operate. The control process includes the steps of representing an operation of a fuel cell control system as a state machine having one or more states, controlling the operation of the fuel cell system using the state machine, executing one or more states of the state machine, and correcting operational errors in the fuel cell control system while the fuel cell system continues to operate.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 22, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Abhijit Dutta, Swaminathan Venkataraman
  • Patent number: 8178247
    Abstract: The present invention provides a fuel cell system including a fuel cell, a hydrogen gas pipe system for supplying a fuel gas to the fuel cell, and an injector for adjusting a pressure of the upstream side of the hydrogen gas pipe system to supply the hydrogen gas to the downstream side, wherein the injector includes an internal channel for communicating the upstream side of the injector with the downstream side of the injector, and a valve body movably arranged in the internal channel for switching a channel opening area in multiple stages corresponding to a movement position of the valve body, and wherein water at least around the valve body of the injector is reduced when the system stops.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 15, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Katano, Norio Yamagishi, Akihisa Hotta
  • Patent number: 8173306
    Abstract: A catalyst is provided and includes fine catalyst particles of a composition represented by formula (1): PtuRuxTayTz, in which T is at least one element selected from the group consisting of Hf, W, Ni, and V; u, x, y, and z are 10 to 98.9 atm %, 0.1 to 50 atm %, 0.5 to 35 atm %, and 0.5 to 35 atm %, respectively, or formula (2): PtuRuxTayTz, in which T is at least one element selected from the group consisting of Ct, Mo, Nb, Zr, and T; u, x, y, and z are 40 to 70 atm %, 0.1 to 50 atm %, 0.5 to 15 atm %, and 0.5 to 15 atm %, respectively.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: May 8, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Itsuko Mizutani, Wu Mei, Taishi Fukazawa, Takahiro Sato, Yoshihiko Nakano
  • Patent number: 8168336
    Abstract: A fuel cell housing structure includes a fuel cell, an electrically insulated housing and a vent gas port. The electrically insulated housing contains the fuel cell. The housing is arranged to provide a space within the housing surrounding the fuel cell. The vent gas port is provided in the housing. The vent gas port connects to the space at a position above or on a same level as the fuel cell. In the fuel cell housing structure, water entering the housing from the vent gas port is blocked from contacting the fuel cell.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: May 1, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Masanari Yanagisawa
  • Patent number: 8168347
    Abstract: A textured surface is formed on at least one of a fuel cell mounting plate or fuel cell subassembly to define a joint spacing between these two components. In a preferred embodiment, the textured surface comprises a plurality of dimples coined or otherwise formed in the metal mounting plate. The joint spacing improves the manufacturing and assembly process of the fuel cell cassettes through precise application and control of the brazing process which improves the braze joint strength while reducing material cost.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 1, 2012
    Assignee: Delphi Technologies Inc.
    Inventors: Gary F. Reisdorf, Karl J. Haltiner, Jr.
  • Patent number: 8168335
    Abstract: The invention is a new and improved method of generating an electric current in an Electrolytic Fuel Cell. An electric current is produced by the rupture of hydrogen bonds to oxygen atoms of water molecules by hydrolyzation of alkaline metals from the surface of a tape passing through a turbulent moving stream of a diffuse mixture of air and water. The electrons produced by the chemical reaction of dissociation are subsequently attracted to the finned surfaces of an ionic capacitor which is connected in series with an electrolytic capacitor which delivers the current to the load.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: May 1, 2012
    Inventor: Edward Milton McWhorter
  • Patent number: 8158300
    Abstract: An electrochemical cell includes an anode including an anode catalyst, a cathode including a cathode catalyst, and a first set of proton-conducting metal nanoparticles between the anode and the cathode, such that the first set of proton-conducting metal nanoparticles is not in contact with the anode. The cathode may be a cathode assembly including a gas diffusion electrode, a cathode catalyst on the gas diffusion electrode, and proton-conducting metal nanoparticles on the cathode catalyst.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: April 17, 2012
    Assignee: INI Power Systems, Inc.
    Inventors: Larry J. Markoski, Dilip Natarajan, Alex Primak
  • Patent number: 8154242
    Abstract: A fuel cell system that includes a fuel cell stack and an EESD electrically coupled to a common high voltage bus line. The EESD has a higher voltage output than the fuel cell stack, and thus the stack is unable to fully charge the EESD, for example, at system shut-down. In order to allow the fuel cell stack to fully charge the EESD, the EESD is separated into a plurality of separate electrical storage banks having lower voltage potentials. A series of contactors are provided to electrically couple the storage banks in series during normal system operation, and separately charge the storage banks using the fuel cell stack so that they are fully charged. The series of contactors can also be configured so that the storage banks can be electrically coupled in series during normal operation of the system and be electrically coupled in parallel during charging at system shut-down.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 10, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Kristian M. Whitehouse, David John Keyes, Joseph J. Ferrero
  • Patent number: 8152871
    Abstract: Embodiments of the invention relate to a fuel source including a chemical hydride and at least one reactive metal source selected from the group consisting of a reactive metal, a reactive metalloid and a combination thereof.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: April 10, 2012
    Assignee: Honeywell International Inc.
    Inventor: Stuart M. Davis
  • Publication number: 20120082868
    Abstract: A microbial fuel cell (MFC) includes a cation exchange membrane defining an anode chamber, an anode positioned in the anode chamber, and a cathode in contact with an exterior of the cation exchange membrane. A restrictor in contact with the cation exchange membrane defines an opening through which water flows into or out of the anode chamber. The MFC includes bacteria in the anode chamber that oxidize organic compounds in the water while oxygen is reduced at the cathode, such that electricity is generated in the absence of an external power source. In an example, the MFC is coupled to a buoy and provides electricity to an electrically powered device also coupled to the buoy, thereby providing a low-maintenance source of power in remote locations. The electrically powered device may be, for example, a light or a sensor.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Yuelong Huang, Zhen He, Florian Mansfeld
  • Patent number: 8148019
    Abstract: An apparatus and method for generating power from the voltage gradient naturally found in marine sediments. A pump flows sediment porewater to an anode, and a cathode is exposed to marine water. The arrangement can power a circuit.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: April 3, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Leonard M Tender
  • Patent number: 8142937
    Abstract: A fuel cell system is capable of easily determining whether or not supply of gas to a cathode has been cut off after an issuance of a power generation stop command. The fuel cell system includes a cell stack which includes a plurality of fuel cells; a stop valve which is brought to a closed state as the power generation stop command is issued, thereby cutting off an inflow of air into a pipe, and therefore into the cell stack; a power generation sensor which detects a voltage of the cell stack after the issuance of the power generation stop command; and a CPU which controls an operation of the fuel cell system. When a main switch is turned off while the cell stack is in a power generating operation, an operation stop command and the power generation stop command are given to the CPU. After the power generation stop command is issued, the CPU determines whether or not air supply to the cell stack has been cut off, by comparing the voltage of the cell stack to a first threshold value.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 27, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Kazuyoshi Furukawa
  • Patent number: 8137851
    Abstract: Separators of a fuel cell include sandwiching sections which sandwich electrolyte electrode assemblies and have fuel gas channels, first bridges each having a fuel gas supply channel, and a fuel gas supply unit. A fuel gas supply passage extends through the fuel gas supply unit in a stacking direction. Further, the separators include second bridges each having an exhaust fuel gas channel for discharging the fuel gas after consumption in the electrolyte electrode assemblies as an exhaust fuel gas, and an exhaust fuel gas discharge unit having an exhaust fuel gas passage for allowing the exhaust fuel gas to flow in the stacking direction. The exhaust fuel gas discharge unit is connected to the fuel gas channel through the fuel gas supply passage.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 20, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yukihisa Kanao