Airgap formation with damage-free copper
Processing methods may be performed to remove unwanted materials from a substrate, such as an oxide footing. The methods may include forming an inert plasma within a processing region of a processing chamber. Effluents of the inert plasma may be utilized to modify a surface of an exposed material on a semiconductor substrate within the processing region of the semiconductor chamber. A remote plasma may be formed from a fluorine-containing precursor to produce plasma effluents. The methods may include flowing the plasma effluents to the processing region of the semiconductor processing chamber. The methods may also include removing the modified surface of the exposed material from the semiconductor substrate.
Latest Applied Materials, Inc. Patents:
- ULTRA-THIN BODY ARRAY TRANSISTOR FOR 4F2
- SEMICONDUCTOR CHAMBER COMPONENTS WITH ADVANCED DUAL LAYER NICKEL-CONTAINING COATINGS
- HIGH CONDUCTANCE VARIABLE ORIFICE VALVE
- METAL-CONTAINING HARDMASK OPENING METHODS USING BORON-AND-HALOGEN-CONTAINING PRECURSORS
- IN-SITU SIDEWALL PASSIVATION TOWARD THE BOTTOM OF HIGH ASPECT RATIO FEATURES
The present technology relates to semiconductor systems, processes, and equipment. More specifically, the present technology relates to systems and methods for removing material from in between metallic structures.
BACKGROUNDIntegrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.
Etch processes may be termed wet or dry based on the materials used in the process. A wet HF etch preferentially removes silicon oxide over other dielectrics and materials. However, wet processes may have difficulty penetrating some constrained trenches and also may sometimes deform the remaining material. Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, local plasmas may damage the substrate through the production of electric arcs as they discharge.
Thus, there is a need for improved systems and methods that can be used to produce high quality devices and structures. These and other needs are addressed by the present technology.
SUMMARYProcessing methods may be performed to remove unwanted materials from a substrate, such as a fill material, including a dielectric material. The methods may include forming an inert plasma within a processing region of a processing chamber. Effluents of the inert plasma may be utilized to modify a surface of an exposed material on a semiconductor substrate within the processing region of the semiconductor chamber. A remote plasma may be formed from a fluorine-containing precursor to produce plasma effluents. The methods may include flowing the plasma effluents to the processing region of the semiconductor processing chamber. The methods may also include removing the modified surface of the exposed material from the semiconductor substrate.
During the modification operation, the inert plasma may include or be composed of a helium plasma. The inert plasma may be formed from a bias power below about 200 W. In embodiments, the surface of the exposed material on the semiconductor substrate may be modified to a depth from the exposed surface within the semiconductor substrate of less than about 15 nm. A pressure within the semiconductor processing chamber while forming the inert plasma and during the modifying may be maintained below about 50 mTorr.
The remote plasma may be formed in a region of the semiconductor processing chamber fluidly isolated from the processing region of the semiconductor processing chamber or may be formed in a remote plasma unit fluidly coupled with the semiconductor processing chamber. The semiconductor substrate may be maintained at a temperature above or about 80° C. during the removal of the modified surface of the exposed material. Removing the modified surface of the exposed material may expose an unmodified portion of the material, and an etching selectivity of a modified portion of the material to the unmodified portion of the material may be greater than or about 100:1, greater than or about 1,000:1, or higher. The exposed material on the semiconductor substrate may include a silicon-containing material located proximate a copper wire positioned along the semiconductor substrate. In embodiments, the remote plasma may be additionally formed from a hydrogen-containing precursor. Also, in embodiments each operation of the etching method may be repeated in at least one additional cycle, and a total removal after all cycles may be greater than or about 50 nm.
The present technology may also include etching methods for removing silicon and carbon-containing materials. The methods may include forming an inert plasma within a processing region of a semiconductor processing chamber. The methods may include modifying an exposed region of dielectric on a semiconductor substrate within the processing region of the semiconductor processing chamber with effluents of the inert plasma. The methods may include contacting the modified dielectric with plasma effluents of a fluorine-containing precursor. The methods may further include etching the modified dielectric. In embodiments the modifying, contacting, and etching may all be performed in a single semiconductor processing chamber.
In embodiments, the etching may be performed at a temperature of greater than or about 80° C. The plasma effluents of the fluorine-containing precursor may be formed in a remote region of the semiconductor processing chamber fluidly coupled with, and physically separated from, the processing region of the semiconductor processing chamber. The plasma effluents of the fluorine-containing precursor may be produced by a capacitively-coupled plasma at a power level of about 300 W. In embodiments, the modified dielectric may be additionally contacted with a hydrogen-containing precursor. The hydrogen-containing precursor may bypass the remote region of the semiconductor processing chamber. The hydrogen-containing precursor may interact with the plasma effluents of the fluorine-containing precursor subsequent to the plasma effluents of the fluorine-containing precursor exiting the remote region of the semiconductor processing chamber.
The present technology also includes methods of etching a carbon-containing material. The methods may include forming an inert plasma within a processing region of a semiconductor processing chamber. The inert plasma may include a hydrogen plasma formed by a bias power of less than or about 200 W. The methods may also include modifying an exposed region of carbon-containing material on a semiconductor substrate within the processing region of the semiconductor processing chamber with effluents of the inert plasma. The exposed region of carbon-containing material may be or include a dielectric material positioned between copper interconnects formed on the semiconductor substrate. Also, during the modification operation, a pressure within the semiconductor processing chamber may be maintained below about 50 mTorr.
The methods may also include forming a plasma of a fluorine-containing precursor in a remote region of the semiconductor processing chamber that is separated from the processing region of the semiconductor processing chamber by a showerhead. The methods may include contacting the modified dielectric with plasma effluents of the fluorine-containing precursor. Additionally, the methods may include etching the modified dielectric at a temperature of at least about 80° C. In embodiments, the modifying, contacting, and etching may all be performed in the same semiconductor processing chamber. In some embodiments no solid byproducts may be produced during the etching. The remote region of the semiconductor processing chamber may be a region defined within the semiconductor processing chamber in embodiments. Additionally, the remote region of the semiconductor processing chamber may be a region external to the semiconductor processing chamber, but fluidly coupled with an inlet to the semiconductor processing chamber.
Such technology may provide numerous benefits over conventional systems and techniques. For example, fully removing the dielectric materials may allow an airgap to be formed between the copper wires. Additionally, the virtually infinite selectivity with respect to copper may allow treatment to be performed that produces no impact on the copper. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.
A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.
Several of the figures are included as schematics. It is to be understood that the figures are for illustrative purposes, and are not to be considered of scale unless specifically stated to be of scale. Additionally, as schematics, the figures are provided to aid comprehension and may not include all aspects or information compared to realistic representations, and may include exaggerated material for illustrative purposes.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the letter.
DETAILED DESCRIPTIONThe present technology includes systems and components for semiconductor processing of small pitch features. As line pitch is reduced, standard lithography processes may be limited, and alternative mechanisms may be used in patterning. During one such patterning operation, a low-k dielectric may be removed between copper wiring sections to produce an airgap. This airgap may be a region of vacuum formed between each wiring section, which may reduce wiring capacitance and heat during operation and allow for much higher current speeds. In one formation scenario, the wires may be formed in regions of low-k dielectric before removing the dielectric material from around the copper or other metal used, such as tungsten or other conductive metals. The removal operation may remove the dielectric material from around the exposed regions of metallic material. However, such a process may sputter or etch the metal as well as any barrier layer materials that may be around the metal. The removal of the metallic fill material, such as the copper wires, the resistance may increase for the device, which may cause electrical issues during operation.
Conventional technologies have struggled with this removal because the etching process performed may not have high enough selectivity to the dielectric, which may be an ultra-low-k dielectric, over copper. For example, a reactive-ion etch process may be performed to remove the dielectric from around the copper, but the bias power used for the etch may damage the copper as well. Additionally, the reactive-ion etch utilizes materials that may leave polymer residues behind, which may require additional removal operations. Conventional technologies may be limited from using other dry etch chemistries, however, because the dielectric materials may contain elements that prevent removal with standard chemistries. The present technology, however, takes advantage of a single chamber capable of both surface modification as well as etching capabilities to affect material quality, etch rates, and selectivity. By modifying or damaging the dielectric, removal can be performed under etching conditions that may be less suitable for standard film removal, and which may not affect the copper or other metal materials. These techniques may not only remove undesired materials, but may perform the removal in a controlled fashion that limits overall material effects. Accordingly, the techniques explained may be suitable for a variety of semiconductor processes across industry by allowing limited removal at highly selective rates. For example, along with dielectric removal, these techniques may be used in dummy polysilicon pull-off, strained source drain, and many other modification and removal processes.
Although the remaining disclosure will routinely identify specific etching processes utilizing the disclosed technology, it will be readily understood that the systems and methods are equally applicable to deposition and cleaning processes as may occur in the described chambers. Accordingly, the technology should not be considered to be so limited as for use with etching processes alone.
To transport substrates among the chambers, the transfer chamber 110 may contain a robotic transport mechanism 113. The transport mechanism 113 may have a pair of substrate transport blades 113A attached to the distal ends of extendible arms 113B, respectively. The blades 113A may be used for carrying individual substrates to and from the process chambers. In operation, one of the substrate transport blades such as blade 113A of the transport mechanism 113 may retrieve a substrate W from one of the load lock chambers such as chambers 106A-B and carry substrate W to a first stage of processing, for example, an etching process as described below in chambers 114A-D. If the chamber is occupied, the robot may wait until the processing is complete and then remove the processed substrate from the chamber with one blade 113A and may insert a new substrate with a second blade (not shown). Once the substrate is processed, it may then be moved to a second stage of processing. For each move, the transport mechanism 113 generally may have one blade carrying a substrate and one blade empty to execute a substrate exchange. The transport mechanism 113 may wait at each chamber until an exchange can be accomplished.
Once processing is complete within the process chambers, the transport mechanism 113 may move the substrate W from the last process chamber and transport the substrate W to a cassette within the load lock chambers 106A-B. From the load lock chambers 106A-B, the substrate may move into a factory interface 104. The factory interface 104 generally may operate to transfer substrates between pod loaders 105A-D in an atmospheric pressure clean environment and the load lock chambers 106A-B. The clean environment in factory interface 104 may be generally provided through air filtration processes, such as HEPA filtration, for example. Factory interface 104 may also include a substrate orienter/aligner (not shown) that may be used to properly align the substrates prior to processing. At least one substrate robot, such as robots 108A-B, may be positioned in factory interface 104 to transport substrates between various positions/locations within factory interface 104 and to other locations in communication therewith. Robots 108A-B may be configured to travel along a track system within enclosure 104 from a first end to a second end of the factory interface 104.
The processing system 100 may further include an integrated metrology chamber 117 to provide control signals, which may provide adaptive control over any of the processes being performed in the processing chambers. The integrated metrology chamber 117 may include any of a variety of metrological devices to measure various film properties, such as thickness, roughness, composition, and the metrology devices may further be capable of characterizing grating parameters such as critical dimensions, sidewall angle, and feature height under vacuum in an automated manner.
Turning now to
The chuck 250 may include a mesh 249 coupled to a high voltage DC supply 248 so that the mesh 249 may carry a DC bias potential to implement the electrostatic clamping of the substrate 202. The chuck 250 may be coupled with a first RF power source and in one such embodiment, the mesh 249 may be coupled with the first RF power source so that both the DC voltage offset and the RF voltage potentials are coupled across a thin dielectric layer on the top surface of the chuck 250. In the illustrative embodiment, the first RF power source may include a first and second RF generator 252, 253. The RF generators 252, 253 may operate at any industrially utilized frequency, however in the exemplary embodiment the RF generator 252 may operate at 60 MHz to provide advantageous directionality. Where a second RF generator 253 is also provided, the exemplary frequency may be 2 MHz.
With the chuck 250 to be RF powered, an RF return path may be provided by a first showerhead 225. The first showerhead 225 may be disposed above the chuck to distribute a first feed gas into a first chamber region 284 defined by the first showerhead 225 and the chamber wall 240. As such, the chuck 250 and the first showerhead 225 form a first RF coupled electrode pair to capacitively energize a first plasma 270 of a first feed gas within a first chamber region 284. A DC plasma bias, or RF bias, resulting from capacitive coupling of the RF powered chuck may generate an ion flux from the first plasma 270 to the substrate 202, e.g., Ar ions where the first feed gas is Ar, to provide an ion milling plasma. The first showerhead 225 may be grounded or alternately coupled with an RF source 228 having one or more generators operable at a frequency other than that of the chuck 250, e.g., 13.56 MHz or 60 MHz. In the illustrated embodiment the first showerhead 225 may be selectably coupled to ground or the RF source 228 through the relay 227 which may be automatically controlled during the etch process, for example by a controller (not shown). In disclosed embodiments, chamber 200 may not include showerhead 225 or dielectric spacer 220, and may instead include only baffle 215 and showerhead 210 described further below.
As further illustrated in the figure, the etch chamber 200 may include a pump stack capable of high throughput at low process pressures. In embodiments, at least one turbo molecular pump 265, 266 may be coupled with the first chamber region 284 through one or more gate valves 260 and disposed below the chuck 250, opposite the first showerhead 225. The turbo molecular pumps 265, 266 may be any commercially available pumps having suitable throughput and more particularly may be sized appropriately to maintain process pressures below or about 10 mTorr or below or about 5 mTorr at the desired flow rate of the first feed gas, e.g., 50 to 500 sccm of Ar where argon is the first feedgas. In the embodiment illustrated, the chuck 250 may form part of a pedestal which is centered between the two turbo pumps 265 and 266, however in alternate configurations chuck 250 may be on a pedestal cantilevered from the chamber wall 240 with a single turbo molecular pump having a center aligned with a center of the chuck 250.
Disposed above the first showerhead 225 may be a second showerhead 210. In one embodiment, during processing, the first feed gas source, for example, Argon delivered from gas distribution system 290 may be coupled with a gas inlet 276, and the first feed gas flowed through a plurality of apertures 280 extending through second showerhead 210, into the second chamber region 281, and through a plurality of apertures 282 extending through the first showerhead 225 into the first chamber region 284. An additional flow distributor or baffle 215 having apertures 278 may further distribute a first feed gas flow 216 across the diameter of the etch chamber 200 through a distribution region 218. In an alternate embodiment, the first feed gas may be flowed directly into the first chamber region 284 via apertures 283 which are isolated from the second chamber region 281 as denoted by dashed line 223.
Chamber 200 may additionally be reconfigured from the state illustrated to perform an etching operation. A secondary electrode 205 may be disposed above the first showerhead 225 with a second chamber region 281 there between. The secondary electrode 205 may further form a lid or top plate of the etch chamber 200. The secondary electrode 205 and the first showerhead 225 may be electrically isolated by a dielectric ring 220 and form a second RF coupled electrode pair to capacitively discharge a second plasma 292 of a second feed gas within the second chamber region 281. Advantageously, the second plasma 292 may not provide a significant RF bias potential on the chuck 250. At least one electrode of the second RF coupled electrode pair may be coupled with an RF source for energizing an etching plasma. The secondary electrode 205 may be electrically coupled with the second showerhead 210. In an exemplary embodiment, the first showerhead 225 may be coupled with a ground plane or floating and may be coupled to ground through a relay 227 allowing the first showerhead 225 to also be powered by the RF power source 228 during the ion milling mode of operation. Where the first showerhead 225 is grounded, an RF power source 208, having one or more RF generators operating at 13.56 MHz or 60 MHz, for example, may be coupled with the secondary electrode 205 through a relay 207 which may allow the secondary electrode 205 to also be grounded during other operational modes, such as during an ion milling operation, although the secondary electrode 205 may also be left floating if the first showerhead 225 is powered.
A second feed gas source, such as nitrogen trifluoride, and a hydrogen source, such as ammonia, may be delivered from gas distribution system 290, and coupled with the gas inlet 276 such as via dashed line 224. In this mode, the second feed gas may flow through the second showerhead 210 and may be energized in the second chamber region 281. Reactive species may then pass into the first chamber region 284 to react with the substrate 202. As further illustrated, for embodiments where the first showerhead 225 is a multi-channel showerhead, one or more feed gases may be provided to react with the reactive species generated by the second plasma 292. In one such embodiment, a water source may be coupled with the plurality of apertures 283. Additional configurations may also be based on the general illustration provided, but with various components reconfigured. For example, flow distributor or baffle 215 may be a plate similar to the second showerhead 210, and may be positioned between the secondary electrode 205 and the second showerhead 210. As any of these plates may operate as an electrode in various configurations for producing plasma, one or more annular or other shaped spacer may be positioned between one or more of these components, similar to dielectric ring 220. Second showerhead 210 may also operate as an ion suppression plate in embodiments, and may be configured to reduce, limit, or suppress the flow of ionic species through the second showerhead 210, while still allowing the flow of neutral and radical species. One or more additional showerheads or distributors may be included in the chamber between first showerhead 225 and chuck 250. Such a showerhead may take the shape or structure of any of the distribution plates or structures previously described. Also, in embodiments a remote plasma unit (not shown) may be coupled with the gas inlet to provide plasma effluents to the chamber for use in various processes.
In an embodiment, the chuck 250 may be movable along the distance H2 in a direction normal to the first showerhead 225. The chuck 250 may be on an actuated mechanism surrounded by a bellows 255, or the like, to allow the chuck 250 to move closer to or farther from the first showerhead 225 as a means of controlling heat transfer between the chuck 250 and the first showerhead 225, which may be at an elevated temperature of 80° C.-150° C., or more. As such, an etch process may be implemented by moving the chuck 250 between first and second predetermined positions relative to the first showerhead 225. Alternatively, the chuck 250 may include a lifter 251 to elevate the substrate 202 off a top surface of the chuck 250 by distance H1 to control heating by the first showerhead 225 during the etch process. In other embodiments, where the etch process is performed at a fixed temperature such as about 90-110° C. for example, chuck displacement mechanisms may be avoided. A system controller (not shown) may alternately energize the first and second plasmas 270 and 292 during the etching process by alternately powering the first and second RF coupled electrode pairs automatically.
The chamber 200 may also be reconfigured to perform a deposition operation. A plasma 292 may be generated in the second chamber region 281 by an RF discharge which may be implemented in any of the manners described for the second plasma 292. Where the first showerhead 225 is powered to generate the plasma 292 during a deposition, the first showerhead 225 may be isolated from a grounded chamber wall 240 by a dielectric spacer 230 so as to be electrically floating relative to the chamber wall. In the exemplary embodiment, an oxidizer feed gas source, such as molecular oxygen, may be delivered from gas distribution system 290, and coupled with the gas inlet 276. In embodiments where the first showerhead 225 is a multi-channel showerhead, any silicon-containing precursor, such as OMCTS for example, may be delivered from gas distribution system 290, and directed into the first chamber region 284 to react with reactive species passing through the first showerhead 225 from the plasma 292. Alternatively the silicon-containing precursor may also be flowed through the gas inlet 276 along with the oxidizer. Chamber 200 is included as a general chamber configuration that may be utilized for various operations discussed in reference to the present technology. The chamber is not to be considered limiting to the technology, but instead to aid in understanding of the processes described. Several other chambers known in the art or being developed may be utilized with the present technology including any chamber produced by Applied Materials Inc. of Santa Clara, Calif., or any chamber that may perform the techniques described in more detail below.
Method 300 may include forming an inert plasma within a processing region of a semiconductor processing chamber at operation 305. A substrate may already be positioned within the chamber prior to operation 305. With reference to chamber 200 for illustration purposes only, the plasma may be formed or generated in region 270, or within a region defined at least in part by the substrate support pedestal. Such a plasma is similarly understood to be a wafer-level plasma. The effluents of the inert plasma may be utilized in method 300 for modifying a surface of an exposed material on a semiconductor substrate at operation 310. The substrate may be within or housed in the processing region of the semiconductor processing chamber.
A remote plasma may be formed at operation 315 to produce plasma effluents, and the remote plasma may include or be composed of a fluorine-containing precursor. In embodiments, the plasma utilized in operation 315 may also be formed at the wafer level, but a remote plasma may reduce a sputtering component at the wafer and from the chamber components. The plasma effluents may be flowed through the processing chamber to the processing region of the semiconductor processing chamber where the substrate is housed at operation 320. Upon contacting the modified surface, the plasma effluents may remove the modified surface of the exposed material from the semiconductor substrate at operation 325.
The modifying and removal operations of method 300 may allow a controlled removal of unwanted materials, such as dielectric materials as described previously. The operations may also be well suited for any size features, including small pitch features, or where the width between successive copper or metallic wires for example, may be less than or about 50 nm, less than or about 25 nm, less than or about 20 nm, less than or about 15 nm, less than or about 12 nm, less than or about 10 nm, less than or about 9 nm, less than or about 8 nm, less than or about 7 nm, less than or about 6 nm, less than or about 5 nm, less than or about 4 nm, less than or about 3 nm, less than or about 2 nm, less than or about 1 nm, or smaller. The modifying and removal operations may be performed successively in multiple chambers or in a single chamber, such as, for example, chamber 200, that may produce both wafer-level plasmas and remote plasmas within the chamber, or in association with the chamber.
The modifying operation 310 may involve an inert plasma of one or more materials. The material used to produce the plasma may be one or more noble materials including helium, neon, argon, krypton, xenon, or radon. The material used to produce the plasma may also be additional materials that may have limited chemical activity or be unreactive with the exposed material on the semiconductor surface being modified. For example, hydrogen may be used in operation 310. The modifying operation may involve a form of bombardment of the material to be removed. With helium or hydrogen being a relatively small, light material, it may be less likely to sputter the material at which it is being directed than heavier materials.
The plasma formed from the inert precursor may be a bias plasma providing directional flow of plasma effluents to the substrate. The plasma may be a low-level plasma to limit the amount of bombardment, sputtering, and surface modification. In embodiments the plasma power may be less than or about 300 W, less than or about 250 W, less than or about 200 W, less than or about 150 W, less than or about 100 W, less than or about 75 W, less than or about 50 W, or less than or about 25 W. By utilizing a plasma power that is, for example, about 50 W, the depth of penetration of the plasma effluents may be limited. For example, modification operations as described, may allow the surface of the exposed material on the semiconductor substrate to be modified to a depth from the exposed surface within the semiconductor substrate of greater than or about 5 nm, and may allow modification of the surface of materials to a depth of greater than or about 6 nm, greater than or about 7 nm, greater than or about 8 nm, greater than or about 9 nm, greater than or about 10 nm, greater than or about 11 nm, greater than or about 12 nm, or more.
The penetration depth may be at least partially based on the bias power utilized, which may also affect the additionally exposed materials, such as copper and barrier layer materials. For example, by utilizing the low-level plasma, such as less than or about 200 W, and a relatively light precursor such as helium, the saturation depth of penetration may be less than or about 15 nm in embodiments. Additionally, this bias power may not have any impact on the exposed metal, and thus may not remove or sputter the metallic component. The modification operation may be relatively or completely insensitive to temperature, and may modify or damage exposed regions of non-metallic materials including nitride, oxide, carbon, or polysilicon almost equally. The dielectric material used may include a combination of elements including silicon, carbon, oxygen, hydrogen, and other elements, and may be formed to be a porous film. The film quality may be such that the surface modification may be performed at low bias power, which may affect the dielectric, without impacting the copper wires or other metallic materials.
The pressure within the processing chamber may be controlled during the modification operation 310 as well. For example, while forming the inert plasma and performing the modification operation, the pressure within the processing chamber may be maintained below or about 1 Torr. Additionally, in embodiments, the pressure within the processing chamber may be maintained below or about 500 mTorr, below or about 250 mTorr, below or about 200 mTorr, below or about 150 mTorr, below or about 100 mTorr, below or about 80 mTorr, below or about 60 mTorr, below or about 50 mTorr, below or about 40 mTorr, below or about 30 mTorr, below or about 20 mTorr, below or about 10 mTorr, or lower. The pressure within the chamber may affect the directionality of the modification operation 310. For example, as pressure is increased, the modification process may become more isotropic, and as the pressure is reduced, the modification process may become more anisotropic. Accordingly, in embodiments the pressure may be maintained around 20 mTorr, for example, to maintain a relatively or substantially anisotropic profile of the modification operation.
During the removal operations, however, the pressure may be increased to provide a more isotropic etch. The removal may be performed with relatively diluted etchants in embodiments that may have a greater effect on modified materials than on unmodified material or copper material. Accordingly, the pressure may be increased during the removal operation in order to provide a more complete structural etching of the modified material. For example, subsequent the modification operation 315, such as during any of the subsequent operations, the pressure within the processing chamber may be increased to above or about 250 mTorr, and may be increased to above or about 500 mTorr, above or about 1 Torr, above or about 3 Torr, above or about 5 Torr, above or about 10 Torr, or higher. In certain embodiments, the modification operation may be performed at a first pressure, and the removal may be performed at a second pressure greater than the first pressure. For example, in embodiments the second pressure may be more than 100 times the first pressure, as well as any of the values between any of the pressures noted.
The plasma utilized in the removal operation may be formed remotely from the processing region of the semiconductor processing chamber. For example, the plasma may be formed in a region of the semiconductor processing chamber that is fluidly isolated from the processing region of the semiconductor processing chamber. Thus, the region may be physically separated from the processing region, while being fluidly coupled with the processing region. For example, in the exemplary chamber of
The remote plasma may be formed from one or more precursors including a fluorine-containing precursor. The fluorine-containing precursor may include one or more materials including NF3, HF, F2, CF4, CHF3, C2F6, C3F6, BrF3, ClF3, SF6, or additional fluorine-substituted hydrocarbons, or fluorine-containing materials. The fluorine-containing precursor may be flowed into the remote plasma region to generate plasma effluents, such as fluorine-containing plasma effluents. A source of hydrogen may also be incorporated as an etchant precursor, and may include hydrogen, ammonia, or any other incompletely substituted hydrocarbon, or other hydrogen-containing material. The source of hydrogen, such as ammonia, for example, may be delivered with the fluorine-containing precursor into the remote plasma region during plasma formation, and thus the plasma effluents may also include hydrogen-containing plasma effluents. The source of hydrogen may also bypass the remote plasma region and be delivered into the processing region where it may interact with the fluorine-containing plasma effluents. In either scenario, the plasma effluents may be delivered to the processing region of the semiconductor processing chamber where they may contact or interact with the modified material on the semiconductor substrate.
As previously discussed, in embodiments the exposed material may include a low-k or ultra-low-k dielectric positioned between copper wires or regions, which may be positioned along a semiconductor substrate. The precursors and plasma effluents may be effective at removing oxide and/or nitride in various semiconductor processes. Selective removal, however, may be affected by processing temperatures. Lower chamber temperatures may allow increased etching of one or more materials. In processes utilizing a fluorine-containing precursor and also a hydrogen-containing precursor to etch oxide materials, the process may involve performing an etch with plasma effluents, or with alternative precursors such as HF, at a low temperature, such as below about 50° C. or lower, to form solid byproducts on the surface of the material being removed. The procedure may then involve heating the materials above around 100° C. in order to sublimate the solid byproducts, which may include ammonium fluorosilicate, for example.
The present technology, however, may perform the removal process at a semiconductor substrate or semiconductor chamber temperature of above or about 50° C., above or about 60° C., above or about 70° C., above or about 80° C., above or about 90° C., above or about 100° C., above or about 110° C., above or about 120° C., above or about 130° C., above or about 140° C., or above or about 150° C. An etching process utilizing the precursors discussed above may have limited capability, or may not etch certain materials at all at a temperature of about 100° C., for example. While conventional technologies may avoid such temperatures as they may prevent the desired removal, the present technology can utilize this benefit to provide a self-limiting stop on the etching operation. Although unmodified oxide and nitride materials may not etch with the removal process described at a temperature of 100° C., the modified materials produced may etch at a sufficient rate to remove the unwanted materials, such as the modified dielectric materials discussed previously.
Thus, once the modified portion of the exposed materials has been removed, the underlying unmodified materials may not etch, or may have limited etching, and may effectively halt the etching process. In this way, minute amounts of material may be removed without overly attacking thin semiconductor layers or small pitch features. Accordingly, in embodiments, removing the modified surface of the exposed material may expose an unmodified portion of the material. An etching selectivity of a modified portion of the material to an unmodified portion of the material, as well as to an exposed metallic material, may be greater than or about 10:1. Depending on the material being etched, an etching selectivity of a modified portion of the material to an unmodified portion of the material or a metal material may be greater than or about 20:1, 40:1, 100:1, 1,000:1, 10,000:1, up to about 1:0 at which point the modified portion of the material etches, but an unmodified portion of the material does not etch, and a metallic material, which may be copper, is unaffected by the removal. The modification operation may produce an amount of dangling bonds and reactive sites for the modified material, which may allow the removal operation to occur under conditions at which the removal may not otherwise occur, or may occur at substantially reduced rates and selectivities for unmodified materials.
Additionally, the modification may also remove elements that may impact the ability of the etchant to remove the modified dielectric. For example, many of the low-k or ultra-low-k materials used in airgap technology may include carbon within the film. The removal chemistry, which may include, for example, NF3 and NH3, may be unable to remove the carbon-containing film from the substrate. However, by performing a modification operation with helium, the carbon may be depleted from the film, producing more of an oxide-like structure. The removal etchants may then remove this film, while maintaining the copper or other metallic material on the substrate. This may provide a further self-limiting aspect of the removal chemistry. After a modification operation has been performed, the carbon inclusion may be around zero at the surface, but may increase slightly through the modification region before rebounding within the unmodified material below where the modification penetrated. Because the removal chemistry may be unable to remove a carbon-containing film, once the etchants pass through the modified region removing the modified material, the etching operation may naturally cease or slow due to the carbon.
As previously explained, the modification operations may be performed at a relatively low plasma power level to create a depth of penetration within the exposed material surfaces of several nanometers, while not impacting the copper or other exposed materials. Because the removal operation can be limited to essentially only remove modified surfaces, or have limited impact on unmodified surfaces, the removal operation may be limited to the modified region, and thus remove about 5 nm, about 7 nm, about 9 nm, or about 10 nm of material. The modification operation may have a saturation depth of about 10 nm in embodiments, but an amount of modification or penetration may occur to up to 12 nm, up to 15 nm, or up to 20 nm, although the saturation depth may be much less. However, the removal operation may continue to etch partially modified regions of material, and thus the removal operation may remove slightly more material than the saturation depth of the modification.
To ensure removal of all dielectric material or unwanted material from a substrate, the modification and removal operations may be performed in cycles to allow removal to a depth beyond the typical saturation depth of the modification operation. Accordingly, in embodiments, method 300 may be performed for 1 cycle, 2 cycles, 3 cycles, 4 cycles, 5 cycles, 6 cycles, 7 cycles, 8 cycles, or more in order to fully remove a material from a substrate. For ultra-low-k dielectric removal, the fine-tune control over the material removal based on a saturation depth of the modification operation may allow about 5 nm, about 8 nm, about 10 nm, or about 15 nm to be removed each cycle.
In this way, within 3 cycles, within 4 cycles, within 5 cycles, or within about 7 cycles the entire dielectric material may be removed from the substrate around the copper wiring at a total removal after all cycles of up to or about 30 nm, up to or about 40 nm, up to or about 50 nm, up to or about 60 nm, up to or about 70 nm, up to or about 80 nm, up to or about 90 nm, or more. The operations are being discussed with respect to a limited amount of removal, but the techniques can also be used to remove additional material by, for example, causing the modification to occur to a lower depth, increasing the number of cycles, or by adjusting etching parameters including temperature. However, for limiting the amount of removal in many semiconductor processing operations, the low-power bias plasma with precursors such as previously discussed may allow limited material to be removed with each cycle and have a limited impact on additional exposed materials.
Turning to
The modification operation may be performed for about 10 seconds or less up to several minutes or more depending on the depth of penetration sought and the parameters of the modification. A low pressure may be maintained within the processing chamber, such as about 20 mTorr, for example, to produce a relatively anisotropic delivery of plasma effluents 420 as illustrated. The plasma effluents may modify exposed portions of dielectric material 405. As explained previously, the modification may remove carbon from the dielectric material 405 to produce a region of modified material 412. The modified material may include a carbon content below or about 30% after the modification has been performed. Additionally, the modified material 412 may include a carbon content below or about 25%, below or about 20%, below or about 15%, below or about 10%, below or about 5% or less. The modified material may also be characterized by a carbon inclusion having a range through the modified material, based on the penetration depth of the treatment. For example, at a surface level the carbon content may be reduced below or about 2%, but at further depths within the film, the carbon content may increase gradually up to an unmodified inclusion amount. The depth of penetration may be limited to about 5 nm in embodiments, but may extend to a depth of about 8 nm, about 10 nm, about 12 nm, about 15 nm, or more.
Operations may include forming a plasma of a fluorine-containing precursor in a remote region of the semiconductor processing chamber, where the remote region may be separated from the processing region of the semiconductor processing chamber by a showerhead. The modified regions of dielectric material 405, as well as exposed regions of copper wires 415, may be contacted with plasma effluents of the fluorine-containing precursor. Etching with the plasma effluents may be performed on the modified dielectric, and the temperature of the substrate or chamber during the etching may be above or about 80° C., which may allow etching of the modified layer 412 while limiting or preventing etching of the unmodified regions of each material underlying the modified portions as well as the copper wire 415, as illustrated in
The plasma effluents used in the etching operations may be formed in a remote region of the semiconductor processing chamber fluidly coupled with, and physically separated from, the processing region of the semiconductor processing chamber. Thus, the remote region of the semiconductor processing chamber may be a region defined within the semiconductor processing chamber. Additionally, the remote region of the semiconductor processing chamber may be a region external to the semiconductor processing chamber, but fluidly coupled with an inlet to the semiconductor processing chamber. For example, the fluorine-containing plasma effluents may be produced in a remote plasma unit coupled with the semiconductor processing chamber. Either of these configurations may prevent or reduce sputtering at the wafer level during the etching to further protect the copper, and reduce contaminant deposition or production within the processing region.
The plasma effluents of the fluorine-containing precursor may be produced by a capacitively-coupled plasma in embodiments, or may be produced by an inductively-coupled plasma, or other plasma generating process. The power level of the plasma may be less than or about 1000 W in embodiments, and may be less than or about 900 W, less than or about 800 W, less than or about 700 W, less than or about 600 W, less than or about 500 W, less than or about 400 W, less than or about 300 W, less than or about 200 W, or less than or about 100 W. For example, the power level may be about 300 W to control plasma dissociation of the materials, which may provide additional control over the etching characteristics such as by, for example, not fully dissociating all fluorine-containing precursors used in the operations. However, in embodiments full dissociation may be desired, and higher plasma power levels may be used.
The precursors used in the etching operations of the modified silicon oxide may additionally include a hydrogen-containing precursor, which may also contact the modified materials. The hydrogen-containing precursor may be included with the fluorine-containing precursor to produce plasma effluents of all precursors. The hydrogen-containing precursor may also bypass the remote region of the semiconductor processing chamber in embodiments. For example, the hydrogen-containing precursor may be delivered to the processing chamber at a port or channel downstream from the remote plasma generation. The hydrogen-containing precursor may interact with the plasma effluents of the fluorine-containing precursor subsequent to the plasma effluents of the fluorine-containing precursor exiting the remote region of the semiconductor processing chamber in embodiments.
The etching performed on the modified portions of the semiconductor substrate may be performed in a way to limit the removal of unmodified material underlying the modified material as well as exposed copper and other metals. As previously discussed, the temperature at which the etching is performed may affect whether the unmodified material is etched once exposed, or to what degree it is etched. Additionally, by utilizing a low-power bias, such as below or about 200 W, below or about 180 W, below or about 160 W, below or about 150 W, below or about 140 W, below or about 130 W, below or about 120 W, below or about 110 W, below or about 100 W, below or about 90 W, below or about 80 W, or lower may additionally protect the exposed metallic regions from etching In
In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present technology. Accordingly, the above description should not be taken as limiting the scope of the technology.
Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Any narrower range between any stated values or unstated intervening values in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the technology, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes a plurality of such layers, and reference to “the precursor” includes reference to one or more precursors and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise(s)”, “comprising”, “contain(s)”, “containing”, “include(s)”, and “including”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or operations, but they do not preclude the presence or addition of one or more other features, integers, components, operations, acts, or groups.
Claims
1. An etching method comprising:
- forming an inert plasma within a processing region of a semiconductor processing chamber;
- modifying a surface of an exposed material on a semiconductor substrate within the processing region of the semiconductor processing chamber with effluents of the inert plasma, wherein the exposed material on the semiconductor substrate comprises a silicon-containing material located proximate a copper wire positioned along the semiconductor substrate;
- forming a remote plasma from a fluorine-containing precursor to produce plasma effluents;
- flowing the plasma effluents to the processing region of the semiconductor processing chamber; and
- removing the modified surface of the exposed material from the semiconductor substrate.
2. The etching method of claim 1, wherein the inert plasma comprises a helium plasma.
3. The etching method of claim 1, wherein the inert plasma is formed from a bias power below about 200 W.
4. The etching method of claim 1, wherein the surface of the exposed material on the semiconductor substrate is modified to a depth from the exposed surface within the semiconductor substrate of less than about 15 nm.
5. The etching method of claim 1, wherein a pressure within the semiconductor processing chamber while forming the inert plasma and during the modifying is maintained below about 50 mTorr.
6. The etching method of claim 1, wherein the remote plasma is formed in a region of the semiconductor processing chamber fluidly isolated from the processing region of the semiconductor processing chamber or is formed in a remote plasma unit fluidly coupled with the semiconductor processing chamber.
7. The etching method of claim 1, wherein the semiconductor substrate is maintained at a temperature above or about 80° C. during the removal of the modified surface of the exposed material.
8. The etching method of claim 7, wherein removing the modified surface of the exposed material exposes an unmodified portion of the material, and wherein an etching selectivity of a modified portion of the material to the unmodified portion of the material is greater than or about 100:1.
9. The etching method of claim 1, wherein the remote plasma is additionally formed from a hydrogen-containing precursor.
10. The etching method of claim 1, wherein each operation of the etching method is repeated in at least one additional cycle, and wherein a total removal after all cycles is greater than or about 50 nm.
11. An etching method comprising:
- forming an inert plasma within a processing region of a semiconductor processing chamber;
- modifying an exposed region of dielectric on a semiconductor substrate within the processing region of the semiconductor processing chamber with effluents of the inert plasma, wherein the modifying reduces an amount of carbon within the region of dielectric;
- contacting the modified dielectric with plasma effluents of a fluorine-containing precursor; and
- etching the modified dielectric, wherein the modifying, contacting, and etching are all performed in the semiconductor processing chamber.
12. The etching method of claim 11, wherein the etching is performed at a temperature of greater than or about 80° C.
13. The etching method of claim 11, wherein the plasma effluents of the fluorine-containing precursor are formed in a remote region of the semiconductor processing chamber fluidly coupled with, and physically separated from, the processing region of the semiconductor processing chamber.
14. The etching method of claim 13, wherein the plasma effluents of the fluorine-containing precursor are produced by a capacitively-coupled plasma at a power level of about 300 W.
15. The etching method of claim 13, wherein the modified dielectric is additionally contacted with a hydrogen-containing precursor.
16. The etching method of claim 15, wherein the hydrogen-containing precursor bypasses the remote region of the semiconductor processing chamber, and wherein the hydrogen-containing precursor interacts with the plasma effluents of the fluorine-containing precursor subsequent to the plasma effluents of the fluorine-containing precursor exiting the remote region of the semiconductor processing chamber.
17. An etching method comprising:
- forming an inert plasma within a processing region of a semiconductor processing chamber, wherein the inert plasma comprises a hydrogen plasma formed by a bias power of less than or about 200 W;
- modifying an exposed region of carbon-containing material on a semiconductor substrate within the processing region of the semiconductor processing chamber with effluents of the inert plasma, wherein the exposed region of carbon-containing material comprises a dielectric material positioned between copper interconnects formed on the semiconductor substrate, wherein a pressure within the semiconductor processing chamber is maintained below about 50 mTorr during the modifying;
- forming a plasma of a fluorine-containing precursor in a remote region of the semiconductor processing chamber that is separated from the processing region of the semiconductor processing chamber by a showerhead;
- contacting the modified dielectric material with plasma effluents of the fluorine-containing precursor; and
- etching the modified dielectric material at a temperature of at least about 80° C., wherein the modifying, contacting, and etching are all performed in the semiconductor processing chamber, and wherein no solid byproducts are produced during the etching.
18. The etching method of claim 17, wherein the remote region of the semiconductor processing chamber is a region defined within the semiconductor processing chamber.
19. The etching method of claim 17, wherein the remote region of the semiconductor processing chamber is a region external to the semiconductor processing chamber, but fluidly coupled with an inlet to the semiconductor processing chamber.
2369620 | February 1945 | Sullivan et al. |
3401302 | September 1968 | Thorpe |
3451840 | June 1969 | Hough |
3537474 | November 1970 | Rohrer |
3756511 | September 1973 | Shinroku |
3937857 | February 10, 1976 | Brummett et al. |
3969077 | July 13, 1976 | Hill |
4006047 | February 1, 1977 | Brummett et al. |
4190488 | February 26, 1980 | Winters |
4209357 | June 24, 1980 | Gorin et al. |
4214946 | July 29, 1980 | Forget et al. |
4232060 | November 4, 1980 | Mallory, Jr. |
4234628 | November 18, 1980 | DuRose |
4265943 | May 5, 1981 | Goldstein et al. |
4340462 | July 20, 1982 | Koch |
4341592 | July 27, 1982 | Shortes et al. |
4361418 | November 30, 1982 | Tscheppe |
4361441 | November 30, 1982 | Tylko |
4364803 | December 21, 1982 | Nidola et al. |
4368223 | January 11, 1983 | Kobayashi et al. |
4374698 | February 22, 1983 | Sanders et al. |
4397812 | August 9, 1983 | Mallory, Jr. |
4468413 | August 28, 1984 | Bachmann |
4565601 | January 21, 1986 | Kakehi et al. |
4579618 | April 1, 1986 | Celestino et al. |
4585920 | April 29, 1986 | Hoog et al. |
4610775 | September 9, 1986 | Phifer |
4625678 | December 2, 1986 | Shloya et al. |
4632857 | December 30, 1986 | Mallory, Jr. |
4656052 | April 7, 1987 | Satou et al. |
4656076 | April 7, 1987 | Vetanen et al. |
4668335 | May 26, 1987 | Mockler |
4690746 | September 1, 1987 | McInerney et al. |
4715937 | December 29, 1987 | Moslehi et al. |
4749440 | June 7, 1988 | Blackwood et al. |
4753898 | June 28, 1988 | Parrillo et al. |
4786360 | November 22, 1988 | Cote et al. |
4792378 | December 20, 1988 | Rose et al. |
4793897 | December 27, 1988 | Dunfield et al. |
4807016 | February 21, 1989 | Douglas |
4810520 | March 7, 1989 | Wu |
4816638 | March 28, 1989 | Ukai et al. |
4820377 | April 11, 1989 | Davis et al. |
4828649 | May 9, 1989 | Davis |
4857140 | August 15, 1989 | Loewenstein |
4867841 | September 19, 1989 | Loewenstein et al. |
4904621 | February 27, 1990 | Lowenstein et al. |
4913929 | April 3, 1990 | Moslehi et al. |
4919750 | April 24, 1990 | Bausmith et al. |
4946903 | August 7, 1990 | Gardella et al. |
4951601 | August 28, 1990 | Maydan et al. |
4960488 | October 2, 1990 | Law et al. |
4980018 | December 25, 1990 | Mu et al. |
4981551 | January 1, 1991 | Palmour |
4985372 | January 15, 1991 | Narita et al. |
4991542 | February 12, 1991 | Kohmura et al. |
4992136 | February 12, 1991 | Tachi et al. |
4993358 | February 19, 1991 | Mahawili |
4994404 | February 19, 1991 | Sheng et al. |
5000113 | March 19, 1991 | Wang et al. |
5006192 | April 9, 1991 | Deguchi |
5010842 | April 30, 1991 | Oda et al. |
5013691 | May 7, 1991 | Lory et al. |
5028565 | July 2, 1991 | Chang |
5030319 | July 9, 1991 | Nishino et al. |
5038713 | August 13, 1991 | Kawakami et al. |
5045244 | September 3, 1991 | Marlett |
5061838 | October 29, 1991 | Lane et al. |
5069938 | December 3, 1991 | Lorimer et al. |
5083030 | January 21, 1992 | Stavov |
5089441 | February 18, 1992 | Moslehi |
5089442 | February 18, 1992 | Olmer |
5147692 | September 15, 1992 | Bengston |
5156881 | October 20, 1992 | Okano et al. |
5180435 | January 19, 1993 | Markunas et al. |
5186718 | February 16, 1993 | Tepman et al. |
5188706 | February 23, 1993 | Hori et al. |
5198034 | March 30, 1993 | deBoer et al. |
5200016 | April 6, 1993 | Namose |
5203911 | April 20, 1993 | Sricharoenchalkit et al. |
5215787 | June 1, 1993 | Homma |
5221427 | June 22, 1993 | Koinuma et al. |
5228501 | July 20, 1993 | Tepman et al. |
5231690 | July 27, 1993 | Soma et al. |
5235139 | August 10, 1993 | Bengston et al. |
5238499 | August 24, 1993 | van de Ven et al. |
5240497 | August 31, 1993 | Shacham et al. |
5248371 | September 28, 1993 | Maher et al. |
5248527 | September 28, 1993 | Uchida et al. |
5252178 | October 12, 1993 | Moslehi |
5266157 | November 30, 1993 | Kadomura |
5269881 | December 14, 1993 | Sekiya |
5270125 | December 14, 1993 | America et al. |
5271972 | December 21, 1993 | Kwok et al. |
5275977 | January 4, 1994 | Otsubo et al. |
5277750 | January 11, 1994 | Wolgang |
5279669 | January 18, 1994 | Lee |
5279865 | January 18, 1994 | Chebi et al. |
5288518 | February 22, 1994 | Homma |
5290382 | March 1, 1994 | Zarowin et al. |
5290383 | March 1, 1994 | Koshimizu |
5292370 | March 8, 1994 | Tsai et al. |
5292682 | March 8, 1994 | Stevens et al. |
5300463 | April 5, 1994 | Cathey et al. |
5302233 | April 12, 1994 | Kim et al. |
5304250 | April 19, 1994 | Sameshima et al. |
5306530 | April 26, 1994 | Strongin et al. |
5314724 | May 24, 1994 | Tsukune et al. |
5319247 | June 7, 1994 | Matsuura |
5326427 | July 5, 1994 | Jerbic |
5328558 | July 12, 1994 | Kawamura et al. |
5328810 | July 12, 1994 | Lowrey et al. |
5330578 | July 19, 1994 | Sakama |
5334552 | August 2, 1994 | Homma |
5345999 | September 13, 1994 | Hosokawa |
5352636 | October 4, 1994 | Beinglass |
5356478 | October 18, 1994 | Chen et al. |
5362526 | November 8, 1994 | Wang et al. |
5366585 | November 22, 1994 | Robertson et al. |
5368897 | November 29, 1994 | Kurihara et al. |
5378316 | January 3, 1995 | Franke et al. |
5380560 | January 10, 1995 | Kaja et al. |
5382311 | January 17, 1995 | Ishikawa et al. |
5384284 | January 24, 1995 | Doan et al. |
5385763 | January 31, 1995 | Okano et al. |
5399237 | March 21, 1995 | Keswick et al. |
5399529 | March 21, 1995 | Homma |
5403434 | April 4, 1995 | Moslehi |
5413670 | May 9, 1995 | Langan et al. |
5413967 | May 9, 1995 | Matsuda et al. |
5415890 | May 16, 1995 | Kloiber et al. |
5416048 | May 16, 1995 | Blalock et al. |
5420075 | May 30, 1995 | Homma et al. |
5429995 | July 4, 1995 | Nishiyama et al. |
5439553 | August 8, 1995 | Grant et al. |
5451259 | September 19, 1995 | Krogh |
5464499 | November 7, 1995 | Moslehi |
5468342 | November 21, 1995 | Nulty et al. |
5474589 | December 12, 1995 | Ohga et al. |
5478403 | December 26, 1995 | Shinigawa et al. |
5478462 | December 26, 1995 | Walsh |
5483920 | January 16, 1996 | Pryor |
5494494 | February 27, 1996 | Mizuno et al. |
5500249 | March 19, 1996 | Telford et al. |
5505816 | April 9, 1996 | Barnes et al. |
5510216 | April 23, 1996 | Calabrese et al. |
5516367 | May 14, 1996 | Lei et al. |
5518962 | May 21, 1996 | Murao |
5531835 | July 2, 1996 | Fodor et al. |
5534070 | July 9, 1996 | Okamura et al. |
5536360 | July 16, 1996 | Nguyen et al. |
5549780 | August 27, 1996 | Koinuma et al. |
5558717 | September 24, 1996 | Zhao et al. |
5560779 | October 1, 1996 | Knowles et al. |
5563105 | October 8, 1996 | Dobuzinsky et al. |
5567243 | October 22, 1996 | Foster et al. |
5571576 | November 5, 1996 | Qian et al. |
5578130 | November 26, 1996 | Hayashi et al. |
5578161 | November 26, 1996 | Auda |
5580421 | December 3, 1996 | Hiatt et al. |
5591269 | January 7, 1997 | Ararni et al. |
5592358 | January 7, 1997 | Shamouilian |
5599740 | February 4, 1997 | Jang et al. |
5614055 | March 25, 1997 | Fairbairn et al. |
5616518 | April 1, 1997 | Foo et al. |
5624582 | April 29, 1997 | Cain |
5626922 | May 6, 1997 | Miyanaga et al. |
5628829 | May 13, 1997 | Foster et al. |
5635086 | June 3, 1997 | Warren, Jr. |
5645645 | July 8, 1997 | Zhang et al. |
5648125 | July 15, 1997 | Cane |
5648175 | July 15, 1997 | Russell et al. |
5656093 | August 12, 1997 | Burkhart et al. |
5660957 | August 26, 1997 | Chou et al. |
5661093 | August 26, 1997 | Ravi et al. |
5670066 | September 23, 1997 | Barnes et al. |
5674787 | October 7, 1997 | Zhao et al. |
5676758 | October 14, 1997 | Hasgawa et al. |
5679606 | October 21, 1997 | Wang et al. |
5685946 | November 11, 1997 | Fathauer et al. |
5688331 | November 18, 1997 | Aruga et al. |
5695810 | December 9, 1997 | Dubin et al. |
5712185 | January 27, 1998 | Tsai et al. |
5716500 | February 10, 1998 | Bardos et al. |
5716506 | February 10, 1998 | Maclay et al. |
5719085 | February 17, 1998 | Moon et al. |
5733816 | March 31, 1998 | Iyer et al. |
5747373 | May 5, 1998 | Yu |
5753886 | May 19, 1998 | Iwamura et al. |
5755859 | May 26, 1998 | Brusic et al. |
5756400 | May 26, 1998 | Ye et al. |
5756402 | May 26, 1998 | Jimbo et al. |
5772770 | June 30, 1998 | Suda et al. |
5781693 | July 14, 1998 | Ballance et al. |
5786276 | July 28, 1998 | Brooks et al. |
5789300 | August 4, 1998 | Fulford |
5792376 | August 11, 1998 | Kanai et al. |
5800686 | September 1, 1998 | Littau et al. |
5804259 | September 8, 1998 | Robles |
5812403 | September 22, 1998 | Fong et al. |
5814238 | September 29, 1998 | Ashby et al. |
5814365 | September 29, 1998 | Mahawill |
5820723 | October 13, 1998 | Benjamin et al. |
5824599 | October 20, 1998 | Schacham-Diamand et al. |
5830805 | November 3, 1998 | Schacham-Diamand et al. |
5835334 | November 10, 1998 | McMillin et al. |
5843538 | December 1, 1998 | Ehrsam et al. |
5843847 | December 1, 1998 | Pu et al. |
5844195 | December 1, 1998 | Fairbairn et al. |
5846332 | December 8, 1998 | Zhao et al. |
5846373 | December 8, 1998 | Pirkle et al. |
5846375 | December 8, 1998 | Gilchrist et al. |
5846598 | December 8, 1998 | Semkow et al. |
5849639 | December 15, 1998 | Molloy et al. |
5850105 | December 15, 1998 | Dawson et al. |
5855681 | January 5, 1999 | Maydan et al. |
5855685 | January 5, 1999 | Tobe et al. |
5856240 | January 5, 1999 | Sinha et al. |
5858876 | January 12, 1999 | Chew |
5863376 | January 26, 1999 | Wicker |
5865896 | February 2, 1999 | Nowak |
5866483 | February 2, 1999 | Shiau et al. |
5872052 | February 16, 1999 | Iyer |
5872058 | February 16, 1999 | Van Cleemput et al. |
5882424 | March 16, 1999 | Taylor et al. |
5882786 | March 16, 1999 | Nassau et al. |
5883012 | March 16, 1999 | Chiou |
5885404 | March 23, 1999 | Kim et al. |
5885749 | March 23, 1999 | Huggins et al. |
5888906 | March 30, 1999 | Sandhu et al. |
5891349 | April 6, 1999 | Tobe et al. |
5891513 | April 6, 1999 | Dubin et al. |
5897751 | April 27, 1999 | Makowiecki |
5899752 | May 4, 1999 | Hey et al. |
5900163 | May 4, 1999 | Yi et al. |
5904827 | May 18, 1999 | Reynolds |
5907790 | May 25, 1999 | Kellam |
5910340 | June 8, 1999 | Uchida et al. |
5913147 | June 15, 1999 | Dubin et al. |
5913978 | June 22, 1999 | Kato et al. |
5915190 | June 22, 1999 | Pirkle |
5918116 | June 29, 1999 | Chittipeddi |
5919332 | July 6, 1999 | Koshiishi et al. |
5920792 | July 6, 1999 | Lin |
5926737 | July 20, 1999 | Ameen et al. |
5932077 | August 3, 1999 | Reynolds |
5933757 | August 3, 1999 | Yoshikawa et al. |
5935334 | August 10, 1999 | Fong et al. |
5935340 | August 10, 1999 | Xia et al. |
5937323 | August 10, 1999 | Orczyk et al. |
5939831 | August 17, 1999 | Fong et al. |
5942075 | August 24, 1999 | Nagahata et al. |
5944049 | August 31, 1999 | Beyer et al. |
5944902 | August 31, 1999 | Redeker et al. |
5948702 | September 7, 1999 | Rotondaro |
5951601 | September 14, 1999 | Lesinski et al. |
5951776 | September 14, 1999 | Selyutin et al. |
5951896 | September 14, 1999 | Mahawill |
5953591 | September 14, 1999 | Ishihara et al. |
5953635 | September 14, 1999 | Andideh |
5963840 | October 5, 1999 | Xia et al. |
5968587 | October 19, 1999 | Frankel et al. |
5968610 | October 19, 1999 | Liu et al. |
5969422 | October 19, 1999 | Ting et al. |
5976327 | November 2, 1999 | Tanaka |
5990000 | November 23, 1999 | Hong et al. |
5990013 | November 23, 1999 | Berenguer et al. |
5993916 | November 30, 1999 | Zhao et al. |
5994209 | November 30, 1999 | Yieh et al. |
5997649 | December 7, 1999 | Hillman |
5997962 | December 7, 1999 | Ogasawara et al. |
6004884 | December 21, 1999 | Abraham |
6007635 | December 28, 1999 | Mahawill |
6007785 | December 28, 1999 | Liou |
6010962 | January 4, 2000 | Liu et al. |
6013191 | January 11, 2000 | Nasser-Faili et al. |
6013584 | January 11, 2000 | M'Saad |
6015724 | January 18, 2000 | Yamazaki et al. |
6015747 | January 18, 2000 | Lopatin et al. |
6017414 | January 25, 2000 | Koemtzopoulos et al. |
6019848 | February 1, 2000 | Kiyama et al. |
6020271 | February 1, 2000 | Yanagida |
6030666 | February 29, 2000 | Lam et al. |
6030881 | February 29, 2000 | Papasouliotis et al. |
6035101 | March 7, 2000 | Sajoto et al. |
6036878 | March 14, 2000 | Collins et al. |
6037018 | March 14, 2000 | Jang et al. |
6037266 | March 14, 2000 | Tao et al. |
6039834 | March 21, 2000 | Tanaka et al. |
6039851 | March 21, 2000 | Iyer |
6053982 | April 25, 2000 | Halpin et al. |
6059643 | May 9, 2000 | Hu et al. |
6063683 | May 16, 2000 | Wu et al. |
6063712 | May 16, 2000 | Gilton et al. |
6065424 | May 23, 2000 | Shacham-Diamand et al. |
6065425 | May 23, 2000 | Takaki et al. |
6072147 | June 6, 2000 | Koshiishi |
6072227 | June 6, 2000 | Yau et al. |
6074512 | June 13, 2000 | Collins et al. |
6074514 | June 13, 2000 | Bjorkman et al. |
6077384 | June 20, 2000 | Collins et al. |
6077780 | June 20, 2000 | Dubin |
6079356 | June 27, 2000 | Umotoy et al. |
6080529 | June 27, 2000 | Ye et al. |
6081414 | June 27, 2000 | Flanigan et al. |
6083344 | July 4, 2000 | Hanawa et al. |
6083844 | July 4, 2000 | Bui-Le et al. |
6086677 | July 11, 2000 | Umotoy et al. |
6087278 | July 11, 2000 | Kim et al. |
6090212 | July 18, 2000 | Mahawill |
6093457 | July 25, 2000 | Okumura |
6093594 | July 25, 2000 | Yeap et al. |
6099697 | August 8, 2000 | Hausmann |
6107199 | August 22, 2000 | Allen et al. |
6110530 | August 29, 2000 | Chen et al. |
6110832 | August 29, 2000 | Morgan et al. |
6110836 | August 29, 2000 | Cohen et al. |
6110838 | August 29, 2000 | Loewenstein |
6113771 | September 5, 2000 | Landau et al. |
6114216 | September 5, 2000 | Yieh et al. |
6117245 | September 12, 2000 | Mandrekar et al. |
6120640 | September 19, 2000 | Shih et al. |
6136163 | October 24, 2000 | Cheung et al. |
6136165 | October 24, 2000 | Moslehi et al. |
6136685 | October 24, 2000 | Narwankar et al. |
6136693 | October 24, 2000 | Chan et al. |
6140234 | October 31, 2000 | Uzoh et al. |
6144099 | November 7, 2000 | Lopatin et al. |
6147009 | November 14, 2000 | Grill et al. |
6148761 | November 21, 2000 | Majewski et al. |
6149828 | November 21, 2000 | Vaartstra |
6150628 | November 21, 2000 | Smith et al. |
6153935 | November 28, 2000 | Edelstein et al. |
6161500 | December 19, 2000 | Kopacz et al. |
6161576 | December 19, 2000 | Maher et al. |
6162370 | December 19, 2000 | Hackett et al. |
6165912 | December 26, 2000 | McConnell et al. |
6167834 | January 2, 2001 | Wang et al. |
6169021 | January 2, 2001 | Akram et al. |
6170428 | January 9, 2001 | Redeker et al. |
6171661 | January 9, 2001 | Zheng et al. |
6174450 | January 16, 2001 | Patrick et al. |
6174810 | January 16, 2001 | Patrick et al. |
6174812 | January 16, 2001 | Hsuing et al. |
6176198 | January 23, 2001 | Kao et al. |
6176667 | January 23, 2001 | Fairbairn |
6177245 | January 23, 2001 | Ward et al. |
6179924 | January 30, 2001 | Zhao et al. |
6180523 | January 30, 2001 | Lee et al. |
6182602 | February 6, 2001 | Redeker et al. |
6182603 | February 6, 2001 | Shang et al. |
6184121 | February 6, 2001 | Buchwalter et al. |
6186091 | February 13, 2001 | Chu et al. |
6189483 | February 20, 2001 | Ishikawa et al. |
6190233 | February 20, 2001 | Hong et al. |
6194038 | February 27, 2001 | Rossman |
6197181 | March 6, 2001 | Chen |
6197364 | March 6, 2001 | Paunovic et al. |
6197680 | March 6, 2001 | Lin et al. |
6197688 | March 6, 2001 | Simpson |
6197705 | March 6, 2001 | Vassiliev |
6198616 | March 6, 2001 | Dahimene et al. |
6203863 | March 20, 2001 | Liu et al. |
6204200 | March 20, 2001 | Shieh et al. |
6210486 | April 3, 2001 | Mizukami et al. |
6217658 | April 17, 2001 | Orczyk et al. |
6220201 | April 24, 2001 | Nowak |
6225745 | May 1, 2001 | Srivastava |
6228233 | May 8, 2001 | Lakshmikanthan et al. |
6228751 | May 8, 2001 | Yamazaki et al. |
6228758 | May 8, 2001 | Pellerin et al. |
6235643 | May 22, 2001 | Mui et al. |
6237527 | May 29, 2001 | Kellerman et al. |
6238513 | May 29, 2001 | Arnold et al. |
6238582 | May 29, 2001 | Williams et al. |
6197151 | March 6, 2001 | Kaji et al. |
6241845 | June 5, 2001 | Gadgil et al. |
6242349 | June 5, 2001 | Nogami et al. |
6244211 | June 12, 2001 | Nishikawa et al. |
6245396 | June 12, 2001 | Nogami |
6245670 | June 12, 2001 | Cheung et al. |
6251236 | June 26, 2001 | Stevens |
6251802 | June 26, 2001 | Moore et al. |
6258170 | July 10, 2001 | Somekh et al. |
6258220 | July 10, 2001 | Dordi et al. |
6258223 | July 10, 2001 | Cheung et al. |
6258270 | July 10, 2001 | Hilgendorff et al. |
6261637 | July 17, 2001 | Oberle |
6277733 | August 21, 2001 | Smith |
6277752 | August 21, 2001 | Chen |
6277763 | August 21, 2001 | Kugimiya et al. |
6281072 | August 28, 2001 | Li et al. |
6281135 | August 28, 2001 | Han et al. |
6284146 | September 4, 2001 | Kim et al. |
6291348 | September 18, 2001 | Lopatin et al. |
6303044 | October 16, 2001 | Koemtzopoulos |
6303418 | October 16, 2001 | Cha et al. |
6306772 | October 23, 2001 | Lin |
6308776 | October 30, 2001 | Sloan |
6310755 | October 30, 2001 | Busato et al. |
6312554 | November 6, 2001 | Ye |
6312995 | November 6, 2001 | Yu |
6319387 | November 20, 2001 | Krishnamoorthy et al. |
6321587 | November 27, 2001 | Laush |
6322716 | November 27, 2001 | Qiao et al. |
6323128 | November 27, 2001 | Sambucetti et al. |
6335288 | January 1, 2002 | Kwan et al. |
6340435 | January 22, 2002 | Bjorkman et al. |
6342733 | January 29, 2002 | Hu et al. |
RE37546 | February 12, 2002 | Mahawil |
6344410 | February 5, 2002 | Lopatin et al. |
6348407 | February 19, 2002 | Gupta et al. |
6350320 | February 26, 2002 | Sherstinsky et al. |
6350697 | February 26, 2002 | Richardson |
6351013 | February 26, 2002 | Luning et al. |
6352081 | March 5, 2002 | Lu et al. |
6355573 | March 12, 2002 | Okumura |
6364949 | April 2, 2002 | Or et al. |
6364954 | April 2, 2002 | Umotoy et al. |
6364957 | April 2, 2002 | Schneider et al. |
6375748 | April 23, 2002 | Yudovsky et al. |
6376386 | April 23, 2002 | Oshima |
6379575 | April 30, 2002 | Yin et al. |
6383896 | May 7, 2002 | Kirimura et al. |
6383951 | May 7, 2002 | Li |
6387207 | May 14, 2002 | Janakiraman et al. |
6391753 | May 21, 2002 | Yu |
6395150 | May 28, 2002 | Van Cleemput et al. |
6403491 | June 11, 2002 | Liu et al. |
6415736 | July 9, 2002 | Hao et al. |
6416647 | July 9, 2002 | Dordi et al. |
6418874 | July 16, 2002 | Cox et al. |
6423284 | July 23, 2002 | Arno |
6427623 | August 6, 2002 | Ko |
6429465 | August 6, 2002 | Yagi et al. |
6432819 | August 13, 2002 | Pavate et al. |
6432831 | August 13, 2002 | Dhindsa et al. |
6436193 | August 20, 2002 | Kasai et al. |
6436816 | August 20, 2002 | Lee et al. |
6440863 | August 27, 2002 | Tsai et al. |
6441492 | August 27, 2002 | Cunningham |
6446572 | September 10, 2002 | Brcka |
6448537 | September 10, 2002 | Nering |
6458718 | October 1, 2002 | Todd |
6461974 | October 8, 2002 | Ni et al. |
6462371 | October 8, 2002 | Weimer et al. |
6462372 | October 8, 2002 | Xia et al. |
6465051 | October 15, 2002 | Sahin et al. |
6465350 | October 15, 2002 | Taylor et al. |
6465366 | October 15, 2002 | Nemani et al. |
6477980 | November 12, 2002 | White et al. |
6479373 | November 12, 2002 | Dreybrodt et al. |
6488984 | December 3, 2002 | Wada et al. |
6494959 | December 17, 2002 | Samoilov et al. |
6499425 | December 31, 2002 | Sandhu et al. |
6500728 | December 31, 2002 | Wang |
6503843 | January 7, 2003 | Xia et al. |
6506291 | January 14, 2003 | Tsai et al. |
6509283 | January 21, 2003 | Thomas |
6509623 | January 21, 2003 | Zhao |
6516815 | February 11, 2003 | Stevens et al. |
6518548 | February 11, 2003 | Sugaya et al. |
6527968 | March 4, 2003 | Wang et al. |
6528409 | March 4, 2003 | Lopatin et al. |
6528751 | March 4, 2003 | Hoffman et al. |
6537733 | March 25, 2003 | Campana et al. |
6541397 | April 1, 2003 | Bencher |
6541671 | April 1, 2003 | Martinez et al. |
6544340 | April 8, 2003 | Yudovsky |
6547977 | April 15, 2003 | Yan et al. |
6551924 | April 22, 2003 | Dalton et al. |
6558564 | May 6, 2003 | Loewenhardt |
6565661 | May 20, 2003 | Nguyen |
6565729 | May 20, 2003 | Chen et al. |
6569773 | May 27, 2003 | Gellrich et al. |
6572937 | June 3, 2003 | Hakovirta et al. |
6573030 | June 3, 2003 | Fairbairn et al. |
6573606 | June 3, 2003 | Sambucetti et al. |
6585851 | July 1, 2003 | Ohmi et al. |
6586163 | July 1, 2003 | Okabe et al. |
6596599 | July 22, 2003 | Guo |
6596654 | July 22, 2003 | Bayman et al. |
6602434 | August 5, 2003 | Hung et al. |
6602806 | August 5, 2003 | Xia et al. |
6603269 | August 5, 2003 | Vo et al. |
6605874 | August 12, 2003 | Leu et al. |
6616967 | September 9, 2003 | Test |
6627532 | September 30, 2003 | Gaillard et al. |
6635575 | October 21, 2003 | Xia et al. |
6635578 | October 21, 2003 | Xu et al. |
6638810 | October 28, 2003 | Bakli et al. |
6645301 | November 11, 2003 | Sainty et al. |
6645550 | November 11, 2003 | Cheung et al. |
6656831 | December 2, 2003 | Lee et al. |
6656837 | December 2, 2003 | Xu et al. |
6663715 | December 16, 2003 | Yuda et al. |
6677242 | January 13, 2004 | Liu et al. |
6679981 | January 20, 2004 | Pan et al. |
6688375 | February 10, 2004 | Turner |
6713356 | March 30, 2004 | Skotnicki et al. |
6713835 | March 30, 2004 | Horak et al. |
6717189 | April 6, 2004 | Inoue et al. |
6720213 | April 13, 2004 | Gambino et al. |
6736147 | May 18, 2004 | Satoh et al. |
6736987 | May 18, 2004 | Cho |
6740585 | May 25, 2004 | Yoon et al. |
6740977 | May 25, 2004 | Ahn et al. |
6743473 | June 1, 2004 | Parkhe et al. |
6743732 | June 1, 2004 | Lin et al. |
6756235 | June 29, 2004 | Liu et al. |
6759261 | July 6, 2004 | Shimokohbe et al. |
6762127 | July 13, 2004 | Boiteux et al. |
6762435 | July 13, 2004 | Towle |
6764958 | July 20, 2004 | Nemani et al. |
6765273 | July 20, 2004 | Chau et al. |
6767834 | July 27, 2004 | Chung et al. |
6768079 | July 27, 2004 | Kosakai |
6770166 | August 3, 2004 | Fisher |
6772827 | August 10, 2004 | Keller et al. |
6792889 | September 21, 2004 | Nakano et al. |
6794290 | September 21, 2004 | Papasouliotis et al. |
6794311 | September 21, 2004 | Huang et al. |
6796314 | September 28, 2004 | Graff et al. |
6797189 | September 28, 2004 | Hung et al. |
6800336 | October 5, 2004 | Fornsel et al. |
6800830 | October 5, 2004 | Mahawili |
6802944 | October 12, 2004 | Ahmad et al. |
6808564 | October 26, 2004 | Dietze |
6808747 | October 26, 2004 | Shih et al. |
6808748 | October 26, 2004 | Kapoor et al. |
6815633 | November 9, 2004 | Chen et al. |
6821571 | November 23, 2004 | Huang |
6823589 | November 30, 2004 | White et al. |
6828241 | December 7, 2004 | Kholodenko et al. |
6830624 | December 14, 2004 | Janakiraman et al. |
6835995 | December 28, 2004 | Li |
6846745 | January 25, 2005 | Papasouliotis et al. |
6849854 | February 1, 2005 | Sainty |
6852550 | February 8, 2005 | Tuttle et al. |
6852584 | February 8, 2005 | Chen et al. |
6853533 | February 8, 2005 | Parkhe et al. |
6858153 | February 22, 2005 | Bjorkman et al. |
6861097 | March 1, 2005 | Goosey et al. |
6861332 | March 1, 2005 | Park et al. |
6869880 | March 22, 2005 | Krishnaraj et al. |
6875280 | April 5, 2005 | Ikeda et al. |
6878206 | April 12, 2005 | Tzu et al. |
6879981 | April 12, 2005 | Rothschild et al. |
6886491 | May 3, 2005 | Kim et al. |
6892669 | May 17, 2005 | Xu et al. |
6893967 | May 17, 2005 | Wright et al. |
6897532 | May 24, 2005 | Schwarz et al. |
6900596 | May 31, 2005 | Yang et al. |
6903511 | June 7, 2005 | Chistyakov |
6908862 | June 21, 2005 | Li et al. |
6911112 | June 28, 2005 | An |
6911401 | June 28, 2005 | Khandan et al. |
6916399 | July 12, 2005 | Rozenzon et al. |
6921556 | July 26, 2005 | Shimizu et al. |
6924191 | August 2, 2005 | Liu et al. |
6930047 | August 16, 2005 | Yamazaki |
6935269 | August 30, 2005 | Lee et al. |
6942753 | September 13, 2005 | Choi et al. |
6946033 | September 20, 2005 | Tsuel et al. |
6951821 | October 4, 2005 | Hamelin et al. |
6958175 | October 25, 2005 | Sakamoto et al. |
6958286 | October 25, 2005 | Chen et al. |
6995073 | February 7, 2006 | Liou |
7017269 | March 28, 2006 | White et al. |
7018941 | March 28, 2006 | Cui et al. |
7030034 | April 18, 2006 | Fucsko et al. |
7049200 | May 23, 2006 | Arghavani et al. |
7071532 | July 4, 2006 | Geffken et al. |
7084070 | August 1, 2006 | Lee et al. |
7115525 | October 3, 2006 | Abatchev et al. |
7122949 | October 17, 2006 | Strikovski |
7138767 | November 21, 2006 | Chen et al. |
7145725 | December 5, 2006 | Hasel et al. |
7148155 | December 12, 2006 | Tarafdar et al. |
7166233 | January 23, 2007 | Johnson et al. |
7183214 | February 27, 2007 | Nam et al. |
7196342 | March 27, 2007 | Ershov et al. |
7226805 | June 5, 2007 | Hallin et al. |
7235137 | June 26, 2007 | Kitayama et al. |
7244474 | July 17, 2007 | Hanawa et al. |
7252011 | August 7, 2007 | Traverso |
7252716 | August 7, 2007 | Kim et al. |
7253123 | August 7, 2007 | Arghavani et al. |
7256370 | August 14, 2007 | Guiver |
7274004 | September 25, 2007 | Benjamin et al. |
7288482 | October 30, 2007 | Panda et al. |
7291360 | November 6, 2007 | Hanawa et al. |
7316761 | January 8, 2008 | Doan et al. |
7329608 | February 12, 2008 | Babayan et al. |
7341633 | March 11, 2008 | Lubomirsky et al. |
7344912 | March 18, 2008 | Okoroanyanwu |
7358192 | April 15, 2008 | Merry et al. |
7361865 | April 22, 2008 | Maki et al. |
7364956 | April 29, 2008 | Saito |
7365016 | April 29, 2008 | Ouellet et al. |
7396480 | July 8, 2008 | Kao et al. |
7396773 | July 8, 2008 | Blosse et al. |
7416989 | August 26, 2008 | Liu et al. |
7465358 | December 16, 2008 | Weidman et al. |
7465953 | December 16, 2008 | Koh et al. |
7468319 | December 23, 2008 | Lee |
7479303 | January 20, 2009 | Byun et al. |
7484473 | February 3, 2009 | Keller et al. |
7488688 | February 10, 2009 | Chung et al. |
7494545 | February 24, 2009 | Lam et al. |
7500445 | March 10, 2009 | Zhao et al. |
7513214 | April 7, 2009 | Okumura et al. |
7520957 | April 21, 2009 | Kao et al. |
7553756 | June 30, 2009 | Hayashi et al. |
7575007 | August 18, 2009 | Tang et al. |
7581511 | September 1, 2009 | Mardian et al. |
7604708 | October 20, 2009 | Wood et al. |
7611980 | November 3, 2009 | Wells |
7628897 | December 8, 2009 | Mungekar et al. |
7658799 | February 9, 2010 | Ishikawa et al. |
7682518 | March 23, 2010 | Chandrachood et al. |
7695590 | April 13, 2010 | Hanawa et al. |
7708859 | May 4, 2010 | Huang et al. |
7722925 | May 25, 2010 | White et al. |
7723221 | May 25, 2010 | Hayashi |
7749326 | July 6, 2010 | Kim et al. |
7780790 | August 24, 2010 | Nogami |
7785672 | August 31, 2010 | Choi et al. |
7790634 | September 7, 2010 | Munro et al. |
7806077 | October 5, 2010 | Lee et al. |
7806078 | October 5, 2010 | Yoshida |
7807578 | October 5, 2010 | Bencher et al. |
7825038 | November 2, 2010 | Ingle et al. |
7837828 | November 23, 2010 | Ikeda et al. |
7845309 | December 7, 2010 | Condrashoff et al. |
7867926 | January 11, 2011 | Satoh et al. |
7915139 | March 29, 2011 | Lang et al. |
7922863 | April 12, 2011 | Ripley |
7932181 | April 26, 2011 | Singh et al. |
7939422 | May 10, 2011 | Ingle et al. |
7968441 | June 28, 2011 | Xu |
7976631 | July 12, 2011 | Burrows |
7977249 | July 12, 2011 | Liu |
7981806 | July 19, 2011 | Jung |
7989365 | August 2, 2011 | Park et al. |
8008166 | August 30, 2011 | Sanchez et al. |
8048811 | November 1, 2011 | Feustel et al. |
8058179 | November 15, 2011 | Draeger et al. |
8071482 | December 6, 2011 | Kawada |
8074599 | December 13, 2011 | Choi et al. |
8076198 | December 13, 2011 | Lee et al. |
8083853 | December 27, 2011 | Choi et al. |
8114245 | February 14, 2012 | Ohmi et al. |
8119530 | February 21, 2012 | Hori et al. |
8133349 | March 13, 2012 | Panagopoulos |
8173228 | May 8, 2012 | Choi et al. |
8183134 | May 22, 2012 | Wu |
8187486 | May 29, 2012 | Liu et al. |
8211808 | July 3, 2012 | Sapre et al. |
8216486 | July 10, 2012 | Dhindsa |
8222128 | July 17, 2012 | Sasaki |
8252194 | August 28, 2012 | Kiehlbauch et al. |
8272346 | September 25, 2012 | Bettencourt et al. |
8295089 | October 23, 2012 | Jeong et al. |
8298627 | October 30, 2012 | Minami et al. |
8298959 | October 30, 2012 | Cheshire |
8309440 | November 13, 2012 | Sanchez et al. |
8312839 | November 20, 2012 | Baek |
8313610 | November 20, 2012 | Dhindsa |
8328939 | December 11, 2012 | Choi et al. |
8329262 | December 11, 2012 | Miller et al. |
8336188 | December 25, 2012 | Monteen |
8357435 | January 22, 2013 | Lubomirsky |
8368308 | February 5, 2013 | Banna et al. |
8390980 | March 5, 2013 | Sansoni et al. |
8427067 | April 23, 2013 | Espiau et al. |
8435902 | May 7, 2013 | Tang et al. |
8440523 | May 14, 2013 | Guillorn et al. |
8466073 | June 18, 2013 | Wang et al. |
8475674 | July 2, 2013 | Thadani et al. |
8480850 | July 9, 2013 | Tyler et al. |
8491805 | July 23, 2013 | Kushibiki et al. |
8501629 | August 6, 2013 | Tang et al. |
8506713 | August 13, 2013 | Takagi |
8512509 | August 20, 2013 | Bera et al. |
8528889 | September 10, 2013 | Sansoni et al. |
8540844 | September 24, 2013 | Hudson et al. |
8551891 | October 8, 2013 | Liang |
8573152 | November 5, 2013 | De La Llera |
8622021 | January 7, 2014 | Taylor et al. |
8623471 | January 7, 2014 | Tyler et al. |
8633423 | January 21, 2014 | Lin et al. |
8652298 | February 18, 2014 | Dhindsa et al. |
8668836 | March 11, 2014 | Mizukami et al. |
8679982 | March 25, 2014 | Wang et al. |
8679983 | March 25, 2014 | Wang et al. |
8691023 | April 8, 2014 | Bao et al. |
8702902 | April 22, 2014 | Blom et al. |
8741778 | June 3, 2014 | Yang et al. |
8747680 | June 10, 2014 | Deshpande |
8748322 | June 10, 2014 | Fung et al. |
8765574 | July 1, 2014 | Zhang et al. |
8771536 | July 8, 2014 | Zhang et al. |
8771539 | July 8, 2014 | Zhang et al. |
8772888 | July 8, 2014 | Jung et al. |
8778079 | July 15, 2014 | Begarney et al. |
8801952 | August 12, 2014 | Wang et al. |
8802572 | August 12, 2014 | Nemani et al. |
8808563 | August 19, 2014 | Wang et al. |
8815720 | August 26, 2014 | Godet |
8846163 | September 30, 2014 | Kao et al. |
8869742 | October 28, 2014 | Dhindsa |
8871651 | October 28, 2014 | Choi et al. |
8888087 | November 18, 2014 | Okabe et al. |
8894767 | November 25, 2014 | Goradia et al. |
8895449 | November 25, 2014 | Zhu et al. |
8900364 | December 2, 2014 | Wright |
8921234 | December 30, 2014 | Liu et al. |
8927390 | January 6, 2015 | Sapre et al. |
8937017 | January 20, 2015 | Cheshire et al. |
8951429 | February 10, 2015 | Liu et al. |
8956980 | February 17, 2015 | Chen et al. |
8969212 | March 3, 2015 | Ren et al. |
8970114 | March 3, 2015 | Busche et al. |
8980005 | March 17, 2015 | Carlson et al. |
8980758 | March 17, 2015 | Ling et al. |
8980763 | March 17, 2015 | Wang et al. |
8992723 | March 31, 2015 | Sorensen et al. |
8999656 | April 7, 2015 | Jirstrom et al. |
8999839 | April 7, 2015 | Su et al. |
8999856 | April 7, 2015 | Zhang et al. |
9012302 | April 21, 2015 | Sapre et al. |
9017481 | April 28, 2015 | Pettinger et al. |
9023732 | May 5, 2015 | Wang et al. |
9023734 | May 5, 2015 | Chen et al. |
9034770 | May 19, 2015 | Park et al. |
9040422 | May 26, 2015 | Wang et al. |
9064815 | June 23, 2015 | Zhang et al. |
9064816 | June 23, 2015 | Kim et al. |
9072158 | June 30, 2015 | Ikeda et al. |
9093371 | July 28, 2015 | Wang et al. |
9093389 | July 28, 2015 | Nemani |
9093390 | July 28, 2015 | Wang et al. |
9111877 | August 18, 2015 | Chen et al. |
9111907 | August 18, 2015 | Kamineni |
9114438 | August 25, 2015 | Hoinkis et al. |
9117855 | August 25, 2015 | Cho et al. |
9132436 | September 15, 2015 | Liang et al. |
9136273 | September 15, 2015 | Purayath et al. |
9144147 | September 22, 2015 | Yang et al. |
9153442 | October 6, 2015 | Wang et al. |
9159606 | October 13, 2015 | Purayath et al. |
9165783 | October 20, 2015 | Nemani et al. |
9165786 | October 20, 2015 | Purayath et al. |
9184055 | November 10, 2015 | Wang et al. |
9190290 | November 17, 2015 | Xue et al. |
9190293 | November 17, 2015 | Wang et al. |
9190302 | November 17, 2015 | Ni |
9202708 | December 1, 2015 | Chen et al. |
9209012 | December 8, 2015 | Chen et al. |
9236265 | January 12, 2016 | Korolik et al. |
9236266 | January 12, 2016 | Zhang et al. |
9240315 | January 19, 2016 | Hsieh et al. |
9245762 | January 26, 2016 | Zhang et al. |
9263278 | February 16, 2016 | Purayath et al. |
9269590 | February 23, 2016 | Luere et al. |
9275834 | March 1, 2016 | Park et al. |
9287095 | March 15, 2016 | Nguyen et al. |
9287134 | March 15, 2016 | Wang et al. |
9293568 | March 22, 2016 | Ko |
9299537 | March 29, 2016 | Kobayashi et al. |
9299538 | March 29, 2016 | Kobayashi et al. |
9299575 | March 29, 2016 | Park et al. |
9299582 | March 29, 2016 | Ingle et al. |
9299583 | March 29, 2016 | Wang et al. |
9309598 | April 12, 2016 | Wang et al. |
9324576 | April 26, 2016 | Zhang et al. |
9343272 | May 17, 2016 | Pandit et al. |
9343327 | May 17, 2016 | Zhange et al. |
9349605 | May 24, 2016 | Xu et al. |
9355856 | May 31, 2016 | Wang et al. |
9355862 | May 31, 2016 | Pandit et al. |
9355863 | May 31, 2016 | Chen et al. |
9355922 | May 31, 2016 | Park et al. |
9362130 | June 7, 2016 | Ingle et al. |
9362163 | June 7, 2016 | Danek et al. |
9368364 | June 14, 2016 | Park et al. |
9373517 | June 21, 2016 | Yang et al. |
9373522 | June 21, 2016 | Wang et al. |
9378969 | June 28, 2016 | Hsu et al. |
9378978 | June 28, 2016 | Purayath et al. |
9384997 | July 5, 2016 | Ren et al. |
9385028 | July 5, 2016 | Nemani et al. |
9390937 | July 12, 2016 | Chen et al. |
9396961 | July 19, 2016 | Arghavani et al. |
9396989 | July 19, 2016 | Purayath et al. |
9406523 | August 2, 2016 | Chen et al. |
9412608 | August 9, 2016 | Wang et al. |
9418858 | August 16, 2016 | Wang et al. |
9425041 | August 23, 2016 | Berry et al. |
9425058 | August 23, 2016 | Kim et al. |
9431268 | August 30, 2016 | Lill et al. |
9343358 | May 17, 2016 | Montgomery |
9437451 | September 6, 2016 | Chen et al. |
9443749 | September 13, 2016 | Smith |
9449845 | September 20, 2016 | Liu et al. |
9449846 | September 20, 2016 | Liu et al. |
9449850 | September 20, 2016 | Wang et al. |
9460959 | October 4, 2016 | Xie et al. |
9466469 | October 11, 2016 | Khaja |
9472412 | October 18, 2016 | Zhang et al. |
9472417 | October 18, 2016 | Ingle et al. |
9478432 | October 25, 2016 | Chen et al. |
9478433 | October 25, 2016 | Zhou et al. |
9478434 | October 25, 2016 | Wang et al. |
9493879 | November 15, 2016 | Hoinkis et al. |
9496167 | November 15, 2016 | Purayath et al. |
9499898 | November 22, 2016 | Nguyen et al. |
9502258 | November 22, 2016 | Xue et al. |
9508529 | November 29, 2016 | Valcore et al. |
9520303 | December 13, 2016 | Wang et al. |
9543163 | January 10, 2017 | Ling et al. |
9564338 | February 7, 2017 | Zhang et al. |
9576788 | February 21, 2017 | Liu et al. |
9601319 | March 21, 2017 | Bravo et al. |
9607856 | March 28, 2017 | Wang et al. |
9613822 | April 4, 2017 | Chen et al. |
9659753 | May 23, 2017 | Cho et al. |
9659791 | May 23, 2017 | Wang et al. |
9659792 | May 23, 2017 | Wang et al. |
9666449 | May 30, 2017 | Koval et al. |
9691645 | June 27, 2017 | Ayers |
9704723 | July 11, 2017 | Wang et al. |
9711366 | July 18, 2017 | Ingle et al. |
9721789 | August 1, 2017 | Yang et al. |
9728437 | August 8, 2017 | Tran et al. |
9741593 | August 22, 2017 | Benjaminson et al. |
9754800 | September 5, 2017 | Zhang et al. |
9768034 | September 19, 2017 | Xu et al. |
9773648 | September 26, 2017 | Cho et al. |
9773695 | September 26, 2017 | Purayath et al. |
9779956 | October 3, 2017 | Zhang et al. |
9822009 | November 21, 2017 | Kagaya et al. |
9831097 | November 28, 2017 | Ingle et al. |
9837249 | December 5, 2017 | Kobayashi et al. |
9837284 | December 5, 2017 | Chen et al. |
9837286 | December 5, 2017 | Yang et al. |
9842744 | December 12, 2017 | Zhang et al. |
9865484 | January 9, 2018 | Citla et al. |
9881805 | January 30, 2018 | Li et al. |
9885117 | February 6, 2018 | Lubomirsky et al. |
9887096 | February 6, 2018 | Park et al. |
9903020 | February 27, 2018 | Kim et al. |
9934942 | April 3, 2018 | Lubomirsky |
9947549 | April 17, 2018 | Park et al. |
9966240 | May 8, 2018 | Park et al. |
9978564 | May 22, 2018 | Liang et al. |
9991134 | June 5, 2018 | Wang et al. |
10026621 | July 17, 2018 | Ko et al. |
10032606 | July 24, 2018 | Yang et al. |
10043674 | August 7, 2018 | Korolik |
10043684 | August 7, 2018 | Arnepalli et al. |
10049891 | August 14, 2018 | Wang et al. |
10062578 | August 28, 2018 | Zhang et al. |
10062579 | August 28, 2018 | Chen et al. |
10062585 | August 28, 2018 | Lubomirsky |
10062587 | August 28, 2018 | Chen et al. |
20010006093 | July 5, 2001 | Tabuchi et al. |
20010008803 | July 19, 2001 | Takamatsu et al. |
20010015175 | August 23, 2001 | Masuda et al. |
20010015261 | August 23, 2001 | Kobayashi et al. |
20010028093 | October 11, 2001 | Yamazaki et al. |
20010028922 | October 11, 2001 | Sandhu |
20010029891 | October 18, 2001 | Oh et al. |
20010030366 | October 18, 2001 | Nakano et al. |
20010034106 | October 25, 2001 | Moise et al. |
20010034121 | October 25, 2001 | Fu et al. |
20010035124 | November 1, 2001 | Okayama et al. |
20010036706 | November 1, 2001 | Kitamura |
20010037856 | November 8, 2001 | Park |
20010037941 | November 8, 2001 | Thompson |
20010039921 | November 15, 2001 | Rolfson et al. |
20010042512 | November 22, 2001 | Xu et al. |
20010047760 | December 6, 2001 | Moslehi |
20010053585 | December 20, 2001 | Kikuchi et al. |
20010053610 | December 20, 2001 | Athavale et al. |
20010054381 | December 27, 2001 | Umotoy et al. |
20010054387 | December 27, 2001 | Frankel et al. |
20020000202 | January 3, 2002 | Yuda et al. |
20020001778 | January 3, 2002 | Latchford et al. |
20020009560 | January 24, 2002 | Ozono |
20020009885 | January 24, 2002 | Brankner et al. |
20020011210 | January 31, 2002 | Satoh et al. |
20020011214 | January 31, 2002 | Kamarehi et al. |
20020016080 | February 7, 2002 | Khan et al. |
20020016085 | February 7, 2002 | Huang et al. |
20020023899 | February 28, 2002 | Khater et al. |
20020028582 | March 7, 2002 | Nallan et al. |
20020028585 | March 7, 2002 | Chung et al. |
20020029747 | March 14, 2002 | Powell et al. |
20020033233 | March 21, 2002 | Savas |
20020036143 | March 28, 2002 | Segawa et al. |
20020040764 | April 11, 2002 | Kwan et al. |
20020040766 | April 11, 2002 | Takahashi et al. |
20020043690 | April 18, 2002 | Doyle et al. |
20020045966 | April 18, 2002 | Lee et al. |
20020046991 | April 25, 2002 | Smith et al. |
20020054962 | May 9, 2002 | Huang |
20020062954 | May 30, 2002 | Getchel et al. |
20020069820 | June 13, 2002 | Yudovsky |
20020070414 | June 13, 2002 | Drescher et al. |
20020074573 | June 20, 2002 | Takeuchi et al. |
20020086501 | July 4, 2002 | O'Donnell et al. |
20020090781 | July 11, 2002 | Skotnicki et al. |
20020090835 | July 11, 2002 | Chakravarti et al. |
20020094378 | July 18, 2002 | O-Donnell |
20020094591 | July 18, 2002 | Sill et al. |
20020096493 | July 25, 2002 | Hattori |
20020098681 | July 25, 2002 | Hu et al. |
20020106845 | August 8, 2002 | Chao et al. |
20020112819 | August 22, 2002 | Kamarehi et al. |
20020124867 | September 12, 2002 | Kim et al. |
20020129769 | September 19, 2002 | Kim et al. |
20020129902 | September 19, 2002 | Babayan et al. |
20020144657 | October 10, 2002 | Chiang et al. |
20020153808 | October 24, 2002 | Skotnicki et al. |
20020164885 | November 7, 2002 | Lill et al. |
20020170678 | November 21, 2002 | Hayashi et al. |
20020177322 | November 28, 2002 | Li et al. |
20020179248 | December 5, 2002 | Kabansky et al. |
20020182878 | December 5, 2002 | Hirose et al. |
20020187280 | December 12, 2002 | Johnson et al. |
20020187655 | December 12, 2002 | Tan et al. |
20030003757 | January 2, 2003 | Naltan et al. |
20030007910 | January 9, 2003 | Lazarovich et al. |
20030010645 | January 16, 2003 | Ting et al. |
20030019428 | January 30, 2003 | Ku et al. |
20030019580 | January 30, 2003 | Strang |
20030026060 | February 6, 2003 | Hiramatsu et al. |
20030029566 | February 13, 2003 | Roth |
20030029567 | February 13, 2003 | Dhindsa et al. |
20030029715 | February 13, 2003 | Yu et al. |
20030031905 | February 13, 2003 | Saito et al. |
20030032284 | February 13, 2003 | Enomoto et al. |
20030038127 | February 27, 2003 | Liu et al. |
20030038305 | February 27, 2003 | Wasshuber |
20030054608 | March 20, 2003 | Tseng et al. |
20030066482 | April 10, 2003 | Pokharna et al. |
20030071035 | April 17, 2003 | Brailove |
20030072639 | April 17, 2003 | White et al. |
20030075808 | April 24, 2003 | Inoue et al. |
20030077857 | April 24, 2003 | Xia et al. |
20030077909 | April 24, 2003 | Jiwari |
20030079686 | May 1, 2003 | Chen et al. |
20030087488 | May 8, 2003 | Fink |
20030087531 | May 8, 2003 | Kang et al. |
20030091938 | May 15, 2003 | Fairbairn et al. |
20030094134 | May 22, 2003 | Minami et al. |
20030098125 | May 29, 2003 | An |
20030109143 | June 12, 2003 | Hsieh et al. |
20030116087 | June 26, 2003 | Nguyen et al. |
20030116439 | June 26, 2003 | Seo et al. |
20030121608 | July 3, 2003 | Chen et al. |
20030121609 | July 3, 2003 | Ohmi et al. |
20030124465 | July 3, 2003 | Lee et al. |
20030124842 | July 3, 2003 | Hytros et al. |
20030127049 | July 10, 2003 | Han et al. |
20030127740 | July 10, 2003 | Hsu et al. |
20030129106 | July 10, 2003 | Sorensen et al. |
20030129827 | July 10, 2003 | Lee et al. |
20030132319 | July 17, 2003 | Hytros et al. |
20030140844 | July 31, 2003 | Maa et al. |
20030143328 | July 31, 2003 | Chen et al. |
20030148035 | August 7, 2003 | Lingampalli |
20030150530 | August 14, 2003 | Lin et al. |
20030152691 | August 14, 2003 | Baude |
20030159307 | August 28, 2003 | Sago et al. |
20030164226 | September 4, 2003 | Kanno et al. |
20030168439 | September 11, 2003 | Kanno et al. |
20030170945 | September 11, 2003 | Igeta et al. |
20030173333 | September 18, 2003 | Wang et al. |
20030173347 | September 18, 2003 | Guiver |
20030173675 | September 18, 2003 | Watanabe |
20030181040 | September 25, 2003 | Ivanov et al. |
20030183244 | October 2, 2003 | Rossman |
20030190426 | October 9, 2003 | Padhi et al. |
20030196760 | October 23, 2003 | Tyler et al. |
20030199170 | October 23, 2003 | Li |
20030200929 | October 30, 2003 | Otsuki |
20030205329 | November 6, 2003 | Gujer et al. |
20030205479 | November 6, 2003 | Lin et al. |
20030209323 | November 13, 2003 | Yokogaki et al. |
20030215570 | November 20, 2003 | Seutter et al. |
20030215963 | November 20, 2003 | AmRhein et al. |
20030216044 | November 20, 2003 | Lin et al. |
20030221780 | December 4, 2003 | Lei et al. |
20030224217 | December 4, 2003 | Byun et al. |
20030224617 | December 4, 2003 | Baek et al. |
20030230385 | December 18, 2003 | Bach et al. |
20040003828 | January 8, 2004 | Jackson |
20040005726 | January 8, 2004 | Huang |
20040018304 | January 29, 2004 | Chung et al. |
20040020801 | February 5, 2004 | Solling |
20040026371 | February 12, 2004 | Nguyen et al. |
20040033678 | February 19, 2004 | Arghavani et al. |
20040033684 | February 19, 2004 | Li |
20040050328 | March 18, 2004 | Kumagai et al. |
20040058070 | March 25, 2004 | Takeuchi et al. |
20040058293 | March 25, 2004 | Nguyen et al. |
20040060514 | April 1, 2004 | Janakiraman et al. |
20040061447 | April 1, 2004 | Saigusa et al. |
20040069225 | April 15, 2004 | Fairbairn et al. |
20040070346 | April 15, 2004 | Choi |
20040072446 | April 15, 2004 | Liu et al. |
20040076529 | April 22, 2004 | Gnauck et al. |
20040083967 | May 6, 2004 | Yuda et al. |
20040087139 | May 6, 2004 | Yeh et al. |
20040092063 | May 13, 2004 | Okumura |
20040099285 | May 27, 2004 | Wange et al. |
20040099378 | May 27, 2004 | Kim et al. |
20040101667 | May 27, 2004 | O'Loughlin et al. |
20040107908 | June 10, 2004 | Collins et al. |
20040108067 | June 10, 2004 | Fischione et al. |
20040108068 | June 10, 2004 | Senzaki et al. |
20040115876 | June 17, 2004 | Goundar et al. |
20040124280 | July 1, 2004 | Shih et al. |
20040129671 | July 8, 2004 | Ji et al. |
20040137161 | July 15, 2004 | Segawa et al. |
20040140053 | July 22, 2004 | Srivastava et al. |
20040144490 | July 29, 2004 | Zhao et al. |
20040147126 | July 29, 2004 | Yamashita et al. |
20040149223 | August 5, 2004 | Collison et al. |
20040149394 | August 5, 2004 | Doan et al. |
20040152342 | August 5, 2004 | Li |
20040154535 | August 12, 2004 | Chen et al. |
20040157444 | August 12, 2004 | Chiu |
20040161921 | August 19, 2004 | Ryu |
20040175913 | September 9, 2004 | Johnson et al. |
20040175929 | September 9, 2004 | Schmitt et al. |
20040182315 | September 23, 2004 | Laflamme et al. |
20040187787 | September 30, 2004 | Dawson |
20040192032 | September 30, 2004 | Ohmori et al. |
20040194799 | October 7, 2004 | Kim et al. |
20040195216 | October 7, 2004 | Strang |
20040200499 | October 14, 2004 | Harvey |
20040211357 | October 28, 2004 | Gadgil et al. |
20040219723 | November 4, 2004 | Peng et al. |
20040219737 | November 4, 2004 | Quon |
20040219789 | November 4, 2004 | Wood et al. |
20040221809 | November 11, 2004 | Ohmi et al. |
20040231706 | November 25, 2004 | Bhatnagar et al. |
20040237897 | December 2, 2004 | Hanawa et al. |
20040263827 | December 30, 2004 | Xu |
20050000432 | January 6, 2005 | Keller et al. |
20050001276 | January 6, 2005 | Gao et al. |
20050003676 | January 6, 2005 | Ho et al. |
20050009340 | January 13, 2005 | Saijo et al. |
20050009358 | January 13, 2005 | Choi et al. |
20050026430 | February 3, 2005 | Kim et al. |
20050026431 | February 3, 2005 | Kazumi et al. |
20050035455 | February 17, 2005 | Hu et al. |
20050039679 | February 24, 2005 | Kleshock |
20050051094 | March 10, 2005 | Schaepkens et al. |
20050056218 | March 17, 2005 | Sun et al. |
20050073051 | April 7, 2005 | Yamamoto et al. |
20050079706 | April 14, 2005 | Kumar et al. |
20050087517 | April 28, 2005 | Ott et al. |
20050090078 | April 28, 2005 | Ishihara |
20050090120 | April 28, 2005 | Hasegawa et al. |
20050098111 | May 12, 2005 | Shimizu et al. |
20050103267 | May 19, 2005 | Hur et al. |
20050105991 | May 19, 2005 | Hofmeister et al. |
20050109279 | May 26, 2005 | Suzuki |
20050112876 | May 26, 2005 | Wu |
20050112901 | May 26, 2005 | Ji et al. |
20050123690 | June 9, 2005 | Derderian et al. |
20050136188 | June 23, 2005 | Chang |
20050145341 | July 7, 2005 | Suzuki |
20050164479 | July 28, 2005 | Perng et al. |
20050167394 | August 4, 2005 | Liu et al. |
20050176258 | August 11, 2005 | Hirose et al. |
20050178746 | August 18, 2005 | Gorin |
20050181588 | August 18, 2005 | Kim |
20050183666 | August 25, 2005 | Tsuji et al. |
20050194094 | September 8, 2005 | Yasaka |
20050196967 | September 8, 2005 | Savas et al. |
20050199489 | September 15, 2005 | Stevens et al. |
20050205110 | September 22, 2005 | Kao et al. |
20050205862 | September 22, 2005 | Koemtzopoulos et al. |
20050208215 | September 22, 2005 | Eguchi et al. |
20050208217 | September 22, 2005 | Shinriki et al. |
20050214477 | September 29, 2005 | Hanawa et al. |
20050218507 | October 6, 2005 | Kao et al. |
20050219786 | October 6, 2005 | Brown et al. |
20050221552 | October 6, 2005 | Kao et al. |
20050224181 | October 13, 2005 | Merry et al. |
20050229848 | October 20, 2005 | Shinriki et al. |
20050230350 | October 20, 2005 | Kao et al. |
20050236694 | October 27, 2005 | Wu et al. |
20050238807 | October 27, 2005 | Lin et al. |
20050239282 | October 27, 2005 | Chen et al. |
20050251990 | November 17, 2005 | Choi et al. |
20050266622 | December 1, 2005 | Arghavani et al. |
20050266650 | December 1, 2005 | Ahn et al. |
20050266691 | December 1, 2005 | Gu et al. |
20050269030 | December 8, 2005 | Kent et al. |
20050274324 | December 15, 2005 | Takahashi et al. |
20050279454 | December 22, 2005 | Snijders |
20050283321 | December 22, 2005 | Yue et al. |
20050287755 | December 29, 2005 | Bachmann |
20050287771 | December 29, 2005 | Seamons et al. |
20060000802 | January 5, 2006 | Kumar et al. |
20060000805 | January 5, 2006 | Todorow et al. |
20060005856 | January 12, 2006 | Sun et al. |
20060005930 | January 12, 2006 | Ikeda et al. |
20060006057 | January 12, 2006 | Laermer |
20060008676 | January 12, 2006 | Ebata et al. |
20060011298 | January 19, 2006 | Lim et al. |
20060011299 | January 19, 2006 | Condrashoff et al. |
20060016783 | January 26, 2006 | Wu et al. |
20060019456 | January 26, 2006 | Bu et al. |
20060019477 | January 26, 2006 | Hanawa et al. |
20060019486 | January 26, 2006 | Yu et al. |
20060021574 | February 2, 2006 | Armour et al. |
20060021701 | February 2, 2006 | Tobe et al. |
20060021703 | February 2, 2006 | Umotoy et al. |
20060024954 | February 2, 2006 | Wu et al. |
20060024956 | February 2, 2006 | Zhijian et al. |
20060033678 | February 16, 2006 | Lubomirsky et al. |
20060040055 | February 23, 2006 | Nguyen et al. |
20060043066 | March 2, 2006 | Kamp |
20060046412 | March 2, 2006 | Nguyen et al. |
20060046419 | March 2, 2006 | Sandhu et al. |
20060046470 | March 2, 2006 | Becknell |
20060051966 | March 9, 2006 | Or et al. |
20060051968 | March 9, 2006 | Joshi et al. |
20060054184 | March 16, 2006 | Mozetic et al. |
20060057828 | March 16, 2006 | Omura et al. |
20060060942 | March 23, 2006 | Minixhofer et al. |
20060065629 | March 30, 2006 | Chen et al. |
20060073349 | April 6, 2006 | Aihara et al. |
20060076108 | April 13, 2006 | Holland et al. |
20060087644 | April 27, 2006 | McMillin et al. |
20060090700 | May 4, 2006 | Satoh et al. |
20060093756 | May 4, 2006 | Rajagopalan et al. |
20060097397 | May 11, 2006 | Russell et al. |
20060102076 | May 18, 2006 | Smith et al. |
20060102587 | May 18, 2006 | Kimura |
20060118178 | June 8, 2006 | Desbiolles et al. |
20060118240 | June 8, 2006 | Holber et al. |
20060121724 | June 8, 2006 | Yue et al. |
20060124151 | June 15, 2006 | Yamasaki et al. |
20060124242 | June 15, 2006 | Kanarik et al. |
20060130971 | June 22, 2006 | Chang et al. |
20060151115 | July 13, 2006 | Kim et al. |
20060157449 | July 20, 2006 | Takahashi et al. |
20060162661 | July 27, 2006 | Jung et al. |
20060166107 | July 27, 2006 | Chen et al. |
20060166515 | July 27, 2006 | Karim et al. |
20060169327 | August 3, 2006 | Shajii et al. |
20060169410 | August 3, 2006 | Maeda et al. |
20060178008 | August 10, 2006 | Yeh et al. |
20060183270 | August 17, 2006 | Humpston |
20060185592 | August 24, 2006 | Matsuura |
20060191479 | August 31, 2006 | Mizukami et al. |
20060191637 | August 31, 2006 | Zajac et al. |
20060207504 | September 21, 2006 | Hasebe et al. |
20060207595 | September 21, 2006 | Ohmi et al. |
20060207971 | September 21, 2006 | Moriya et al. |
20060210723 | September 21, 2006 | Ishizaka |
20060215347 | September 28, 2006 | Wakabayashi et al. |
20060216878 | September 28, 2006 | Lee |
20060219360 | October 5, 2006 | Iwasaki |
20060222481 | October 5, 2006 | Foree |
20060226121 | October 12, 2006 | Aoi |
20060228889 | October 12, 2006 | Edelberg et al. |
20060240661 | October 26, 2006 | Annapragada et al. |
20060244107 | November 2, 2006 | Sugihara |
20060245852 | November 2, 2006 | Iwabuchi |
20060246217 | November 2, 2006 | Weidman et al. |
20060251800 | November 9, 2006 | Weidman et al. |
20060251801 | November 9, 2006 | Weidman et al. |
20060252252 | November 9, 2006 | Zhu et al. |
20060252265 | November 9, 2006 | Jin et al. |
20060254716 | November 16, 2006 | Mosden et al. |
20060260750 | November 23, 2006 | Rueger |
20060261490 | November 23, 2006 | Su et al. |
20060264043 | November 23, 2006 | Stewart et al. |
20060266288 | November 30, 2006 | Choi |
20060286774 | December 21, 2006 | Singh et al. |
20060292846 | December 28, 2006 | Pinto et al. |
20070022952 | February 1, 2007 | Ritchie et al. |
20070025907 | February 1, 2007 | Rezeq |
20070039548 | February 22, 2007 | Johnson |
20070048977 | March 1, 2007 | Lee et al. |
20070051471 | March 8, 2007 | Kawaguchi et al. |
20070056925 | March 15, 2007 | Liu et al. |
20070062453 | March 22, 2007 | Ishikawa |
20070071888 | March 29, 2007 | Shanmugasundram et al. |
20070072408 | March 29, 2007 | Enomoto et al. |
20070077737 | April 5, 2007 | Kobayashi |
20070079758 | April 12, 2007 | Holland et al. |
20070090325 | April 26, 2007 | Hwang et al. |
20070099428 | May 3, 2007 | Shamiryan et al. |
20070099431 | May 3, 2007 | Li |
20070099438 | May 3, 2007 | Ye et al. |
20070107750 | May 17, 2007 | Sawin et al. |
20070108404 | May 17, 2007 | Stewart et al. |
20070111519 | May 17, 2007 | Lubomirsky et al. |
20070117396 | May 24, 2007 | Wu et al. |
20070119370 | May 31, 2007 | Ma et al. |
20070119371 | May 31, 2007 | Ma et al. |
20070123051 | May 31, 2007 | Arghavani et al. |
20070128864 | June 7, 2007 | Ma |
20070131274 | June 14, 2007 | Stollwerck et al. |
20070145023 | June 28, 2007 | Holber et al. |
20070154838 | July 5, 2007 | Lee |
20070163440 | July 19, 2007 | Kim et al. |
20070175861 | August 2, 2007 | Hwang et al. |
20070181057 | August 9, 2007 | Lam et al. |
20070193515 | August 23, 2007 | Jeon et al. |
20070197028 | August 23, 2007 | Byun et al. |
20070207275 | September 6, 2007 | Nowak et al. |
20070212288 | September 13, 2007 | Holst |
20070221620 | September 27, 2007 | Sakthivel et al. |
20070227554 | October 4, 2007 | Satoh et al. |
20070231109 | October 4, 2007 | Pak et al. |
20070232071 | October 4, 2007 | Balseanu et al. |
20070235134 | October 11, 2007 | Limuro |
20070238199 | October 11, 2007 | Yamashita |
20070238321 | October 11, 2007 | Futase et al. |
20070243685 | October 18, 2007 | Jiang et al. |
20070243714 | October 18, 2007 | Shin et al. |
20070254169 | November 1, 2007 | Kamins et al. |
20070259467 | November 8, 2007 | Tweet et al. |
20070264820 | November 15, 2007 | Liu |
20070266946 | November 22, 2007 | Choi |
20070277734 | December 6, 2007 | Lubomirsky et al. |
20070280816 | December 6, 2007 | Kurita et al. |
20070281106 | December 6, 2007 | Lubomirsky et al. |
20070287292 | December 13, 2007 | Li et al. |
20070296967 | December 27, 2007 | Gupta et al. |
20080003836 | January 3, 2008 | Nishimura et al. |
20080017104 | January 24, 2008 | Matyushkin et al. |
20080020570 | January 24, 2008 | Naik |
20080035608 | February 14, 2008 | Thomas et al. |
20080044990 | February 21, 2008 | Lee |
20080050538 | February 28, 2008 | Hirata |
20080063810 | March 13, 2008 | Park et al. |
20080075668 | March 27, 2008 | Goldstein |
20080081483 | April 3, 2008 | Wu |
20080085604 | April 10, 2008 | Hoshino et al. |
20080099147 | May 1, 2008 | Myo et al. |
20080099431 | May 1, 2008 | Kumar et al. |
20080099876 | May 1, 2008 | Seto |
20080100222 | May 1, 2008 | Lewington et al. |
20080102570 | May 1, 2008 | Fisher et al. |
20080102640 | May 1, 2008 | Hassan et al. |
20080104782 | May 8, 2008 | Hughes |
20080105555 | May 8, 2008 | Iwazaki et al. |
20080115726 | May 22, 2008 | Ingle et al. |
20080121970 | May 29, 2008 | Aritome |
20080124937 | May 29, 2008 | Xu et al. |
20080142831 | June 19, 2008 | Su |
20080153306 | June 26, 2008 | Cho et al. |
20080156771 | July 3, 2008 | Jeon et al. |
20080157225 | July 3, 2008 | Datta et al. |
20080160210 | July 3, 2008 | Yang et al. |
20080169588 | July 17, 2008 | Shih et al. |
20080171407 | July 17, 2008 | Nakabayashi et al. |
20080173906 | July 24, 2008 | Zhu |
20080176412 | July 24, 2008 | Komeda |
20080178797 | July 31, 2008 | Fodor et al. |
20080178805 | July 31, 2008 | Paterson et al. |
20080182381 | July 31, 2008 | Kiyotoshi |
20080182382 | July 31, 2008 | Ingle et al. |
20080182383 | July 31, 2008 | Lee et al. |
20080196666 | August 21, 2008 | Toshima |
20080202688 | August 28, 2008 | Wu et al. |
20080202892 | August 28, 2008 | Smith et al. |
20080216901 | September 11, 2008 | Chamberlain et al. |
20080216958 | September 11, 2008 | Goto et al. |
20080230519 | September 25, 2008 | Takahashi |
20080233709 | September 25, 2008 | Conti et al. |
20080236751 | October 2, 2008 | Aramaki et al. |
20080254635 | October 16, 2008 | Benzel et al. |
20080261404 | October 23, 2008 | Kozuka et al. |
20080264337 | October 30, 2008 | Sano et al. |
20080268645 | October 30, 2008 | Kao et al. |
20080292798 | November 27, 2008 | Huh et al. |
20080293248 | November 27, 2008 | Park et al. |
20090000743 | January 1, 2009 | Iizuka |
20090001480 | January 1, 2009 | Cheng |
20090004849 | January 1, 2009 | Eun |
20090004873 | January 1, 2009 | Yang |
20090014127 | January 15, 2009 | Shah et al. |
20090014323 | January 15, 2009 | Yendler et al. |
20090014324 | January 15, 2009 | Kawaguchi et al. |
20090017227 | January 15, 2009 | Fu et al. |
20090036292 | February 5, 2009 | Sun et al. |
20090045167 | February 19, 2009 | Maruyama |
20090072401 | March 19, 2009 | Arnold et al. |
20090081878 | March 26, 2009 | Dhindsa |
20090084317 | April 2, 2009 | Wu et al. |
20090087960 | April 2, 2009 | Cho et al. |
20090087979 | April 2, 2009 | Raghuram |
20090095621 | April 16, 2009 | Kao et al. |
20090098276 | April 16, 2009 | Burrows |
20090098706 | April 16, 2009 | Kim et al. |
20090104738 | April 23, 2009 | Ring et al. |
20090104782 | April 23, 2009 | Lu et al. |
20090111280 | April 30, 2009 | Kao et al. |
20090117270 | May 7, 2009 | Yamasaki et al. |
20090120464 | May 14, 2009 | Rasheed et al. |
20090162647 | June 25, 2009 | Sun et al. |
20090170221 | July 2, 2009 | Jacques et al. |
20090170331 | July 2, 2009 | Cheng et al. |
20090179300 | July 16, 2009 | Arai |
20090189246 | July 30, 2009 | Wu et al. |
20090189287 | July 30, 2009 | Yang et al. |
20090191711 | July 30, 2009 | Rui et al. |
20090194233 | August 6, 2009 | Tamura |
20090194810 | August 6, 2009 | Kiyotoshi et al. |
20090197418 | August 6, 2009 | Sago et al. |
20090202721 | August 13, 2009 | Nogami et al. |
20090214825 | August 27, 2009 | Sun et al. |
20090223928 | September 10, 2009 | Colpo |
20090236314 | September 24, 2009 | Chen |
20090255902 | October 15, 2009 | Satoh et al. |
20090258162 | October 15, 2009 | Furuta et al. |
20090269934 | October 29, 2009 | Kao et al. |
20090274590 | November 5, 2009 | Willwerth et al. |
20090275146 | November 5, 2009 | Takano et al. |
20090275205 | November 5, 2009 | Kiehlbauch et al. |
20090275206 | November 5, 2009 | Katz et al. |
20090277587 | November 12, 2009 | Lubomirsky et al. |
20090277874 | November 12, 2009 | Rui et al. |
20090280650 | November 12, 2009 | Lubomirsky et al. |
20090286400 | November 19, 2009 | Heo et al. |
20090286405 | November 19, 2009 | Okesaku et al. |
20090293809 | December 3, 2009 | Cho et al. |
20090294898 | December 3, 2009 | Feustel et al. |
20090317978 | December 24, 2009 | Higashi |
20090320756 | December 31, 2009 | Tanaka |
20100000683 | January 7, 2010 | Kadkhodayan et al. |
20100003824 | January 7, 2010 | Kadkhodayan et al. |
20100006543 | January 14, 2010 | Sawada et al. |
20100022030 | January 28, 2010 | Ditizio |
20100025370 | February 4, 2010 | Dieguez-Campo et al. |
20100039747 | February 18, 2010 | Sansoni |
20100047080 | February 25, 2010 | Bruce |
20100048027 | February 25, 2010 | Cheng et al. |
20100055408 | March 4, 2010 | Lee et al. |
20100055917 | March 4, 2010 | Kim |
20100059889 | March 11, 2010 | Gosset et al. |
20100062603 | March 11, 2010 | Ganguly et al. |
20100075503 | March 25, 2010 | Bencher |
20100081285 | April 1, 2010 | Chen et al. |
20100093151 | April 15, 2010 | Arghavani et al. |
20100093168 | April 15, 2010 | Naik |
20100096367 | April 22, 2010 | Jeon et al. |
20100099236 | April 22, 2010 | Kwon et al. |
20100099263 | April 22, 2010 | Kao et al. |
20100101727 | April 29, 2010 | Ji |
20100105209 | April 29, 2010 | Winniczek et al. |
20100116788 | May 13, 2010 | Singh et al. |
20100119843 | May 13, 2010 | Sun et al. |
20100129974 | May 27, 2010 | Futase et al. |
20100130001 | May 27, 2010 | Noguchi |
20100139889 | June 10, 2010 | Kurita et al. |
20100144140 | June 10, 2010 | Chandrashekar et al. |
20100147219 | June 17, 2010 | Hsieh et al. |
20100151149 | June 17, 2010 | Ovshinsky |
20100164422 | July 1, 2010 | Shu et al. |
20100173499 | July 8, 2010 | Tao et al. |
20100178748 | July 15, 2010 | Subramanian |
20100178755 | July 15, 2010 | Lee et al. |
20100180819 | July 22, 2010 | Hatanaka et al. |
20100183825 | July 22, 2010 | Becker et al. |
20100187534 | July 29, 2010 | Nishi et al. |
20100187588 | July 29, 2010 | Kim et al. |
20100187694 | July 29, 2010 | Yu et al. |
20100190352 | July 29, 2010 | Jaiswal |
20100197143 | August 5, 2010 | Nishimura et al. |
20100203739 | August 12, 2010 | Becker et al. |
20100207205 | August 19, 2010 | Grebs et al. |
20100224324 | September 9, 2010 | Kasai |
20100240205 | September 23, 2010 | Son |
20100243165 | September 30, 2010 | Um |
20100243606 | September 30, 2010 | Koshimizu |
20100244204 | September 30, 2010 | Matsuoka et al. |
20100252068 | October 7, 2010 | Kannan et al. |
20100258913 | October 14, 2010 | Lue |
20100267224 | October 21, 2010 | Choi et al. |
20100267248 | October 21, 2010 | Ma et al. |
20100288369 | November 18, 2010 | Chang et al. |
20100294199 | November 25, 2010 | Tran et al. |
20100310785 | December 9, 2010 | Sasakawa et al. |
20100314005 | December 16, 2010 | Saito et al. |
20100330814 | December 30, 2010 | Yokota et al. |
20110005607 | January 13, 2011 | Desbiolles et al. |
20110005684 | January 13, 2011 | Hayami et al. |
20110008950 | January 13, 2011 | Xu |
20110011338 | January 20, 2011 | Chuc et al. |
20110034035 | February 10, 2011 | Liang et al. |
20110039407 | February 17, 2011 | Nishizuka |
20110042799 | February 24, 2011 | Kang et al. |
20110045676 | February 24, 2011 | Park et al. |
20110048325 | March 3, 2011 | Choi et al. |
20110053380 | March 3, 2011 | Sapre et al. |
20110058303 | March 10, 2011 | Migita |
20110061810 | March 17, 2011 | Ganguly et al. |
20110061812 | March 17, 2011 | Ganguly et al. |
20110065276 | March 17, 2011 | Ganguly et al. |
20110076401 | March 31, 2011 | Chao et al. |
20110081782 | April 7, 2011 | Liang et al. |
20110100489 | May 5, 2011 | Orito |
20110104393 | May 5, 2011 | Hilkene et al. |
20110111596 | May 12, 2011 | Kanakasabapathy |
20110114601 | May 19, 2011 | Lubomirsky et al. |
20110115378 | May 19, 2011 | Lubomirsky et al. |
20110124144 | May 26, 2011 | Schlemm et al. |
20110127156 | June 2, 2011 | Foad et al. |
20110133650 | June 9, 2011 | Kim |
20110140229 | June 16, 2011 | Rachmady et al. |
20110143542 | June 16, 2011 | Feurprier et al. |
20110146909 | June 23, 2011 | Shi et al. |
20110147363 | June 23, 2011 | Yap et al. |
20110151674 | June 23, 2011 | Tang et al. |
20110151677 | June 23, 2011 | Wang et al. |
20110151678 | June 23, 2011 | Ashtiani et al. |
20110155181 | June 30, 2011 | Inatomi |
20110159690 | June 30, 2011 | Chandrashekar et al. |
20110165057 | July 7, 2011 | Honda et al. |
20110165347 | July 7, 2011 | Miller et al. |
20110165771 | July 7, 2011 | Ring et al. |
20110174778 | July 21, 2011 | Sawada et al. |
20110180847 | July 28, 2011 | Ikeda et al. |
20110195575 | August 11, 2011 | Wang |
20110198034 | August 18, 2011 | Sun et al. |
20110204025 | August 25, 2011 | Tahara |
20110207332 | August 25, 2011 | Liu et al. |
20110217851 | September 8, 2011 | Liang et al. |
20110226734 | September 22, 2011 | Sumiya et al. |
20110227028 | September 22, 2011 | Sekar et al. |
20110230008 | September 22, 2011 | Lakshmanan et al. |
20110230052 | September 22, 2011 | Tang et al. |
20110232737 | September 29, 2011 | Ruletzki et al. |
20110232845 | September 29, 2011 | Riker et al. |
20110256421 | October 20, 2011 | Bose et al. |
20110265884 | November 3, 2011 | Xu et al. |
20110265951 | November 3, 2011 | Xu |
20110266252 | November 3, 2011 | Thadani et al. |
20110266256 | November 3, 2011 | Cruse et al. |
20110266682 | November 3, 2011 | Edelstein et al. |
20110278260 | November 17, 2011 | Lai et al. |
20110287633 | November 24, 2011 | Lee et al. |
20110294300 | December 1, 2011 | Zhang et al. |
20110298061 | December 8, 2011 | Siddiqui et al. |
20110304078 | December 15, 2011 | Lee et al. |
20120003782 | January 5, 2012 | Byun et al. |
20120009796 | January 12, 2012 | Cui et al. |
20120025289 | February 2, 2012 | Liang et al. |
20120031559 | February 9, 2012 | Dhindsa et al. |
20120034786 | February 9, 2012 | Dhindsa et al. |
20120035766 | February 9, 2012 | Shajii et al. |
20120037596 | February 16, 2012 | Eto et al. |
20120052683 | March 1, 2012 | Kim et al. |
20120055402 | March 8, 2012 | Moriya et al. |
20120068242 | March 22, 2012 | Shin et al. |
20120070982 | March 22, 2012 | Yu et al. |
20120070996 | March 22, 2012 | Hao et al. |
20120091108 | April 19, 2012 | Lin et al. |
20120097330 | April 26, 2012 | Iyengar et al. |
20120103518 | May 3, 2012 | Kakimoto |
20120104564 | May 3, 2012 | Won et al. |
20120119225 | May 17, 2012 | Shiomi et al. |
20120122319 | May 17, 2012 | Shimizu |
20120129354 | May 24, 2012 | Luong |
20120135576 | May 31, 2012 | Lee et al. |
20120148369 | June 14, 2012 | Michalski et al. |
20120149200 | June 14, 2012 | Culp et al. |
20120161405 | June 28, 2012 | Mohn et al. |
20120164839 | June 28, 2012 | Nishimura |
20120171852 | July 5, 2012 | Yuan et al. |
20120180954 | July 19, 2012 | Yang et al. |
20120181599 | July 19, 2012 | Lung |
20120182808 | July 19, 2012 | Lue et al. |
20120196447 | August 2, 2012 | Yang et al. |
20120196451 | August 2, 2012 | Mallick |
20120202408 | August 9, 2012 | Shajii et al. |
20120208361 | August 16, 2012 | Ha |
20120211462 | August 23, 2012 | Zhang et al. |
20120211722 | August 23, 2012 | Kellam et al. |
20120222815 | September 6, 2012 | Sabri et al. |
20120223048 | September 6, 2012 | Paranjpe et al. |
20120223418 | September 6, 2012 | Stowers et al. |
20120225557 | September 6, 2012 | Serry et al. |
20120228642 | September 13, 2012 | Aube et al. |
20120238102 | September 20, 2012 | Zhang et al. |
20120238103 | September 20, 2012 | Zhang et al. |
20120238108 | September 20, 2012 | Chen et al. |
20120241411 | September 27, 2012 | Darling et al. |
20120247390 | October 4, 2012 | Sawada et al. |
20120247670 | October 4, 2012 | Dobashi et al. |
20120247671 | October 4, 2012 | Sugawara |
20120247677 | October 4, 2012 | Himori et al. |
20120255491 | October 11, 2012 | Hadidi |
20120258600 | October 11, 2012 | Godet et al. |
20120267346 | October 25, 2012 | Kao et al. |
20120269968 | October 25, 2012 | Rayner |
20120282779 | November 8, 2012 | Arnold et al. |
20120285619 | November 15, 2012 | Matyushkin et al. |
20120285621 | November 15, 2012 | Tan |
20120291696 | November 22, 2012 | Clarke |
20120292664 | November 22, 2012 | Kanike |
20120304933 | December 6, 2012 | Mai et al. |
20120309204 | December 6, 2012 | Kang et al. |
20120309205 | December 6, 2012 | Wang et al. |
20120322015 | December 20, 2012 | Kim |
20130001899 | January 3, 2013 | Hwang et al. |
20130005103 | January 3, 2013 | Liu et al. |
20130005140 | January 3, 2013 | Jeng et al. |
20130012030 | January 10, 2013 | Lakshmanan et al. |
20130012032 | January 10, 2013 | Liu et al. |
20130023062 | January 24, 2013 | Masuda et al. |
20130023124 | January 24, 2013 | Nemani et al. |
20130026135 | January 31, 2013 | Kim |
20130032574 | February 7, 2013 | Liu et al. |
20130034666 | February 7, 2013 | Liang et al. |
20130034968 | February 7, 2013 | Zhang et al. |
20130037919 | February 14, 2013 | Sapra et al. |
20130045605 | February 21, 2013 | Wang et al. |
20130052804 | February 28, 2013 | Song |
20130052827 | February 28, 2013 | Wang et al. |
20130052833 | February 28, 2013 | Ranjan et al. |
20130059440 | March 7, 2013 | Wang et al. |
20130062675 | March 14, 2013 | Thomas |
20130065398 | March 14, 2013 | Ohsawa et al. |
20130082197 | April 4, 2013 | Yang et al. |
20130084654 | April 4, 2013 | Gaylord et al. |
20130087309 | April 11, 2013 | Volfovski |
20130089988 | April 11, 2013 | Wang |
20130098868 | April 25, 2013 | Nishimura et al. |
20130105303 | May 2, 2013 | Lubomirsky et al. |
20130105948 | May 2, 2013 | Kewley |
20130115372 | May 9, 2013 | Pavol et al. |
20130118686 | May 16, 2013 | Carducci et al. |
20130119016 | May 16, 2013 | Kagoshima |
20130119457 | May 16, 2013 | Lue et al. |
20130119483 | May 16, 2013 | Alptekin et al. |
20130130507 | May 23, 2013 | Wang et al. |
20130150303 | June 13, 2013 | Kungl et al. |
20130155568 | June 20, 2013 | Todorow et al. |
20130161726 | June 27, 2013 | Kim et al. |
20130171810 | July 4, 2013 | Sun et al. |
20130175654 | July 11, 2013 | Muckenhirn et al. |
20130187220 | July 25, 2013 | Surthi |
20130193108 | August 1, 2013 | Zheng |
20130217243 | August 22, 2013 | Underwood et al. |
20130224960 | August 29, 2013 | Payyapilly et al. |
20130260533 | October 3, 2013 | Sapre et al. |
20130260564 | October 3, 2013 | Sapre et al. |
20130279066 | October 24, 2013 | Lubomirsky et al. |
20130284369 | October 31, 2013 | Kobayashi et al. |
20130284370 | October 31, 2013 | Kobayashi et al. |
20130284373 | October 31, 2013 | Sun et al. |
20130284374 | October 31, 2013 | Lubomirsky et al. |
20130286530 | October 31, 2013 | Lin et al. |
20130295297 | November 7, 2013 | Chou et al. |
20130298942 | November 14, 2013 | Ren et al. |
20130302980 | November 14, 2013 | Chandrashekar et al. |
20130337655 | December 19, 2013 | Lee et al. |
20130343829 | December 26, 2013 | Benedetti et al. |
20140004707 | January 2, 2014 | Thedjoisworo et al. |
20140004708 | January 2, 2014 | Thedjoisworo |
20140008880 | January 9, 2014 | Miura et al. |
20140020708 | January 23, 2014 | Kim et al. |
20140021673 | January 23, 2014 | Chen et al. |
20140026813 | January 30, 2014 | Wang et al. |
20140053866 | February 27, 2014 | Baluja et al. |
20140057447 | February 27, 2014 | Yang et al. |
20140062285 | March 6, 2014 | Chen |
20140065827 | March 6, 2014 | Kang et al. |
20140065842 | March 6, 2014 | Anthis et al. |
20140080308 | March 20, 2014 | Chen et al. |
20140080309 | March 20, 2014 | Park |
20140080310 | March 20, 2014 | Chen et al. |
20140083362 | March 27, 2014 | Lubomirsky et al. |
20140087488 | March 27, 2014 | Nam et al. |
20140097270 | April 10, 2014 | Liang et al. |
20140099794 | April 10, 2014 | Ingle et al. |
20140102367 | April 17, 2014 | Ishibashi |
20140124364 | May 8, 2014 | Yoo et al. |
20140134842 | May 15, 2014 | Zhange et al. |
20140134847 | May 15, 2014 | Seya |
20140141621 | May 22, 2014 | Ren et al. |
20140147126 | May 29, 2014 | Yamashita et al. |
20140152312 | June 5, 2014 | Snow et al. |
20140154668 | June 5, 2014 | Chou et al. |
20140154889 | June 5, 2014 | Wang et al. |
20140165912 | June 19, 2014 | Kao et al. |
20140166617 | June 19, 2014 | Chen |
20140166618 | June 19, 2014 | Tadigadapa et al. |
20140186772 | July 3, 2014 | Pohlers et al. |
20140190410 | July 10, 2014 | Kim |
20140191388 | July 10, 2014 | Chen |
20140199850 | July 17, 2014 | Kim et al. |
20140199851 | July 17, 2014 | Nemani et al. |
20140209245 | July 31, 2014 | Yamamoto et al. |
20140216337 | August 7, 2014 | Swaminathan et al. |
20140225504 | August 14, 2014 | Kaneko et al. |
20140227881 | August 14, 2014 | Lubomirsky et al. |
20140234466 | August 21, 2014 | Gao et al. |
20140248773 | September 4, 2014 | Tsai et al. |
20140248780 | September 4, 2014 | Ingle et al. |
20140256131 | September 11, 2014 | Wang et al. |
20140256145 | September 11, 2014 | Abdallah et al. |
20140262031 | September 18, 2014 | Belostotskiy et al. |
20140262038 | September 18, 2014 | Wang et al. |
20140263172 | September 18, 2014 | Xie et al. |
20140263272 | September 18, 2014 | Duan et al. |
20140264533 | September 18, 2014 | Simsek-Ege |
20140271097 | September 18, 2014 | Wang et al. |
20140273373 | September 18, 2014 | Makala et al. |
20140273406 | September 18, 2014 | Wang et al. |
20140273451 | September 18, 2014 | Wang et al. |
20140273462 | September 18, 2014 | Simsek-Ege et al. |
20140273487 | September 18, 2014 | Deshmukh et al. |
20140273489 | September 18, 2014 | Wang et al. |
20140273491 | September 18, 2014 | Zhang et al. |
20140273492 | September 18, 2014 | Anthis et al. |
20140273496 | September 18, 2014 | Kao |
20140288528 | September 25, 2014 | Py et al. |
20140302678 | October 9, 2014 | Paterson et al. |
20140302680 | October 9, 2014 | Singh |
20140308758 | October 16, 2014 | Nemani et al. |
20140308816 | October 16, 2014 | Wang et al. |
20140311581 | October 23, 2014 | Belostotskiy et al. |
20140342532 | November 20, 2014 | Zhu |
20140342569 | November 20, 2014 | Zhu et al. |
20140349477 | November 27, 2014 | Chandrashekar et al. |
20140357083 | December 4, 2014 | Ling et al. |
20140361684 | December 11, 2014 | Ikeda et al. |
20140363979 | December 11, 2014 | Or et al. |
20150011096 | January 8, 2015 | Chandrasekharan et al. |
20150014152 | January 15, 2015 | Hoinkis et al. |
20150031211 | January 29, 2015 | Sapre et al. |
20150037980 | February 5, 2015 | Rha |
20150041430 | February 12, 2015 | Yoshino et al. |
20150050812 | February 19, 2015 | Smith |
20150060265 | March 5, 2015 | Cho et al. |
20150064918 | March 5, 2015 | Ranjan et al. |
20150072508 | March 12, 2015 | Or et al. |
20150076110 | March 19, 2015 | Wu et al. |
20150076586 | March 19, 2015 | Rabkin et al. |
20150079797 | March 19, 2015 | Chen et al. |
20150093891 | April 2, 2015 | Zope |
20150118858 | April 30, 2015 | Takaba |
20150126035 | May 7, 2015 | Diao et al. |
20150126039 | May 7, 2015 | Korolik et al. |
20150126040 | May 7, 2015 | Korolik et al. |
20150129541 | May 14, 2015 | Wang et al. |
20150129545 | May 14, 2015 | Ingle et al. |
20150129546 | May 14, 2015 | Ingle et al. |
20150132953 | May 14, 2015 | Nowling |
20150132968 | May 14, 2015 | Ren et al. |
20150152072 | June 4, 2015 | Cantat et al. |
20150155177 | June 4, 2015 | Zhang et al. |
20150170879 | June 18, 2015 | Nguyen et al. |
20150170920 | June 18, 2015 | Purayath et al. |
20150170924 | June 18, 2015 | Nguyen et al. |
20150170926 | June 18, 2015 | Michalak |
20150170935 | June 18, 2015 | Wang et al. |
20150170943 | June 18, 2015 | Nguyen et al. |
20150171008 | June 18, 2015 | Luo |
20150179464 | June 25, 2015 | Wang et al. |
20150187625 | July 2, 2015 | Busche et al. |
20150200042 | July 16, 2015 | Ling et al. |
20150206764 | July 23, 2015 | Wang et al. |
20150214066 | July 30, 2015 | Luere et al. |
20150214067 | July 30, 2015 | Zhang et al. |
20150214092 | July 30, 2015 | Purayath et al. |
20150214337 | July 30, 2015 | Ko et al. |
20150221479 | August 6, 2015 | Chen et al. |
20150221541 | August 6, 2015 | Nemani et al. |
20150228456 | August 13, 2015 | Ye et al. |
20150235809 | August 20, 2015 | Ito et al. |
20150235860 | August 20, 2015 | Tomura et al. |
20150235863 | August 20, 2015 | Chen |
20150235865 | August 20, 2015 | Wang et al. |
20150235867 | August 20, 2015 | Nishizuka |
20150247231 | September 3, 2015 | Nguyen et al. |
20150249018 | September 3, 2015 | Park et al. |
20150270140 | September 24, 2015 | Gupta et al. |
20150275361 | October 1, 2015 | Lubomirsky et al. |
20150275375 | October 1, 2015 | Kim et al. |
20150279687 | October 1, 2015 | Xue et al. |
20150294980 | October 15, 2015 | Lee et al. |
20150332930 | November 19, 2015 | Wang et al. |
20150340225 | November 26, 2015 | Kim et al. |
20150345029 | December 3, 2015 | Wang et al. |
20150357201 | December 10, 2015 | Chen et al. |
20150357205 | December 10, 2015 | Wang et al. |
20150371861 | December 24, 2015 | Li et al. |
20150371864 | December 24, 2015 | Hsu et al. |
20150371865 | December 24, 2015 | Chen et al. |
20150371866 | December 24, 2015 | Chen et al. |
20150380431 | December 31, 2015 | Kanamori et al. |
20160005572 | January 7, 2016 | Liang et al. |
20160005833 | January 7, 2016 | Collins et al. |
20160027654 | January 28, 2016 | Kim et al. |
20160027673 | January 28, 2016 | Wang et al. |
20160035586 | February 4, 2016 | Purayath et al. |
20160035614 | February 4, 2016 | Purayath et al. |
20160042968 | February 11, 2016 | Purayath et al. |
20160043099 | February 11, 2016 | Purayath et al. |
20160056167 | February 25, 2016 | Wang et al. |
20160064212 | March 3, 2016 | Thedjoisworo et al. |
20160064233 | March 3, 2016 | Wang et al. |
20160079072 | March 17, 2016 | Wang et al. |
20160086772 | March 24, 2016 | Khaja et al. |
20160086807 | March 24, 2016 | Park et al. |
20160086808 | March 24, 2016 | Zhang et al. |
20160086815 | March 24, 2016 | Pandit et al. |
20160086816 | March 24, 2016 | Wang et al. |
20160093505 | March 31, 2016 | Chen et al. |
20160093506 | March 31, 2016 | Chen et al. |
20160093737 | March 31, 2016 | Li et al. |
20160104606 | April 14, 2016 | Park et al. |
20160109863 | April 21, 2016 | Valcore et al. |
20160117425 | April 28, 2016 | Povolny et al. |
20160118227 | April 28, 2016 | Valcore et al. |
20160118268 | April 28, 2016 | Ingle et al. |
20160126118 | May 5, 2016 | Chen et al. |
20160133480 | May 12, 2016 | Ko et al. |
20160148805 | May 26, 2016 | Jongbloed et al. |
20160148821 | May 26, 2016 | Singh et al. |
20160163512 | June 9, 2016 | Lubomirsky |
20160163513 | June 9, 2016 | Lubomirsky |
20160172216 | June 16, 2016 | Marakhtanov et al. |
20160181112 | June 23, 2016 | Xue et al. |
20160181116 | June 23, 2016 | Berry et al. |
20160189933 | June 30, 2016 | Kobayashi et al. |
20160196969 | July 7, 2016 | Berry et al. |
20160196984 | July 7, 2016 | Lill et al. |
20160196985 | July 7, 2016 | Tan et al. |
20160204009 | July 14, 2016 | Nguyen et al. |
20160218018 | July 28, 2016 | Lieu et al. |
20160222522 | August 4, 2016 | Wang et al. |
20160225651 | August 4, 2016 | Tran et al. |
20160225652 | August 4, 2016 | Tran et al. |
20160237570 | August 18, 2016 | Tan et al. |
20160240389 | August 18, 2016 | Zhang et al. |
20160240402 | August 18, 2016 | Park et al. |
20160260588 | September 8, 2016 | Park et al. |
20160260616 | September 8, 2016 | Li et al. |
20160260619 | September 8, 2016 | Zhang et al. |
20160284556 | September 29, 2016 | Ingle et al. |
20160293438 | October 6, 2016 | Zhou et al. |
20160300694 | October 13, 2016 | Yang et al. |
20160307772 | October 20, 2016 | Choi et al. |
20160307773 | October 20, 2016 | Lee et al. |
20160314961 | October 27, 2016 | Liu et al. |
20160314985 | October 27, 2016 | Yang et al. |
20160319452 | November 3, 2016 | Eidschun et al. |
20160343548 | November 24, 2016 | Howald et al. |
20170040175 | February 9, 2017 | Xu et al. |
20170040190 | February 9, 2017 | Benjaminson et al. |
20170040191 | February 9, 2017 | Benjaminson et al. |
20170040207 | February 9, 2017 | Purayath |
20170040214 | February 9, 2017 | Lai et al. |
20170062184 | March 2, 2017 | Tran et al. |
20170110290 | April 20, 2017 | Kobayashi et al. |
20170110335 | April 20, 2017 | Yang et al. |
20170110475 | April 20, 2017 | Liu et al. |
20170133202 | May 11, 2017 | Berry |
20170178894 | June 22, 2017 | Stone et al. |
20170178924 | June 22, 2017 | Chen et al. |
20170226637 | August 10, 2017 | Lubomirsky et al. |
20170229287 | August 10, 2017 | Xu et al. |
20170229289 | August 10, 2017 | Lubomirsky et al. |
20170229291 | August 10, 2017 | Singh et al. |
20170229293 | August 10, 2017 | Park et al. |
20170229326 | August 10, 2017 | Tran et al. |
20170229328 | August 10, 2017 | Benjaminson et al. |
20170229329 | August 10, 2017 | Benjaminson et al. |
20170236691 | August 17, 2017 | Liang et al. |
20170236694 | August 17, 2017 | Eason et al. |
20170309509 | October 26, 2017 | Tran et al. |
20170338133 | November 23, 2017 | Tan et al. |
20170338134 | November 23, 2017 | Tan et al. |
20180005850 | January 4, 2018 | Citla et al. |
20180025900 | January 25, 2018 | Park et al. |
20180026259 | January 25, 2018 | Choi et al. |
20180076031 | March 15, 2018 | Yan et al. |
20180076044 | March 15, 2018 | Choi et al. |
20180076083 | March 15, 2018 | Ko et al. |
20180082861 | March 22, 2018 | Citla et al. |
20180096818 | April 5, 2018 | Lubomirsky |
20180096819 | April 5, 2018 | Lubomirsky et al. |
20180096821 | April 5, 2018 | Lubomirsky et al. |
20180096865 | April 5, 2018 | Lubomirsky et al. |
20180102255 | April 12, 2018 | Chen et al. |
20180102256 | April 12, 2018 | Chen et al. |
20180102259 | April 12, 2018 | Wang et al. |
20180138049 | May 17, 2018 | Ko et al. |
20180138055 | May 17, 2018 | Xu et al. |
20180138085 | May 17, 2018 | Wang et al. |
20180182633 | June 28, 2018 | Pandit et al. |
20180226223 | August 9, 2018 | Lubomirsky |
20180226230 | August 9, 2018 | Kobayashi et al. |
20180226278 | August 9, 2018 | Arnepalli et al. |
20180226425 | August 9, 2018 | Purayath |
20180226426 | August 9, 2018 | Purayath |
1124364 | June 1996 | CN |
1847450 | October 2006 | CN |
101236893 | August 2008 | CN |
101378850 | March 2009 | CN |
102893705 | January 2013 | CN |
1675160 | June 2006 | EP |
S59-126778 | July 1984 | JP |
S62-45119 | February 1987 | JP |
63301051 | December 1988 | JP |
H01-200627 | August 1989 | JP |
H02-114525 | April 1990 | JP |
H07-153739 | June 1995 | JP |
H08-31755 | February 1996 | JP |
H08-107100 | April 1996 | JP |
H08-264510 | October 1996 | JP |
H09-260356 | October 1997 | JP |
2004-508709 | March 2000 | JP |
2011-518408 | June 2001 | JP |
2001-313282 | November 2001 | JP |
2002-075972 | March 2002 | JP |
2002-083869 | March 2002 | JP |
2003-174020 | June 2003 | JP |
2003-282591 | October 2003 | JP |
2004-296467 | October 2004 | JP |
2005-050908 | February 2005 | JP |
2006-041039 | February 2006 | JP |
2006-066408 | March 2006 | JP |
2008-288560 | November 2008 | JP |
4191137 | December 2008 | JP |
2009-141343 | June 2009 | JP |
2009-530871 | August 2009 | JP |
2009-239056 | October 2009 | JP |
2010-180458 | August 2010 | JP |
2011-508436 | March 2011 | JP |
4763293 | August 2011 | JP |
2011-171378 | September 2011 | JP |
2001-332608 | November 2011 | JP |
2012-19164 | January 2012 | JP |
2012-019194 | January 2012 | JP |
2012-512531 | May 2012 | JP |
2013-243418 | December 2013 | JP |
5802323 | October 2015 | JP |
2016-111177 | June 2016 | JP |
10-2000-008278 | February 2000 | KR |
10-2001-0056735 | July 2000 | KR |
10-2000-0064946 | November 2000 | KR |
2003-0023964 | March 2003 | KR |
10-2003-0054726 | July 2003 | KR |
10-2003-0083663 | October 2003 | KR |
100441297 | July 2004 | KR |
10-2005-0007143 | January 2005 | KR |
10-2005-0042701 | May 2005 | KR |
2005-0049905 | May 2005 | KR |
10-2006-0080509 | July 2006 | KR |
1006-41762 | November 2006 | KR |
10-2006-0127173 | December 2006 | KR |
100663668 | January 2007 | KR |
100678696 | January 2007 | KR |
100712727 | April 2007 | KR |
2007-0079870 | August 2007 | KR |
10-2008-0063988 | July 2008 | KR |
10-0843236 | July 2008 | KR |
10-2009-0128913 | January 2009 | KR |
10-2009-0040869 | April 2009 | KR |
10-2010-0013980 | February 2010 | KR |
10-2010-0093358 | August 2010 | KR |
10-2011-0086540 | July 2011 | KR |
10-2011-0114538 | October 2011 | KR |
10-2011-0126675 | November 2011 | KR |
10-2012-0022251 | March 2012 | KR |
10-2012-0082640 | July 2012 | KR |
10-2016-0002543 | January 2016 | KR |
2006-12480 | April 2006 | TW |
200709256 | March 2007 | TW |
2007-35196 | September 2007 | TW |
2011-27983 | August 2011 | TW |
2012-13594 | April 2012 | TW |
2012-33842 | August 2012 | TW |
2012-07919 | February 2013 | TW |
2009-084194 | July 2009 | WO |
2010-010706 | January 2010 | WO |
2010-113946 | October 2010 | WO |
2011-027515 | March 2011 | WO |
2011-031556 | March 2011 | WO |
2011070945 | June 2011 | WO |
2011-095846 | August 2011 | WO |
2011-149638 | December 2011 | WO |
2012-050321 | April 2012 | WO |
2008-112673 | September 2012 | WO |
2012-118987 | September 2012 | WO |
2012-125656 | September 2012 | WO |
2012-148566 | November 2012 | WO |
2013-118260 | August 2013 | WO |
- H. Xiao, Introduction to Semiconductor Manufacturing Technology, published by Prentice Hall, 2001, ISBN 0-13-022404-9, pp. 354-356.
- Manual No. TQMA72E1. “Bayard-Alpert Pirani Gauge FRG-730: Short Operating Instructions” Mar. 2012. Agilent Technologies, Lexington, MA 02421, USA. pp. 1-45.
- International Search Report and Written Opinion of PCT/US2016/045551 dated Nov. 17, 2016, all pages.
- International Search Report and Written Opinion of PCT/US2016/045543 dated Nov. 17, 2016, all pages.
- Instrument Manual: Vacuum Gauge Model MM200, Rev D. TELEVAC (website: www.televac.com), A Division of the Fredericks Company, Huntingdon Valley, PA, US. 2008. pp. 162.
- “Liang et al. Industrial Application of Plasma Process vol. 3, pp. 61-74, 2010”.
- J.J. Wang and et al., “Inductively coupled plasma etching of bulk 1-20 6H-SiC and thin-film SiCN in NF3 chemistries,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, 2204 (1998).
- International Search Report and Written Opinion of PCT/US2017/047209 dated Nov. 24, 2017, all pages.
- International Search Report and Written Opinion of PCT/US2017/033362 dated Aug. 24, 2017, all pages.
- International Search Report and Written Opinion of PCT/US2018/016261 dated May 21, 2018, all pages.
- International Search Report and Written Opinion of PCT/US2018/016648 dated May 18, 2018, all pages.
- International Search Report and Written Opinion of PCT/US2017/060696 dated Jan. 25, 2018, all pages.
- International Search Report and Written Opinion of PCT/US2017/055431 dated Jan. 19, 2018, all pages.
- Won et al. Derwent 2006-065772; Sep. 7, 2014, 10 pages.
Type: Grant
Filed: Nov 14, 2016
Date of Patent: Mar 26, 2019
Patent Publication Number: 20180138075
Assignee: Applied Materials, Inc. (Santa Clara, CA)
Inventors: Sean Kang (San Ramon, CA), Jungmin Ko (San Jose, CA), Oliver Luere (San Jose, CA)
Primary Examiner: Roberts P Culbert
Application Number: 15/350,713
International Classification: H01L 21/768 (20060101); H01L 21/311 (20060101); H01L 23/532 (20060101);