Fin structure of fin field effect transistor
The fin structure includes a first portion and a second, lower portion separated at a transition. The first portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
Latest Taiwan Semiconductor Manufacturing Company, Ltd. Patents:
The present application is a continuation application of U.S. application Ser. No. 15/339,258 filed Oct. 31, 2016, which is a continuation application of U.S. application Ser. No. 12/766,233, filed Apr. 23, 2010, now U.S. Pat. No. 9,484,462, titled FIN STRUCTURE OF FIN FIELD EFFECT TRANSISTOR, which claims priority of U.S. Provisional Patent Application Ser. No. 61/245,485, filed on Sep. 24, 2009. The disclosures of each of which are incorporated by reference in their entirety.
In addition, this application is also related to U.S. patent application Ser. No. 12/707,788, filed on Feb. 18, 2010, titled MEMORY POWER GATING CIRCUIT AND METHODS; Ser. No. 12/758,426, filed on Apr. 12, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/731,325, filed on Mar. 25, 2010, titled ELECTRICAL FUSE AND RELATED APPLICATIONS; Ser. No. 12/724,556, filed on Mar. 16, 2010, titled ELECTRICAL ANTI-FUSE AND RELATED APPLICATIONS; Ser. No. 12/757,203, filed on Apr. 9, 2010, titled STI STRUCTURE AND METHOD OF FORMING BOTTOM VOID IN SAME; Ser. No. 12/797,839, filed on Jun. 10, 2010, titled FIN STRUCTURE FOR HIGH MOBILITY MULTIPLE-GATE TRANSISTOR; Ser. No. 12/831,842, filed on Jul. 7, 2010, titled METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SiGe STRESSOR; Ser. No. 12/761,686, filed on Apr. 16, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/766,233, filed on Apr. 23, 2010, titled ACCUMULATION TYPE FINFET, CIRCUITS AND FABRICATION METHOD THEREOF; Ser. No. 12/694,846, filed on Jan. 27, 2010, titled INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME; Ser. No. 12/638,958, filed on Dec. 14, 2009, titled METHOD OF CONTROLLING GATE THICKNESS IN FORMING FINFET DEVICES; Ser. No. 12/768,884, filed on Apr. 28, 2010, titled METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS; Ser. No. 12/731,411, filed on Mar. 25, 2010, titled INTEGRATED CIRCUIT INCLUDING FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/775,006, filed on May 6, 2010, titled METHOD FOR FABRICATING A STRAINED STRUCTURE; Ser. No. 12/886,713, filed Sep. 21, 2010, titled METHOD OF FORMING INTEGRATED CIRCUITS; Ser. No. 12/941,509, filed Nov. 8, 2010, titled MECHANISMS FOR FORMING ULTRA SHALLOW JUNCTION; Ser. No. 12/900,626, filed Oct. 8, 2010, titled TRANSISTOR HAYING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME; Ser. No. 12/903,712, filed Oct. 13, 2010, titled FINFET AND METHOD OF FABRICATING THE SAME; 61/412,846, filed Nov. 12, 2010, 61/394,418, filed Oct. 19, 2010, titled METHODS OF FORMING GATE DIELECTRIC MATERIAL and 61/405,858, filed Oct. 22, 2010, titled METHODS OF FORMING SEMICONDUCTOR DEVICES, which are incorporated herein by reference in their entirety.
TECHNICAL FIELDThe present invention relates generally to transistors, and more particularly to a fin field effect transistor with an isolation structure.
BACKGROUNDSemiconductor devices are used in a large number of electronic devices, such as computers, cell phones, and others. Semiconductor devices comprise integrated circuits (ICs) that are formed on semiconductor wafers by depositing many types of thin films of material over the semiconductor wafers, and patterning the thin films of material to form the integrated circuits. The ICs include field-effect transistors (FETs), such as metal-oxide-semiconductor field-effect transistors (MOSFETs).
One of the goals of the semiconductor industry is to continue shrinking the size and increasing the speed of individual MOSFETs. To achieve these goals, three dimensional (3-D) or non-planar transistor structures such as fin FETs (FINFETs), multiple gate transistors, or gate-all-around transistors are being investigated for use in sub 22 nm transistor nodes. Such transistors not only improve area density, but also improve gate control of the channel.
However, fabrication of the FINFETs is complex and requires overcoming a number of challenging problems. One of the challenges is forming recess-free isolation structures. These recesses can be formed in a dielectric material in the early stages of forming the isolation structure.
Accordingly, what is needed is an isolation structure for a FINFET having no recess.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. Various features may be arbitrarily drawn in different scales for the purpose of simplicity and clarity.
Referring to
Still referring to
Referring to
Referring to
Referring to
Still referring to
Still referring to
Referring to
Still referring to
Still referring to
Referring to
Referring to
Referring to the cross sectional view of
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. The invention can be used to form or fabricate a fin structure for a FINFET having no isolation recess.
Claims
1. A semiconductor device comprising:
- a first fin structure extending from a first substrate surface of a substrate and having a planar top surface extending between two opposing sidewalls wherein each sidewall has a first portion and a second portion, the second portion below and contiguous with the first portion, and wherein the first portion is perpendicular to the first substrate surface, and the second portion being disposed at an angle between 85 degrees and 60 degrees from the first substrate surface and wherein the second portion is further curved proximate the first substrate surface such that a slope of the second portion continually decreases from a transition location with the first portion to the first substrate surface, and wherein a ratio of a first distance from the transition location to the planar top surface of the first fin structure and a second distance from the first substrate surface at a base of the first fin structure to the planar top surface of the first fin structure is from about 0.13 to 0.3, and wherein the first portion is doped forming a source/drain region; and
- an isolation structure having a top surface, the isolation structure being positioned between the first fin structure and an adjacent second fin structure, and wherein the top surface of the isolation structure is disposed above the transition location.
2. The semiconductor device of claim 1, wherein the first fin structure includes a third portion above the first portion and extending from the first portion to the planar top surface of the first fin structure.
3. The semiconductor device of claim 1, wherein the first fin structure has a first width at the planar top surface, and the first width is in a range of about 5 nanometers to about 40 nanometers.
4. The semiconductor device of claim 1, wherein the first fin structure has a first width at the planar top surface, a second width proximate to the first substrate surface, and a ratio of the first width to the second width is from about 0.3 to about 0.5.
5. The semiconductor device of claim 1, wherein the first distance from the transition location to the planar top surface of the first fin structure is in a range of about 40 nanometers to about 100 nanometers.
6. The semiconductor device of claim 5, wherein the second distance between the base of the first fin structure and the planar top surface of the first fin structure is in a range of about 100 nanometers to about 300 nanometers.
7. The semiconductor device of claim 1, wherein a third distance from the top surface of the isolation structure to the planar top surface of the first fin structure is in a range of about 15 nanometers to about 45 nanometers.
8. The semiconductor device of claim 1, further comprising: a gate structure on the top surface of the isolation structure and over the first fin structure adjacent the source/drain region.
9. A fin field effect transistor comprising:
- a fin structure extending above a substrate surface, the fin structure comprising sidewalls, the sidewalls comprising: a first portion having a linear top surface interfacing a gate structure; a second portion below the first portion, the second portion having a first sidewall portion that is perpendicular to the substrate surface and extending from the first portion of the fin structure to a transition location; and a third portion below and contiguous with the second portion, the third portion having a second sidewall portion that is curved with a continuously decreasing slope that extends from a first direct interface with the first sidewall portion at the transition location to a second direct interface with a curved sidewall of an adjacent fin structure, wherein the second sidewall portion and another sidewall of the adjacent fin structure provide a continuous curvilinear surface from the transition location to the adjacent fin structure; a channel region within the first portion of the fin structure; a doped region in the first portion of the fin structure forming source/drain regions including the linear top surface; the gate structure over the channel region; and an isolation structure having a top surface adjacent to the fin structure, and wherein the isolation structure interfaces the transition location.
10. The fin field effect transistor of claim 9, wherein the second portion of the fin structure has a substantially constant width.
11. The fin field effect transistor of claim 10, wherein the substantially constant width is in a range of about 5 nanometers to about 40 nanometers.
12. The fin field effect transistor of claim 9, wherein the top surface of the isolation structure is above the transition location.
13. The fin field effect transistor device of claim 9, wherein a ratio of a distance from the transition location and a top surface of the channel region to another distance between the substrate surface and the top surface of the channel region is between about 0.13 and 0.3.
14. The fin field effect transistor of claim 9, wherein the isolation structure includes a liner layer of dielectric material.
15. A semiconductor device comprising:
- a substrate having a first substrate surface and a second substrate surface parallel to the first substrate surface;
- at least two fin structures between the first substrate surface and the second substrate surface, the at least two fin structures comprising sidewalls, the sidewalls comprising: an upper portion proximate to the first substrate surface having a first sidewall portion interfacing a gate structure formed thereon wherein the first sidewall portion interfaces a second sidewall portion and a planar top surface of the upper portion interfacing the gate structure, a middle portion below the upper portion, the middle portion having the second sidewall portion that is substantially perpendicular to the first substrate surface and interfaces an isolation structure; and a lower portion proximate the second substrate surface, the lower portion having a third sidewall portion that is curved with a continuously decreasing slope, and wherein the curved third sidewall portion with the continuously decreasing slope extends an entirety of a distance from a transition location with the second sidewall portion of the middle portion to a midpoint of the second substrate surface, the transition location being a position at which the second sidewall portion and the third sidewall portion meet and the midpoint being disposed on the second substrate surface between the at least two fin structures; and the isolation structure extending between the at least two fin structures; and the first, second and third sidewall portions extend continuously from the first substrate surface to the second substrate surface and wherein a ratio of a distance from the transition location and the first substrate surface to another distance between the second substrate surface and the first substrate surface is between about 0.13 and 0.3.
16. The semiconductor device of claim 15, wherein the middle portion has a substantially constant width.
17. The semiconductor device of claim 15, wherein the isolation structure interfaces the middle portion and the lower portion.
18. The semiconductor device of claim 15, wherein a top surface of the isolation structure is above the transition location.
19. The semiconductor device of claim 15, wherein the third sidewall portion of the lower portion has a slope of between 85 degrees and 60 degrees.
20. The semiconductor device of claim 15, wherein the transition location is an upper most point on the lower portion that has a slope of 85 degrees with respect to the first substrate surface.
5177576 | January 5, 1993 | Kimura et al. |
5581202 | December 3, 1996 | Yano et al. |
5658417 | August 19, 1997 | Watanabe et al. |
5767732 | June 16, 1998 | Lee et al. |
5963789 | October 5, 1999 | Tsuchiaki |
6065481 | May 23, 2000 | Fayfield et al. |
6121786 | September 19, 2000 | Yamagami et al. |
6173365 | January 9, 2001 | Chang et al. |
6299724 | October 9, 2001 | Fayfield et al. |
6503794 | January 7, 2003 | Watanabe et al. |
6613634 | September 2, 2003 | Ootsuka et al. |
6622738 | September 23, 2003 | Scovell |
6642090 | November 4, 2003 | Fried et al. |
6706571 | March 16, 2004 | Yu et al. |
6727557 | April 27, 2004 | Takao |
6740247 | May 25, 2004 | Han et al. |
6743673 | June 1, 2004 | Watanabe et al. |
6762448 | July 13, 2004 | Lin et al. |
6791155 | September 14, 2004 | Lo et al. |
6828646 | December 7, 2004 | Marty et al. |
6830994 | December 14, 2004 | Mitsuki et al. |
6858478 | February 22, 2005 | Chau et al. |
6872647 | March 29, 2005 | Yu et al. |
6940747 | September 6, 2005 | Sharma et al. |
6949768 | September 27, 2005 | Anderson et al. |
6964832 | November 15, 2005 | Moniwa et al. |
7009273 | March 7, 2006 | Inoh et al. |
7018901 | March 28, 2006 | Thean et al. |
7026232 | April 11, 2006 | Koontz et al. |
7067400 | June 27, 2006 | Bedell et al. |
7078312 | July 18, 2006 | Sutanto et al. |
7084079 | August 1, 2006 | Conti et al. |
7084506 | August 1, 2006 | Takao |
7112495 | September 26, 2006 | Ko et al. |
7153744 | December 26, 2006 | Chen et al. |
7157351 | January 2, 2007 | Cheng et al. |
7190050 | March 13, 2007 | King et al. |
7193399 | March 20, 2007 | Aikawa |
7247887 | July 24, 2007 | King et al. |
7265008 | September 4, 2007 | King et al. |
7265418 | September 4, 2007 | Yun et al. |
7298600 | November 20, 2007 | Oh et al. |
7300837 | November 27, 2007 | Chen et al. |
7315994 | January 1, 2008 | Aller et al. |
7323375 | January 29, 2008 | Yoon et al. |
7338614 | March 4, 2008 | Martin et al. |
7351662 | April 1, 2008 | Siddiqui et al. |
7358166 | April 15, 2008 | Agnello et al. |
7361563 | April 22, 2008 | Shin et al. |
7374986 | May 20, 2008 | Kim et al. |
7394116 | July 1, 2008 | Kim et al. |
7396710 | July 8, 2008 | Okuno |
7407847 | August 5, 2008 | Doyle et al. |
7410844 | August 12, 2008 | Li et al. |
7425740 | September 16, 2008 | Liu et al. |
7442956 | October 28, 2008 | Ko et al. |
7456087 | November 25, 2008 | Cheng |
7494862 | February 24, 2009 | Doyle et al. |
7508031 | March 24, 2009 | Liu et al. |
7528465 | May 5, 2009 | King et al. |
7534689 | May 19, 2009 | Pal et al. |
7538387 | May 26, 2009 | Tsai |
7550332 | June 23, 2009 | Yang |
7598145 | October 6, 2009 | Damiencourt et al. |
7605449 | October 20, 2009 | Liu et al. |
7682911 | March 23, 2010 | Jang et al. |
7759228 | July 20, 2010 | Sugiyama et al. |
7795097 | September 14, 2010 | Pas |
7798332 | September 21, 2010 | Brunet |
7820513 | October 26, 2010 | Hareland et al. |
7851865 | December 14, 2010 | Anderson et al. |
7868317 | January 11, 2011 | Yu et al. |
7898041 | March 1, 2011 | Radosavljevic et al. |
7923321 | April 12, 2011 | Lai et al. |
7923339 | April 12, 2011 | Meunier-Beillard et al. |
7960791 | June 14, 2011 | Anderson et al. |
7985633 | July 26, 2011 | Cai et al. |
7989846 | August 2, 2011 | Furuta |
7989855 | August 2, 2011 | Narihiro |
8003466 | August 23, 2011 | Shi et al. |
8043920 | October 25, 2011 | Chan et al. |
8076189 | December 13, 2011 | Grant |
8101475 | January 24, 2012 | Oh et al. |
20030080361 | May 1, 2003 | Murthy et al. |
20030109086 | June 12, 2003 | Arao |
20040075121 | April 22, 2004 | Yu et al. |
20040119170 | June 24, 2004 | Kim et al. |
20040129998 | July 8, 2004 | Inoh et al. |
20040192067 | September 30, 2004 | Ghyselen et al. |
20040219722 | November 4, 2004 | Pham et al. |
20040259315 | December 23, 2004 | Sakaguchi et al. |
20050020020 | January 27, 2005 | Collaert et al. |
20050035391 | February 17, 2005 | Lee et al. |
20050051865 | March 10, 2005 | Lee et al. |
20050082616 | April 21, 2005 | Chen et al. |
20050153490 | July 14, 2005 | Yoon et al. |
20050170593 | August 4, 2005 | Kang et al. |
20050212080 | September 29, 2005 | Wu et al. |
20050221591 | October 6, 2005 | Bedell et al. |
20050224800 | October 13, 2005 | Lindert et al. |
20050233598 | October 20, 2005 | Jung et al. |
20050266698 | December 1, 2005 | Coney et al. |
20050280102 | December 22, 2005 | Oh et al. |
20060038230 | February 23, 2006 | Ueno et al. |
20060068553 | March 30, 2006 | Thean et al. |
20060073662 | April 6, 2006 | Jang et al. |
20060091481 | May 4, 2006 | Li et al. |
20060091482 | May 4, 2006 | Kim et al. |
20060091937 | May 4, 2006 | Do |
20060105557 | May 18, 2006 | Klee et al. |
20060128071 | June 15, 2006 | Rankin et al. |
20060138572 | June 29, 2006 | Arikado et al. |
20060151808 | July 13, 2006 | Chen et al. |
20060153995 | July 13, 2006 | Narwankar et al. |
20060166475 | July 27, 2006 | Manti |
20060214212 | September 28, 2006 | Horita et al. |
20060258156 | November 16, 2006 | Kittl et al. |
20070001173 | January 4, 2007 | Brask et al. |
20070004218 | January 4, 2007 | Lee et al. |
20070015334 | January 18, 2007 | Kittl et al. |
20070020827 | January 25, 2007 | Buh et al. |
20070024349 | February 1, 2007 | Tsukude |
20070029576 | February 8, 2007 | Nowak et al. |
20070048907 | March 1, 2007 | Lee et al. |
20070076477 | April 5, 2007 | Hwang et al. |
20070093010 | April 26, 2007 | Mathew et al. |
20070093036 | April 26, 2007 | Cheng et al. |
20070096148 | May 3, 2007 | Hoentschel et al. |
20070102756 | May 10, 2007 | Lojek |
20070120156 | May 31, 2007 | Liu et al. |
20070122953 | May 31, 2007 | Liu et al. |
20070122954 | May 31, 2007 | Liu et al. |
20070128782 | June 7, 2007 | Liu et al. |
20070132053 | June 14, 2007 | King et al. |
20070145487 | June 28, 2007 | Kavalieros et al. |
20070152276 | July 5, 2007 | Arnold et al. |
20070166929 | July 19, 2007 | Matsumoto et al. |
20070178637 | August 2, 2007 | Jung et al. |
20070221956 | September 27, 2007 | Inaba |
20070236278 | October 11, 2007 | Hur et al. |
20070241414 | October 18, 2007 | Narihiro |
20070247906 | October 25, 2007 | Watanabe et al. |
20070254440 | November 1, 2007 | Daval |
20080001171 | January 3, 2008 | Tezuka et al. |
20080023754 | January 31, 2008 | Baek |
20080036001 | February 14, 2008 | Yun et al. |
20080042209 | February 21, 2008 | Tan et al. |
20080050882 | February 28, 2008 | Bevan et al. |
20080085580 | April 10, 2008 | Doyle et al. |
20080085590 | April 10, 2008 | Yao et al. |
20080095954 | April 24, 2008 | Gabelnick et al. |
20080102586 | May 1, 2008 | Park |
20080124878 | May 29, 2008 | Cook et al. |
20080157225 | July 3, 2008 | Datta et al. |
20080171416 | July 17, 2008 | Fang |
20080227241 | September 18, 2008 | Nakabayashi et al. |
20080265344 | October 30, 2008 | Mehrad et al. |
20080290470 | November 27, 2008 | King et al. |
20080296632 | December 4, 2008 | Moroz et al. |
20080299734 | December 4, 2008 | Lee et al. |
20080318392 | December 25, 2008 | Hung et al. |
20090026540 | January 29, 2009 | Sasaki et al. |
20090039388 | February 12, 2009 | Teo et al. |
20090066763 | March 12, 2009 | Fujii et al. |
20090087960 | April 2, 2009 | Cho et al. |
20090111239 | April 30, 2009 | Kim |
20090155969 | June 18, 2009 | Chakravarti et al. |
20090166625 | July 2, 2009 | Ting et al. |
20090181477 | July 16, 2009 | King et al. |
20090200612 | August 13, 2009 | Koldiaev |
20090239347 | September 24, 2009 | Ting et al. |
20090321836 | December 31, 2009 | Wei et al. |
20100025806 | February 4, 2010 | Cho et al. |
20100155790 | June 24, 2010 | Lin et al. |
20100155848 | June 24, 2010 | Pillarisetty |
20100163926 | July 1, 2010 | Hudait et al. |
20100187613 | July 29, 2010 | Colombo et al. |
20100207211 | August 19, 2010 | Sasaki et al. |
20100308379 | December 9, 2010 | Kuan et al. |
20110018065 | January 27, 2011 | Curatola et al. |
20110108920 | May 12, 2011 | Basker et al. |
20110129990 | June 2, 2011 | Mandrekar et al. |
20110195555 | August 11, 2011 | Tsai et al. |
20110195570 | August 11, 2011 | Lin et al. |
20110256682 | October 20, 2011 | Yu et al. |
20120086053 | April 12, 2012 | Tseng et al. |
1945829 | April 2004 | CN |
101179046 | May 2005 | CN |
1011459116 | June 2009 | CN |
2005064500 | March 2005 | JP |
2005528810 | September 2005 | JP |
2007-194336 | August 2007 | JP |
2009054705 | March 2009 | JP |
1020070064231 | June 2007 | KR |
10-2005-0119424 | December 2008 | KR |
497253 | August 2002 | TW |
WO2007/115585 | October 2007 | WO |
- Anathan, Hari, et al., “FINFET SRAM—Device and Circuit Design Considerations”, Quality Electronic Design, 2004, Proceedings 5th International Symposium (2004); pp. 511-516.
- Jha, Niraj, Low-Power FINFET Circuit Design, Dept. of Electrical Engineering, Princeton University N.D.
- Kedzierski, J., et al., “Extension and Source/Drain Design for High-Performance FINFET Devices”, IEEE Transactions on Electron Devices, vol. 50, No. 4, Apr. 2003, pp. 952-958.
- Liow, Tsung-Yang et al., “Strained N-Channel FINFETS With 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement”, VLSI Technology, 2006, Digest of Technical Papers, 2006 Symposium on VLSI Technology 2006; pp. 56-57.
- Quirk et al., Semiconductor Manufacturing Technology, Oct. 2001, Prentice Hall, Chapter 16.
- McVittie, James P., et al., “Speedie: a Profile Simulator for Etching and Deposition”, Proc. SPIE 1392, 126 (1991).
- 90 nm Technology retrieved from the internet <URL.http://tsmc.com/english/dedicatedFoundry/technology/90nm.htm.
- Merriam Webster Definition of Substantially Retrieved from the internet URL:http://www.merriam-webster.com/.
- Smith, Casey Eben, Advanced Technology for Source Drain Resistence, Diss. University of North Texas, 2008.
- Liow, Tsung-Yang et al., “Strained N-Channel FINFETS Featuring in Situ Doped Silicon-Carbon Sl1-Ycy Source Drain Stressors With High Carbon Content”, IEEE Transactions on Electron Devices 55.9 (2008): 2175-483.
- Office Action dated Mar. 28, 2012 from corresponding application No. CN 201010228334.6.
- Notice of Decision on Patent dated Mar. 12, 2012 from corresponding application No. 10-2010-0072103.
- OA dated Mar. 27, 2012 from corresponding application No. KR10-2010-0094454.
- OA dated Mar. 29, 2012 from corresponding application No. KR10-2010-0090264.
- Office Action dated May 2, 2012 from corresponding application No. CN 201010196345.0.
- Office Action dated May 4, 2012 from corresponding application No. CN 201010243667.6.
- Office Action dated Oct. 30, 2013 from corresponding application No. KR 10-2010-0090264 with English Translation.
- Office Action dated Jan. 14, 2013 from corresponding application No. CN 201010288100.0.
- Office Action dated Jan. 8, 2013 from corresponding application No. JP 2010-214031.
Type: Grant
Filed: Jul 15, 2019
Date of Patent: Oct 26, 2021
Patent Publication Number: 20190341473
Assignee: Taiwan Semiconductor Manufacturing Company, Ltd. (Hsinchu)
Inventors: Feng Yuan (Hsinchu), Hung-Ming Chen (Hsinchu County), Tsung-Lin Lee (Hsinchu), Chang-Yun Chang (Taipei), Clement Hsingjen Wann (Carmel, NY)
Primary Examiner: David Chen
Application Number: 16/511,719
International Classification: H01L 29/66 (20060101); H01L 29/78 (20060101); H01L 21/308 (20060101); H01L 21/3065 (20060101);