With Pretreatment Or Preparation Of A Base (e.g., Annealing) Patents (Class 117/94)
  • Publication number: 20120104565
    Abstract: When a mixed gas of trichlorosilane and dichlorosilane is used as source gas, a silicon layer is epitaxially grown on a surface of a silicon wafer within a temperature range of 1000 to 1100° C., preferably, 1040 to 1080° C. When dichlorosilane is used as source gas, a silicon layer is epitaxially grown on a surface of a silicon wafer within a temperature range of 900 to 1150° C., preferably, 1000 to 1150° C. According to this, a silicon epitaxial wafer, which has low haze level, excellent flatness (edge roll-off), and reduced orientation dependence of epitaxial growth rate, and is capable of responding to the higher integration of semiconductor devices, can be obtained, and this epitaxial wafer can be used widely in production of semiconductor devices.
    Type: Application
    Filed: July 8, 2010
    Publication date: May 3, 2012
    Applicant: SUMCO CORPORATION
    Inventor: Naoyuki Wada
  • Patent number: 8168000
    Abstract: A method of fabricating a III-nitride power semiconductor device which includes selective prevention of the growth of III-nitride semiconductor bodies to selected areas on a substrate in order to reduce stresses and prevent cracking.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: May 1, 2012
    Assignee: International Rectifier Corporation
    Inventors: Mike Briere, Robert Beach
  • Patent number: 8152919
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <100> direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100} wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 10, 2012
    Assignee: Sumco Corporation
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Patent number: 8147612
    Abstract: There is provided a method for fabricating a gallium nitride crystal with low dislocation density, high crystallinity, and resistance to cracking during polishing of sliced pieces by growing the gallium nitride crystal using a gallium nitride substrate including dislocation-concentrated regions or inverted-polarity regions as a seed crystal substrate. Growing a gallium nitride crystal 79 at a growth temperature higher than 1,100° C. and equal to or lower than 1,300° C. so as to bury dislocation-concentrated regions or inverted-polarity regions 17a reduces dislocations inherited from the dislocation-concentrated regions or inverted regions 17a, thus preventing new dislocations from occurring over the dislocation-concentrated regions or inverted-polarity regions 17a. This also increases the crystallinity of the gallium nitride crystal 79 and its resistance to cracking during the polishing.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 3, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tomoki Uemura, Takashi Sakurada, Shinsuke Fujiwara, Takuji Okahisa, Koji Uematsu, Hideaki Nakahata
  • Publication number: 20120074403
    Abstract: The present invention is to provide GaN crystal growing method for growing a GaN crystal with few stacking faults on a GaN seed crystal substrate having a main surface inclined at an angle of 20° to 90° from the (0001) plane, and also to provide a GaN crystal substrate with few stacking faults. A method for growing a GaN crystal includes the steps of preparing a GaN seed crystal substrate 10 having a main surface 10m inclined at an angle of 20° to 90° from a (0001) plane 10c and growing a GaN crystal 20 on the GaN seed crystal substrate 10. The GaN seed crystal substrate 10 and the GaN crystal 20 have a difference in impurity concentration of 3×1018 cm?3 or less.
    Type: Application
    Filed: May 19, 2011
    Publication date: March 29, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinsuke Fujiwara, Koji Uematsu, Hideki Osada
  • Patent number: 8133320
    Abstract: A laser has a laser material in thermal contact with a diamond, such that the diamond is operable to carry heat away from the laser material. In further embodiments, the diamond has a reduced nitrogen content, is a reduced carbon-13 content, is a monocrystalline or multilayer low-strain diamond, or has a thermal conductivity of greater than 2200 W/mK.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: March 13, 2012
    Assignee: Apollo Diamond, Inc.
    Inventor: Robert Linares
  • Patent number: 8133321
    Abstract: A process for producing a silicon carbide single crystal in which a silicon carbide single crystal layer is homo-epitaxially or hetero-epitaxially grown on a surface of a single crystal substrate, wherein a plurality of substantially parallel undulation ridges that extend in a first direction on the single crystal substrate surface is formed on said single crystal substrate surface; each of the undulation ridges on said single crystal substrate surface has a height that undulates as each of the undulation ridges extends in the first direction; and the undulation ridges are disposed so that planar defects composed of anti-phase boundaries and/or twin bands that propagate together with the epitaxial growth of the silicon carbide single crystal merge with each other.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 13, 2012
    Assignee: Hoya Corporation
    Inventors: Takamitsu Kawahara, Kuniaki Yagi, Naoki Hatta, Hiroyuki Nagasawa
  • Patent number: 8128749
    Abstract: An SOI substrate has a gettering layer of silicon-germanium (SiGe) with 5-10% Ge, and a thickness of approximately 50-1000 nm. Carbon (C) may be added to SiGe to stabilize the dislocation network. The SOI substrate may be a SIMOX SOI substrate, or a bonded SOI substrate, or a seeded SOI substrate. The gettering layer may disposed under a buried oxide (BOX) layer. The gettering layer may be disposed on a backside of the substrate.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventors: Junedong Lee, Devendra K. Sadana, Dominic J. Schepis
  • Publication number: 20120048181
    Abstract: Engineered defects are reproduced in-situ with graphene via a combination of surface manipulation and epitaxial reproduction. A substrate surface that is lattice-matched to graphene is manipulated to create one or more non-planar features in the hexagonal crystal lattice. These non-planar features strain and asymmetrically distort the hexagonal crystal lattice of epitaxially deposited graphene to reproduce “in-situ” engineered defects with the graphene. These defects may be defects in the classic sense such as Stone-Wales defect pairs or blisters, ridges, ribbons and metacrystals. Nano or micron-scale structures such as planar waveguides, resonant cavities or electronic devices may be constructed from linear or closed arrays of these defects. Substrate manipulation and epitaxial reproduction allows for precise control of the number, density, arrangement and type of defects. The graphene may be removed and template reused to replicate the graphene and engineered defects.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 1, 2012
    Applicant: Raytheon Company
    Inventors: DELMAR L. BARKER, Brian J. Zelinski, William R. Owens
  • Patent number: 8123858
    Abstract: To provide a manufacturing method of a semiconductor device, comprising: loading a substrate, with a silicon surface exposed at a part of the substrate, into a processing chamber; heating an inside of said processing chamber; performing pre-processing of supplying at least silane-based gas, halogen-based gas, and hydrogen gas into said processing chamber, removing at least a natural oxide film or a contaminated matter that exist on a surface of said silicon surface, and growing an epitaxial film on said silicon surface; and supplying gas containing at least silicon into said processing chamber after said pre-processing, and further growing the epitaxial film on said epitaxial film.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 28, 2012
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Jie Wang, Yasuhiro Ogawa, Katsuhiko Yamamoto, Takashi Yokogawa
  • Patent number: 8118934
    Abstract: A method for growing flat, low defect density, and strain-free thick non-polar III-V nitride materials and devices on any suitable foreign substrates using a fabricated nano-pores and nano-network compliant layer with an HVPE, MOCVD, and integrated HVPE/MOCVD growth process in a manner that minimum growth will occur in the nano-pores is provided. The method produces nano-networks made of the non-polar III-V nitride material and the substrate used to grow it where the network is continuous along the surface of the template, and where the nano-pores can be of any shape.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 21, 2012
    Inventor: Wang Nang Wang
  • Patent number: 8119241
    Abstract: A method for growing a low-resistance phosphorus-doped epitaxial thin film having a specific resistance of 300 ?cm or less at 300 K on a principal surface of a {111} monocrystal substrate under conditions in which the phosphorus atom/carbon atom ratio is 3% or higher, includes the principal surface having an off-angle of 0.50° or greater. The diamond monocrystal having a low-resistance phosphorus-doped diamond epitaxial thin film is such that the thin-film surface has an off-angle of 0.50° or greater with respect to the {111} plane, and the specific resistance of the low-resistance phosphorus-doped diamond epitaxial thin film is 300 ?cm or less at 300 K.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: February 21, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiko Ueda, Kiichi Meguro, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Takahiro Imai
  • Publication number: 20120031324
    Abstract: The present invention is to provide a method for growing a group III nitride crystal that has a large size and has a small number of pits formed in the main surface of the crystal by using a plurality of tile substrates. A method for growing a group III nitride crystal includes a step of preparing a plurality of tile substrates 10 including main surfaces 10m having a shape of a triangle or a convex quadrangle that allows two-dimensional close packing of the plurality of tile substrates; a step of arranging the plurality of tile substrates 10 so as to be two-dimensionally closely packed such that, at any point across which vertexes of the plurality of tile substrates 10 oppose one another, 3 or less of the vertexes oppose one another; and a step of growing a group III nitride crystal 20 on the main surfaces 10m of the plurality of tile substrates arranged.
    Type: Application
    Filed: May 25, 2011
    Publication date: February 9, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuki Hiromura, Koji Uematsu, Hiroaki Yoshida, Shinsuke Fujiwara
  • Patent number: 8092597
    Abstract: Method for producing a III-N (AlN, GaN, AlxGa(1-x)N) crystal by Vapor Phase Epitaxy (VPE), the method comprising: providing a reactor having: a growth zone for growing a III-N crystal; a substrate holder located in the growth zone that supports at least one substrate on which to grow the III-N crystal; a gas supply system that delivers growth material for growing the III-N crystal to the growth zone from an outlet of the gas supply system; and a heating element that controls temperature in the reactor; determining three growth sub-zones in the growth zone for which a crystal grown in the growth sub-zones has respectively a concave, flat or convex curvature; growing the III-N crystal on a substrate in a growth region for which the crystal has a by desired curvature.
    Type: Grant
    Filed: January 22, 2011
    Date of Patent: January 10, 2012
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Publication number: 20120000415
    Abstract: Techniques for processing materials in supercritical fluids include processing in a capsule disposed within a high-pressure apparatus enclosure. The invention is useful for growing crystals of: GaN; AN; InN; and their alloys, namely: InGaN; AlGaN; and AlInGaN; for manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: June 14, 2011
    Publication date: January 5, 2012
    Applicant: Soraa, Inc.
    Inventors: Mark P. D'Evelyn, James S. Speck
  • Publication number: 20110306179
    Abstract: A device includes providing a silicon substrate; annealing the silicon substrate at a first temperature higher than about 900° C.; and lowering a temperature of the silicon substrate from the first temperature to a second temperature. A temperature lowering rate during the step of lowering the temperature is greater than about 1° C./second. A III-V compound semiconductor region is epitaxially grown on a surface of the silicon substrate using metal organic chemical vapor deposition (MOCVD).
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu
  • Publication number: 20110284872
    Abstract: A method for manufacturing a silicon carbide substrate includes the steps of: preparing a base substrate made of silicon carbide, and a SiC substrate made of single-crystal silicon carbide; fabricating a stacked substrate by placing the SiC substrate on and in contact with a main surface of the base substrate; connecting the base substrate and the SiC substrate by heating the stacked substrate to allow the base substrate to have a temperature higher than that of the SiC substrate; and forming an epitaxial growth layer on an opposite main surface, to the SiC substrate, of the base substrate connected to the SiC substrate.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 24, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Satomi ITOH, Shin HARADA, Makoto SASAKI
  • Patent number: 8038795
    Abstract: A precursor chiral nanotube with a specified chirality is grown using an epitaxial process and then cloned. A substrate is provided of crystal material having sheet lattice properties complementary to the lattice properties of the selected material for the nanotube. A cylindrical surface(s) having a diameter of 1 to 100 nanometers are formed as a void in the substrate or as crystal material projecting from the substrate with an orientation with respect to the axes of the crystal substrate corresponding to the selected chirality. A monocrystalline film of the selected material is epitaxially grown on the cylindrical surface that takes on the sheet lattice properties and orientation of the crystal substrate to form a precursor chiral nanotube. A catalytic particle is placed on the precursor chiral nanotube and atoms of the selected material are dissolved into the catalytic particle to clone a chiral nanotube from the precursor chiral nanotube.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: October 18, 2011
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, William R. Owens
  • Publication number: 20110239931
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <100> direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100} wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 6, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Patent number: 8016943
    Abstract: A method for preparing film oxides deposited on a substrate with a resulting grain boundary junction that is atomistically straight. A bicrystal substrate having a straight grain boundary is prepared as a template. The Miller indices h1, k1, h2, k2 of the two grains of the substrate are chosen such that the misorientation angle of the film is equal to arctan k1/h1+arctan k2/h2. The film is grown on the substrate using a layer-by-layer growth mode.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: September 13, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Siu-Wai Chan
  • Publication number: 20110179993
    Abstract: A nitride semiconductor layer formation method includes the steps of: (S1) placing a substrate in a reaction chamber, the substrate including an m-plane nitride semiconductor crystal at least in an upper surface; (S2) increasing a temperature of the substrate by heating the substrate placed in the reaction chamber; and (S3) growing a nitride semiconductor layer on the substrate. In the temperature increasing step (S2), a nitrogen source gas and a Group III element source gas are supplied into the reaction chamber, whereby an m-plane nitride semiconductor crystal having a smooth surface can be formed even if the thickness of the layer is 400 nm, and its growth time can be greatly decreased.
    Type: Application
    Filed: November 26, 2009
    Publication date: July 28, 2011
    Inventors: Akira Inoue, Ryou Kato, Masaki Fujikane, Toshiya Yokogawa
  • Publication number: 20110177682
    Abstract: This invention generally relates to a process for suppressing oxygen precipitation in epitaxial silicon wafers having a heavily doped silicon substrate and a lightly N-doped silicon epitaxial layer by dissolving existing oxygen clusters and precipitates within the substrate. Furthermore, the formation of oxygen precipitates is prevented upon subsequent oxygen precipitation heat treatment.
    Type: Application
    Filed: February 4, 2011
    Publication date: July 21, 2011
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Robert J. Falster, Luca Moiraghi, DongMyun Lee, Chanrae Cho, Marco Ravani
  • Patent number: 7972440
    Abstract: A system (10) for monitoring and controlling a fabrication process includes at least a first subsystem (12), a crystallographic analysis subsystem (14), and a second subsystem (16), wherein the first subsystem and second subsystem perform respective fabrication steps on a workpiece. The crystallographic analysis subsystem may be coupled to both the first subsystem and second subsystem. The analysis subsystem acquires crystallographic information from the workpiece after the workpiece undergoes a fabrication step by the first subsystem and then provides information, based on the crystallographic information acquired, for modifying parameters associated with the respective fabrication steps. The system may also include neural networks (24, 28) to adaptively modify, based on historical process data (32), parameters provided to the respective fabrication steps. The analysis subsystem may include a electromagnetic source (61), a detector (66), a processor (67), a controller (68) and a scanning actuator (65).
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: July 5, 2011
    Assignee: Agere Systems Inc.
    Inventors: Erik C. Houge, John M. McIntosh, Robert Francis Jones
  • Patent number: 7959731
    Abstract: A method for producing a semiconductor wafer, including epitaxially growing a Si1-XGeX layer (0<X?1) on a surface of a silicon single crystal wafer to be a bond wafer; implanting at least one kind of a hydrogen ion or a rare gas ion through the Si1-XGeX layer and forming an ion-implanted layer inside the bond wafer; contacting and bonding a surface of the Si1-XGeX layer and a surface of a base wafer through an insulator film; then performing delamination at the ion-implanted layer; performing a bonding heat treatment of binding the bonded surfaces; and then removing a Si layer of a delaminated layer transferred to a side of the base wafer by the delamination. Thereby, the method does not cause lattice relaxation in the SiGe layer. Therefore, the method is suitable for production of a semiconductor wafer for high-speed semiconductor devices.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: June 14, 2011
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Isao Yokokawa, Hiroji Aga, Kiyoshi Mitani
  • Patent number: 7955435
    Abstract: A method for minimizing particle generation during deposition of a graded Si.sub.1-xGe.sub.x layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si.sub.1-xGe.sub.x layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm.sup.2 on the substrate.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: June 7, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eugene Fitzgerald, Richard Westhoff, Matthew T. Currie, Christopher J. Vineis, Thomas A. Langdo
  • Patent number: 7955434
    Abstract: A diamond single crystal substrate obtained by a vapor-phase growth method, wherein the diamond intrinsic Raman shift of the diamond single crystal substrate surface measured by microscopic Raman spectroscopy with a focused beam spot diameter of excitation light of 2 ?m is deviated by +0.5 cm?1 or more to +3.0 cm?1 or less from the standard Raman shift quantity of strain-free diamond, in a region (region A) which is more than 0% to not more than 25% of the surface, and is deviated by ?1.0 cm?1 or more to less than +0.5 cm?1 from the standard Raman shift quantity of strain-free diamond, in a region (region B) of the surface other than the region A. The diamond single crystal substrate can be obtained with a large size and high-quality without cracking and is suitable for semiconductor materials, electronic components, and optical components or the like.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: June 7, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20110120366
    Abstract: An outer peripheral portion of the silicon wafer is supported by the first susceptor part. The second susceptor part is a close fit in the opening of the first susceptor part to support a portion other than the outer peripheral portion of the silicon wafer. The second susceptor part comes into contact with the outer peripheral portion of the first susceptor part and is disposed in such a manner that a clearance having a predetermined size is formed between the first susceptor part and the second susceptor part and between the opening and the outer peripheral portion thereof. A gas exiting the clearance, which was expanded by heating, is expelled into the chamber via through holes.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Inventors: Shinya HIGASHI, Hironobu Hirata
  • Patent number: 7942966
    Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 17, 2011
    Assignee: Apollo Diamond, Inc.
    Inventors: Robert C. Linares, Patrick J. Doering
  • Patent number: 7935382
    Abstract: A method of making a metal nitride is provided. The method may include introducing a metal in a chamber. A nitrogen-containing material may be flowed into the chamber. Further, a hydrogen halide may be introduced. The nitrogen-containing material may react with the metal in the chamber to form the metal nitride.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 3, 2011
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Dong-Sil Park, Mark Philip D'Evelyn, Myles Standish Peterson, II, John Thomas Leman, Joell Randolph Hibshman, II, Fred Sharifi
  • Patent number: 7931748
    Abstract: The invention provides systems and methods for the deposition of an improved diamond-like carbon material, particularly for the production of magnetic recording media. The diamond-like carbon material of the present invention is highly tetrahedral, that is, it features a large number of the sp3 carbon-carbon bonds which are found within a diamond crystal lattice. The material is also amorphous, providing a combination of short-range order with long-range disorder, and can be deposited as films which are ultrasmooth and continuous at thicknesses substantially lower than known amorphous carbon coating materials. The carbon protective coatings of the present invention will often be hydrogenated. In a preferred method for depositing of these materials, capacitive coupling forms a highly uniform, selectively energized stream of ions from a dense, inductively ionized plasma.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 26, 2011
    Assignee: Stormedia Texas, LLC
    Inventors: Vijayen Veerasamy, Manfred Weiler, Eric Li
  • Publication number: 20110089431
    Abstract: A method for producing a compound single crystal includes a process (I) of growing the compound single crystal while causing an anti-phase boundary and a stacking fault to equivalently occur in a <110> direction parallel to the surface, the stacking fault being attributable to the elements A and B; a process (II) of merging and annihilating the stacking fault, attributable to the element A, and the anti-phase boundary, which occurs in the process (I); a process (III) of vanishing the stacking fault attributable to the element B, which occurs in the process (I); and a process (IV) of completely merging and annihilating the anti-phase boundary. The process (IV) is carried out simultaneously with the processes (II) and (III) or after the processes (II) and (III).
    Type: Application
    Filed: October 15, 2010
    Publication date: April 21, 2011
    Applicant: HOYA CORPORATION
    Inventors: Kuniaki YAGI, Takahisa SUZUKI, Yasutaka YANAGISAWA, Masao HIROSE, Noriko SATO, Junya KOIZUMI, Hiroyuki NAGASAWA
  • Publication number: 20110083601
    Abstract: Embodiments of the invention generally relate processes for epitaxial growing Group III/V materials at high growth rates, such as about 30 ?m/hr or greater, for example, about 40 ?m/hr, about 50 ?m/hr, about 55 ?m/hr, about 60 ?m/hr, or greater. The deposited Group III/V materials or films may be utilized in solar, semiconductor, or other electronic device applications. In some embodiments, the Group III/V materials may be formed or grown on a sacrificial layer disposed on or over the support substrate during a vapor deposition process. Subsequently, the Group III/V materials may be removed from the support substrate during an epitaxial lift off (ELO) process. The Group III/V materials are thin films of epitaxially grown layers which contain gallium arsenide, gallium aluminum arsenide, gallium indium arsenide, gallium indium arsenide nitride, gallium aluminum indium phosphide, phosphides thereof, nitrides thereof, derivatives thereof, alloys thereof, or combinations thereof.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Applicant: Alta Devices, Inc.
    Inventors: Lori D. WASHINGTON, David P. BOUR, Gregg HIGASHI, Gang HE
  • Patent number: 7914619
    Abstract: The invention provides a high temperature (about 1150° C. or greater) annealing process for converting thick polycrystalline Si layers on the order of 1 ?m to 40 ?m on a single crystal seed layer into thick single crystal Si layers having the orientation of the seed layer, thus allowing production of thick Si films having the quality of single crystal silicon at high rates and low cost of processing. Methods of integrating such high temperature processing into solar cell fabrication are described, with particular attention to process flows in which the seed layer is disposed on a porous silicon release layer. Another aspect pertains to the use of similar high temperature anneals for poly-Si grain growth and grain boundary passivation. A further aspect relates to structures in which these thick single crystal Si films and passivated poly-Si films are incorporated.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 29, 2011
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Daniel A. Inns, Devendra K. Sadana, Katherine L. Saenger
  • Publication number: 20110057197
    Abstract: A GaN single crystal substrate has a main surface with an area of not less than 10 cm2, the main surface has a plane orientation inclined by not less than 65° and not more than 85° with respect to one of a (0001) plane and a (000-1) plane, and the substrate has at least one of a substantially uniform distribution of a carrier concentration in the main surface, a substantially uniform distribution of a dislocation density in the main surface, and a photoelasticity distortion value of not more than 5×10?5, the photoelasticity distortion value being measured by photoelasticity at an arbitrary point in the main surface when light is applied perpendicularly to the main surface at an ambient temperature of 25° C. Thus, the GaN single crystal substrate suitable for manufacture of a GaN-based semiconductor device having a small variation of characteristics can be obtained.
    Type: Application
    Filed: June 17, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinsuke FUJIWARA, Koji Uematsu, Hideki Osada, Seiji Nakahata
  • Patent number: 7896965
    Abstract: A method for the production of a plurality of optoelectronic semiconductor chips each having a plurality of structural elements with respectively at least one semiconductor layer. The method involves providing a chip composite base having a substrate and a growth surface. A non-closed mask material layer is grown onto the growth surface in such a way that the mask material layer has a plurality of statistically distributed windows having varying forms and/or opening areas, a mask material being chosen in such a way that a semiconductor material of the semiconductor layer that is to be grown in a later method step essentially cannot grow on said mask material or can grow in a substantially worse manner in comparison with the growth surface. Subsequently, semiconductor layers are deposited essentially simultaneously onto regions of the growth surface that lie within the windows. A further method step is singulation of the chip composite base with applied material to form semiconductor chips.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: March 1, 2011
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Volker Härle
  • Publication number: 20110036289
    Abstract: A method for growing germanium epitaxial films is disclosed. Initially, a silicon substrate is preconditioned with hydrogen gas. The temperature of the preconditioned silicon substrate is then decreased, and germane gas is flowed over the preconditioned silicon substrate to form an intrinsic germanium seed layer. Next, a mixture of germane and phosphine gases can be flowed over the intrinsic germanium seed layer to produce an n-doped germanium seed layer. Otherwise, a mixture of diborane and germane gases can be flowed over the intrinsic germanium seed layer to produce a p-doped germanium seed layer. At this point, a bulk germanium layer can be grown on top of the doped germanium seed layer.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 17, 2011
    Inventors: Daniel N. Carothers, Craig M. Hill, Andrew T.S. Pomerene, Vu A. Vu
  • Publication number: 20110017127
    Abstract: An apparatus and process for plasma enhanced chemical vapor deposition with an inductively coupled plasma with ion densities above 1010 cm?3 and energies below 20 eV at the substrate enables epitaxial deposition of group IV and compound semiconductor layers at high rates and low substrate temperatures. The epitaxial reactor allows for in-situ plasma cleaning by chlorine and fluorine containing gaseous species.
    Type: Application
    Filed: August 14, 2008
    Publication date: January 27, 2011
    Applicant: EpiSpeed SA
    Inventors: Hans von Kanel, Emmanuil Choumas
  • Patent number: 7867335
    Abstract: GaN is grown by creating a Ga vapor from a powder, and using an inert purge gas from a source to transport the vapor to a growth site where the GaN growth takes place. In one embodiment, the inert gas is N2, and the powder source is GaN powder that is loaded into source chambers. The GaN powder is congruently evaporated into Ga and N2 vapors at temperatures between approximately 1000 and 1200° C. The formation of Ga liquid in the powder is suppressed by the purging of an inert gas through the powder. The poser may also be isolated from a nitride containing gas provided at the growth cite. In one embodiment, the inert gas is flowed through the powder.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: January 11, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Michael G. Spencer, Phani Konkapaka, Huaqiang Wu, Yuri Makarov
  • Patent number: 7842134
    Abstract: The invention relates to a method of manufacture of a substrate for fabrication of semiconductor layers or devices, comprising the steps of providing a wafer of silicon including at least one first surface suitable for use as a substrate for CVD diamond synthesis, growing a layer of CVD diamond of predetermined thickness and having a growth face onto the first surface of the silicon wafer, reducing the thickness of the silicon wafer to a predetermined level, and providing a second surface on the silicon wafer that is suitable for further synthesis of at least one semiconductor layer suitable for use in electronic devices or synthesis of electronic devices on the second surface itself and to a substrate suitable for GaN device growth consisting of a CVD diamond layer intimately attached to a silicon surface.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: November 30, 2010
    Inventors: Andrew John Whitehead, Christopher John Howard Wort, Geoffrey Alan Scarsbrook
  • Publication number: 20100288190
    Abstract: A kind of growth method of non-polarized-plane InN which is growing m-plane InN and In-rich m-plane InGaN on LiA1O2 (100) substrate by the metal organic chemical vapor deposition (MOCVD), and m-plane is one kind of non-polarized-plane, In-rich denotes that the component of In x is higher than 0.3 in InxGa1?xN. The invention synthetically grows m-plane InN and In-rich m-plane InGaN using LiA1O2 (100) as substrate which will be disposed and the buffer by MOCVD. And the non-polarized-plane InN would be produced through choosing appropriate substrate and the technique condition of growth as well as using the design of buffer by MOCVD.
    Type: Application
    Filed: March 28, 2010
    Publication date: November 18, 2010
    Applicant: NANJING UNIVERSITY
    Inventors: RONG ZHANG, ZILI XIE, BIN LIU, XIANGQIAN XIU, HONG ZHAO, XUEMEI HUA, PING HAN, DEYI FU, YI SHI, YOUDOU ZHENG
  • Publication number: 20100288191
    Abstract: In a method of growing a gallium nitride crystal, the following steps are performed. First, a base substrate is prepared. Then, a first gallium nitride layer is grown on the base substrate. Thereafter, a second gallium nitride layer less brittle than the first gallium nitride layer is grown.
    Type: Application
    Filed: December 24, 2008
    Publication date: November 18, 2010
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventor: Tomoharu Takeyama
  • Patent number: 7833348
    Abstract: An object of the invention is to calibrate an upper pyrometer for indirectly measuring a substrate temperature at the time of epitaxial growth in a comparatively short time and with accuracy to thereby improve the quality of an epitaxial substrate. After calibrating an upper pyrometer by a thermocouple mounted to a temperature calibrating susceptor, a measured value of a lower pyrometer is adjusted to a calibrated value of the upper pyrometer. Then, a correlation line between substrate temperature indirectly measured by the upper pyrometer at the time of epitaxial growth onto a sample substrate and haze of a sample substrate measured immediately after epitaxial growth is set to indirectly measure a substrate temperature by the upper pyrometer at the time of epitaxial growth onto a mass-production substrate.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 16, 2010
    Assignee: Sumco Corporation
    Inventors: Naoyuki Wada, Hiroyuki Kishi
  • Patent number: 7830027
    Abstract: The invention relates to inter-level realignment after a stage of epitaxy on a face (31) of a substrate (30), comprising the production of at least one initial guide mark (32) on the face of the substrate, this initial guide mark being designed so as to be transferred, during epitaxy, onto the surface of the epitaxied layer (36). The initial guide mark (32) is produced in such a way that, during epitaxy, its edges create growth defects that propagate as far as the surface of the epitaxied layer (36) to provide a transferred guide mark (37) on the surface of the epitaxied layer (36) reproducing the shape of the initial guide mark (32) and in alignment with the initial guide mark.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 9, 2010
    Assignees: Commissariat a l'Energie Atomique, Freescale Semiconductor, Inc.
    Inventors: Bernard Diem, Eugene Blanchet, Bishnu Gogoi
  • Publication number: 20100276663
    Abstract: In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
    Type: Application
    Filed: June 18, 2010
    Publication date: November 4, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Masaki UENO, Katsushi AKITA, Takashi KYONO, Takamichi SUMITOMO, Takao NAKAMURA
  • Patent number: 7820523
    Abstract: The invention concerns a micro-electronic device comprising a substrate, a first insulating zone and a second insulating zone laying on said substrate, a first active zone comprising at least one layer made of a first semi-conductor crystalline material, resting on said first insulating zone which insulates it from the substrate, at least one second active zone comprising at least one layer in a second semi-conductor crystalline material, laying on said second insulating zone which insulates it from the substrate, said first semi-conductor crystalline material having a different composition from that of the second semi-conductor crystalline material and/or different crystalline orientation from that of the second semi-conductor crystalline material and/or mechanical strains from that of the second semi-conductor crystalline material.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: October 26, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: François Andrieu, Thomas Ernst, Simon Deleonibus
  • Publication number: 20100263587
    Abstract: An epitaxial reactor enabling simultaneous deposition of thin films on a multiplicity of wafers is disclosed. During deposition, a number of wafers are contained within a wafer sleeve comprising a number of wafer carrier plates spaced closely apart to minimize the process volume. Process gases flow preferentially into the interior volume of the wafer sleeve, which is heated by one or more lamp modules. Purge gases flow outside the wafer sleeve within a reactor chamber to minimize deposition on the walls of the chamber. In addition, sequencing of the illumination of the individual lamps in the lamp module may further improve the linearity of variation in deposition rates within the wafer sleeve. To improve uniformity, the direction of process gas flow may be varied in a cross-flow configuration. Combining lamp sequencing with cross-flow processing in a multiple reactor system enables high throughput deposition with good film uniformities and efficient use of process gases.
    Type: Application
    Filed: February 25, 2010
    Publication date: October 21, 2010
    Applicant: Crystal Solar, Incorporated
    Inventors: Visweswaren Sivaramakrishnan, Kedarnath Sangam, Tirunelveli S. Ravi, Andrzej Kaszuba, Quoc Vinh Truong
  • Patent number: 7815734
    Abstract: Provided are a thin film transistor and method of fabricating the same, in which an amorphous silicon layer is formed on a substrate, a capping layer containing a metal catalyst having a different concentration according to its thickness is formed on the amorphous silicon layer, the capping layer is patterned to form a capping layer pattern, and the amorphous silicon layer is crystallized, such that the density and position of seeds formed at an interface between the amorphous silicon layer and the capping layer pattern is controlled, thereby improving the size and uniformity of grains, and in which polycrystalline silicon of desired size and uniformity is selectively formed at a desired position by one crystallization process, resulting in a thin film transistor having excellent and desired properties.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: October 19, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jin-Wook Seo, Tae-Hoon Yang, Ki-Yong Lee
  • Patent number: 7807126
    Abstract: A method for manufacturing a diamond single crystal substrate, in which a single crystal is grown from a diamond single crystal serving as a seed substrate by vapor phase synthesis, said method comprising: preparing a diamond single crystal seed substrate which has a main surface whose planar orientation falls within an inclination range of not more than 8 degrees relative to a {100} plane or a {111} plane, as a seed substrate; forming a plurality of planes of different orientation which are inclined in the outer peripheral direction of the main surface relative to the main surface on one side of this seed substrate, by machining; and then growing a diamond single crystal by vapor phase synthesis.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: October 5, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 7799132
    Abstract: A patterned layer is formed by removing nanoscale passivating particle from a first plurality of nanoscale structural particles or by adding nanoscale passivating particles to the first plurality of nanoscale structural particles. Each of a second plurality of nanoscale structural particles is deposited on each of corresponding ones of the first plurality of nanoscale structural particles that is not passivated by one of the plurality of nanoscale passivating particles.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: September 21, 2010
    Assignee: Zyvex Labs, LLC
    Inventors: John N. Randall, Jingping Peng, Jun-Fu Liu, George D. Skidmore, Christof Baur, Richard E. Stallcup, Robert J. Folaron
  • Patent number: 7776724
    Abstract: A method of forming a densified nanoparticle thin film is disclosed. The method includes positioning a substrate in a first chamber; and depositing a nanoparticle ink, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 300° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed; and positioning the substrate in a second chamber, the second chamber having a pressure of between about 1×10?7 Torr and about 1×10?4 Torr. The method further includes depositing on the porous compact a dielectric material; wherein the densified nanoparticle thin film is formed.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: August 17, 2010
    Assignee: Innovalight, Inc.
    Inventors: Francesco Lemmi, Elena V. Rogojina, Pingrong Yu, David Jurbergs, Homer Antoniadis, Maxim Kelman