Treating Substrate With Liquid Other Than Tap Water (e.g., For Removing Foreign Material, Etching, Activating, Etc.) Patents (Class 205/210)
  • Patent number: 5788824
    Abstract: The subject of the invention is a process for conditioning the copper or copper-alloy external surface of an element of a mold for the continuous casting of metals, of the type including a step of nickel plating of said surface and a step of nickel removal therefrom, wherein:a preparation of said surface, comprising in succession an operation of cleaning said bare surface, an operation of pickling said bare surface in an oxidizing acid medium and an operation of brightening said bare surface, is carried out;then, an operation of nickel plating of said bare surface is carried out by electroplating, by placing said element as the cathode in an electrolyte consisting of an aqueous nickel sulfamate solution containing from 60 to 100 g/l of nickel;then, after said element has been used, an operation of partially or completely removing the nickel from said surface electrolytically is carried out, by placing said element as the anode in an electrolyte consisting of an aqueous nickel sulfamate solution containing fro
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: August 4, 1998
    Assignees: Usinor Sacilor (Societe Anonyme), Thyssen Stahl Aktiengesellschaft
    Inventors: Jean-Claude Catonne, Christian Allely, Remy Nicolle, Gerard Raisson
  • Patent number: 5773090
    Abstract: A process for coating phosphated metal substrates with one or more organic coatings, in which after phosphating and before application of a first organic coating, the phosphated metal substrates are treated with an aqueous solution which contains 5 to 10000 ppm of dissolved titanium, vanadium, molybdenum, silver, tin, antimony and/or one or more elements of atomic numbers 57 to 83 in the form of inorganic and/or organic compounds, wherein the phosphated metal substrates are additionally connected as a cathode during the entire treatment or for part of the duration of the treatment.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: June 30, 1998
    Assignee: Herberts Gellschaft mit Beschrankter Haftung
    Inventors: Gabriele Buttner, Matthias Kimpel, Klausjorg Klein
  • Patent number: 5773087
    Abstract: A coated article comprising a stainless steel base having an etched surface and having on the etched surface a coated layer. The coating layer may comprise a fluororesin and can be provided: after sensitizing the stainless steel base through heating, treating with an acid, subjecting to etching, and subjecting to a solution treatment; after immersing in an aqueous acid solution or an aqueous ferric chloride solution to cause the base to be dissolved to such an extent that the gloss of the surface disappears; after uniformly abrading the surface of the base through buffing or blasting to the weight corresponding to a thickness of 1.0 .mu.m or more of the base, immersing in an aqueous acid solution or an aqueous ferric chloride solution to cause the base to be dissolved to such an extent that the gloss of the surface disappears, and subjecting to etching; or after subjecting to electrolytic etching at 15.degree. C. or less.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: June 30, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Kashihara, Katsuya Yamada
  • Patent number: 5770032
    Abstract: A process for metallizing a surface of a substrate. Preferably, the substrate is composed of a dielectric material such as a circuit board which has copper cladding on at least one face and at least one through-hole to provide a site for electrical connection to an adjacent circuit board. After cleaning the surface, it is sensitized by contacting such surface with an aqueous solution comprising a stannous salt, a precious metal salt and a source of chloride ions.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: June 23, 1998
    Assignee: Fidelity Chemical Products Corporation
    Inventor: Frank N. Cane
  • Patent number: 5762777
    Abstract: A process of directly plating onto a nonconductive substrate is disclosed. The process comprises the steps of:1) conditioning: modifying a surface of the nonconductive substrate with selected organic hydrocarbons or polymers to enhance its property of adsorbing catalysts;2) catalyzing: immersing the conditioned substrate into a catalyst colloid-containing solution or a catalyst complex-containing solution to let the catalyst be adsorbed onto the substrate;3) accelerating: reducing the catalyst with a suitable acid or basic solution (adapted to the catalyst colloid), or with a reducing agent (adapted to the catalyst complex) to reduce the catalyst being adsorbed onto the substrate;4) enhancing: immersing the substrate after accelerating step into an enhancing agent containing a compound with two ligands;5) electroplating: proceeding with a plating process.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: June 9, 1998
    Assignee: Persee Chemical Co. Ltd.
    Inventors: Ching-hsiung Yang, Chi-chao Wan, Yung-yun Wang, Chung-chieh Chen
  • Patent number: 5755946
    Abstract: A flexible abrasive member comprising a first porous layer of mesh, non-woven or perforated sheet, conductive or non-conductive material to which on one side deposits are deposited by way of any metal plating technique of either the electrolytic, electroless or vacuum deposition type, or any galvanic process, abrasive particles being embedded in the metal deposits, a layer of filling material, such as a resin, being present between the deposits which filling material is bonded to said first porous layer and/or the deposits, and at least a second porous layer of mesh, non-woven or perforated sheet, conductive or non-conductive material being present and being laid substantially along one side of the first porous layer. The side edge of the deposit has at least one annular groove along at least part of the circumference of the deposit.
    Type: Grant
    Filed: September 20, 1996
    Date of Patent: May 26, 1998
    Inventor: Sandro Giovanni Giuseppe Ferronato
  • Patent number: 5730853
    Abstract: A method for plating a graphite aluminum metal matrix composite material with nickel and gold utilizes the steps of: cleaning a surface of the metal matrix composite material so as to substantially remove grease and particulates therefrom; forming a layer of copper upon the surface of the metal matrix composite material; heating the copper layer to drive out entrapped fluids; applying acid to the copper layer to remove oxidation therefrom; forming a layer of nickel upon at least a portion of the layer of copper; heating the nickel layer to relieve stress therein; and electrolytically forming a layer of gold upon at least a portion of the layer of nickel.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: March 24, 1998
    Assignee: Northrop Grumman Corporation
    Inventors: Carl R. Smith, Marvin J. Back, Breton Johnson, John R. De Valle, Lawrence J. Maher
  • Patent number: 5725640
    Abstract: The disclosure relates to treating a self accelerating and replenishing immersion composition on a substrate with a neutralizing and reducing composition comprising an acid and a salt of an inorganic or organic amine, and then electrolytically coating the treated surface with a metal. The salts in one embodiment comprise salts of hydroxylamine or hydrazine and the acid comprises a mineral acid.
    Type: Grant
    Filed: May 14, 1996
    Date of Patent: March 10, 1998
    Assignee: Atotech USA, Inc.
    Inventors: Nayan E. Joshi, John E. McCaskie, Michael T. Boyle
  • Patent number: 5707503
    Abstract: According to the present invention, an oxygen sensor element includes a solid electrolyte having a side surface at one side thereof, the side surface being contactable with a gas to be measured, a skeletal electrode provided on the side surface and having a plurality of pore portions, each of the pore portions passing through the skeletal electrode up to the solid electrolyte, and a reactive electrode made of a porous film and provided in each of the pore portions, a thickness of the porous film being smaller than that of said skeletal electrode. An area percentage (SH/SZ) which is a ratio of a total area (SH) of the reactive electrode to a total area (SZ) of the skeletal electrode and the reactive electrode is in a range from 10 to 50%, an average area (SA) of the pore portions is 100 .mu.m.sup.2 or less, a film thickness of the skeletal electrode is in a range from 1.5 to 4 .mu.m, and the film thickness of the reactive electrode is in a range from 0.6 to 1.5 .mu.m.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: January 13, 1998
    Assignee: Nippondenso Co., Ltd.
    Inventors: Yasumichi Hotta, Hiromi Sano, Toshitaka Saito, Masatoshi Suzuki, Naoto Miwa
  • Patent number: 5702584
    Abstract: A polymer substrate is plated with a metal, using metallic filler particles in the polymer as anchorage points for a layer of metal formed by an electroless plating operation. The polymer has a filler that includes non-metallic filler particles and metallic filler particles; the non-metallic filler particles contiguous to the polymer surface can be etched away, so as to expose metallic filler particles proximate to the etched surfaces. The exposed metallic filler particles serve as anchorage points for the electroless plate layer.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: December 30, 1997
    Assignee: Ford Motor Company
    Inventors: Lakhi N. Goenka, Michael G. Todd, Andrew Z. Glovatsky
  • Patent number: 5685969
    Abstract: A sensor arrangement having a substrate of doped silicon with channels in a principal face, a selective means for detecting a material, the selective means covering the principal face without filling the channels, and a measuring instrument for registering a physical quantity dependent on the influence of a material is provided. A catalytic layer is particularly used as selective means and a temperature sensor is particularly used as measuring instrument. Alternatively, the sensor arrangement is fashioned as a capacitor having a porous cooperating electrode. The channels are preferably produced by electrochemical etching.
    Type: Grant
    Filed: September 28, 1994
    Date of Patent: November 11, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Eckhardt Hoenig, Volker Lehmann, Ulf Buerker
  • Patent number: 5683565
    Abstract: A process for electroplating a substrate by coating the substrate with a coating of conductive particles. The coating of conductive particles is applied to the substrate from an aqueous dispersion containing a dissolution agent for metallic regions of the substrate. The dissolution agent removes the top surface of the metal as the conductive particle coating is formed thereby facilitating removal of the same from the metallic regions of the substrate.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: November 4, 1997
    Assignee: Shipley Company, L.L.C.
    Inventors: Steven M. Florio, Jeffrey P. Burress, Carl J. Colangelo, Edward C. Couble, Mark J. Kapeckas
  • Patent number: 5672261
    Abstract: A method for preparing a Ni base superalloy inner wall surface of a body open end, such as an end of a turbomachinery blade, and an end plate, such as a blade tip cap, for brazing together at a rim of the end plate includes electrochemically removing oxides from the inner wall surface. The end plate is prepared, at least at its rim, by first removing surface and subsurface oxides, for example by mechanical abrading or a combination of such abrading and acid cleaning. Then at least the rim is electroplated with Ni which is heated to diffuse the Ni into the rim substrate. This provides an improved combination of surfaces for brazing for example with a Ni base brazing alloy. After brazing the rim to the inner wall, there is provided an article with an improved relatively low oxide brazed joint, including less than about 20 volume % oxides, and a plate rim of substantially Ni along with elements diffused from the brazing alloy and the rim.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: September 30, 1997
    Assignee: General Electric Company
    Inventors: Gary E. Wheat, Robert E. McCracken, Nicholas C. Palmer
  • Patent number: 5667661
    Abstract: In a method of continuously coating a conductive substrate such as brass wire to produce a desired cross-sectional size of coated material, the wire is drawn through a first die to produce an oversize wire, electroplate in a bath, and then drawn through a final die to reduce its area to the desired size and produce a controlled surface finish. The wire may be cleaned in an acid bath and rinsed in a rinsing bath prior to the electroplating bath. A further rinsing bath and dryer may be interposed upstream of the final die.
    Type: Grant
    Filed: October 31, 1995
    Date of Patent: September 16, 1997
    Assignee: United Wire Limited
    Inventor: Andrew Hughes
  • Patent number: 5637205
    Abstract: The invention describes a process for the electrolytical coating of an object of steel on one or both sides. Preferably, the object is a steel strip with zinc or a zinc iron alloy. Zinc or a zinc iron alloy is deposited on the object when the object is connected to form the cathode of a galvanic cell in an aqueous solution of zinc chloride and iron chloride with a pH of 0.1 to 3.0. The zinc chloride solution has a concentration of 50 to 1000 g/l for the deposition of metallic zinc. A partial flow of electrolyte solution is past continuously into a column filled with metallic zinc, where the trivalent iron formed there during the electrolysis is reduced to a bivalent iron, and metallic zinc is dissolved simultaneously therewith. The invention also describes an apparatus for the electrolytical coating of an object of steel.
    Type: Grant
    Filed: December 20, 1993
    Date of Patent: June 10, 1997
    Assignee: Andritz-Patentverwaltungs-Gesellschaft M.B.H.
    Inventors: Ulrich Krupicka, Gerald Maresch
  • Patent number: 5632880
    Abstract: A process for galvanic deposition of chromium coatings is provided in which the base material is subjected to a galvanic chromium plating bath to form a hard chromium coating with beaded or columnar type surface structure, and the beaded or columnar type surface structure is subsequently filled and smoothed with galvanically applied black chromium. The resulting combined coatings yield increased wear resistance, lower friction values, even without lubricants, and increased corrosion resistance.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: May 27, 1997
    Inventor: Marco Santini
  • Patent number: 5630933
    Abstract: Metal hydrides are activated by an electrochemical procedure. In this procedure, a bulk sample of the corresponding metal is immersed in an aqueous electrolyte and contacted by a cathode. Current passed through the aqueous electrolyte causes electrolysis of the water and a concomitant reaction with the formation of metal hydride. As a result, the metal hydride is fractured and smaller particles result. Additionally, the resulting metal hydride has a substantial amount of absorbed hydrogen. A novel plating method, taking advantage of the reducing power of hydrogen absorbed in a metal hydride, is useful to encapsulate such metal hydride with a variety of metals. Therefore, such hydrides are uniformly coated by using plating solutions without the standard reducing agent and stabilizer.
    Type: Grant
    Filed: July 14, 1995
    Date of Patent: May 20, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Henry H. Law, Brijesh Vyas
  • Patent number: 5616230
    Abstract: A process for plating an electrically nonconductive substrate by the following sequence of steps:(1) a step of treating an electrically nonconductive substrate with a solution containing a silane coupling agent;(2) a step of treating the electrically nonconductive substrate from said step (1) with a solution containing an anionic surfactant;(3) a step of the electrically nonconductive substrate from said step (2) with a solution containing a palladium compound and at least one nitrogen-containing sulfur compound selected from among thiourea and its derivatives;(4) a step of treating the electrically nonconductive substrate from said step (3) with a reducing solution containing at least one member selected from among sodium borohydride, sodium hypophosphite, hydrazine, dimethylaminoborane, hydroxylamine and glyoxylic acid; and(5) a step of forming an electroplating layer on the electrically nonconductive substrate from said step (4).
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: April 1, 1997
    Assignee: Okuno Chemical Industries Co., Ltd.
    Inventors: Kuniaki Otsuka, Kazue Yamamoto, Satoshi Konishi, Shigeru Yamato
  • Patent number: 5611905
    Abstract: A process for electroplating a substrate by coating the substrate with a coating of conductive particles. The coating of conductive particles is applied to the substrate from an aqueous dispersion containing a dissolution agent for metallic regions of the substrate. The dissolution agent removes the top surface of the metal as the conductive particle coating is formed thereby facilitating removal of the same from the metallic regions of the substrate.
    Type: Grant
    Filed: June 9, 1995
    Date of Patent: March 18, 1997
    Assignee: Shipley Company, L.L.C.
    Inventors: Steven M. Florio, Jeffrey P. Burress, Carl J. Colangelo, Edward C. Couble, Mark J. Kapeckas
  • Patent number: 5591318
    Abstract: A method for making high power electrochemical charge storage devices, provides for depositing an electrically conducting polymer (16), (18), onto a non-noble metal substrate (10), which has been prepared by treatment with a surfactant. Using this method, high power, high energy electrochemical charge storage devices may be fabricated with highly reproducible low cost.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: January 7, 1997
    Assignee: Motorola Energy Systems, Inc.
    Inventors: Changming Li, Ke K. Lian, Han Wu
  • Patent number: 5578175
    Abstract: A process for manufacturing an iridium and palladium oxides-coated titanium electrode comprises preparing a titanium substrate having a surface, applying iridium and palladium to be formed on the surface of the titanium substrate, and heat-treating the iridium and palladium oxides-applied titanium substrate to obtain an iridium and palladium oxides-coated titanium electrode. This invention provides a process for obtaining a coated titanium electrode having therein a good adhesion between the coating material and the titanium electrode, and having an excellent electrochemical stability and a superior catalytic activity in an acidic environment.
    Type: Grant
    Filed: August 16, 1994
    Date of Patent: November 26, 1996
    Assignee: National Science Council
    Inventors: Kwang-Lung Lin, Ju-Tung Lee, Yuan-Po Lee
  • Patent number: 5578186
    Abstract: A method for forming an acrylic resist on a surface of a copper layer includes the steps of processing a surface of the copper layer by an ammonia water, and depositing a layer of acrylic resist on the surface of the copper layer after a processing by the ammonia water.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: November 26, 1996
    Assignee: Fujitsu Limited
    Inventor: Norikazu Ozaki
  • Patent number: 5558759
    Abstract: A finishing process for a base metal substrate comprising the steps of polishing the surface of the base metal substrate, electroplating the metal substrate with copper, electroplating a layer of metal over the copper plate, and depositing a substantially moisture impervious coating on the metal layer.
    Type: Grant
    Filed: July 26, 1994
    Date of Patent: September 24, 1996
    Assignee: Sargent Manufacturing Company
    Inventor: Roger Pudem
  • Patent number: 5556530
    Abstract: An array of electrodes for use in a flat panel display includes a plurality of electron emitters formed of polycrystalline or single crystalline silicon which has been selectively etched to form pores in the emitters. The electrode array is then electroplated in a methane plasma to deposit a carbon compound such as silicon carbide on the surfaces of the emitters and in the pores of the emitters. Each emitter has a generally flat electron emitting surface which facilitates a longer life for the electrode array, the porous structure of the emitters increasing the electron emission efficiency of the emitters in relatively low electric fields. The electrode array can be integral with a support substrate by anisotropically etching the substrate to form the emitters. A layered interconnect structure can be formed on a surface of the silicon substrate for providing the interconnect structure for the electrode array.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: September 17, 1996
    Assignee: Walter J. Finklestein
    Inventors: Walter Finkelstein, John H. Hall
  • Patent number: 5547559
    Abstract: The invention described provides a process for direct electroplating on activated surfaces substantially without the formation of a smut layer and thereby improving the adhesion of the plated deposit to the surface. The use of divalent or tetravalent sulfur compounds and/or cathodic electrocleaning is proposed between activation of the surface and electroplating of the surface.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: August 20, 1996
    Assignee: MacDermid, Incorporated
    Inventors: Peter Kukanskis, Ernest Yakobson, Lev Taytsas
  • Patent number: 5527445
    Abstract: A process for repairing degraded sections of metal tubes, such as heat exchanger tubes, by in situ electroforming utilizes a probe containing an electrode. The probe is movable through the tube to the site of degradation and is sealed in place, thereby creating an electrochemical cell. Electrolyte flows from a reservoir through the cell and a structural layer of metal is deposited on the tube using a pulsed direct current and a duty cycle of 10-60%. The metal layer so formed possesses an ultrafine grain size preferably with a highly twinned microcrystalline structure giving the layer excellent mechanical properties.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: June 18, 1996
    Assignee: Ontario Hydro
    Inventors: Gino Palumbo, Philip C. Lichtenberger, Francisco Gonzalez, Alexander M. Brennenstuhl
  • Patent number: 5510010
    Abstract: A copper heat exchanger unit for operating in a harsh environment wherein the exposed surfaces of the unit are first provided with a black oxide layer and then electrocoated with a protective acrylic barrier.
    Type: Grant
    Filed: March 1, 1994
    Date of Patent: April 23, 1996
    Assignee: Carrier Corporation
    Inventor: Richard G. Kobor
  • Patent number: 5476581
    Abstract: A method of producing a weapon barrel (1) having a wear-resistant inner coating (10) applied by an electrolytic method. To enable the application of a relatively thick protective layer to the inner wall or surface of a large-caliber weapon barrel (1), in particular, in the regions of thermally high stress and in a simple manner, a weapon barrel (1) prefabricated true to caliber is provided, a recess (7) is formed in the region of the chamber (2) and of the adjoining caliber region (3) to be coated with the protective layer (10) by electrochemical stripping (electrolytic polishing), and the recess (7) is subsequently refilled electrolytically with the protective layer (10). The same center electrode (4, 12) preferably is used for the electrolytic polishing process and for the electrolytic process for applying (plating) the protective coating or layer (10).
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: December 19, 1995
    Assignee: Rheinmetall GmbH
    Inventors: Horst Reckeweg, Gert Schlenkert, Siegmar Kukulies
  • Patent number: 5470636
    Abstract: A magnetic recording medium having a substrate made of aluminum or aluminum alloy and an anodic-oxide film, e.g., alumite film, formed by effecting the anodic oxidation process, wherein the surface of the alumite film has protruding portions formed in addition to micro-irregularities which are formed in response to the cell-pore structure of the alumite film and height of the protruding portions is higher than that of the micro-irregularity, and density of the protruding portions is ranging from 10.sup.2 to 10.sup.7 per one square millimeter, these protruding portions are formed by processing the alumite film in the fluorine-contained solution (e.g., hydrofluoric acid) or in solution containing one of the acid (HCl), base (NaOH) and strong-acid salt ((NH.sub.4)SO.sub.4), Cr film and magnetic film are sequentially formed on the alumite film by the sputtering process.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: November 28, 1995
    Assignee: Yamaha Corporation
    Inventors: Yukio Wakui, Yoshiki Nishitani, Kenichi Miyazawa
  • Patent number: 5384026
    Abstract: A compact, hand portable, mobile electroplating unit provided with wheels, a seat for the user, and all of the chemical solutions and applicator equipment, including a D.C. power source, required to electroplate a metallic film on a metallic surface.
    Type: Grant
    Filed: May 10, 1994
    Date of Patent: January 24, 1995
    Assignee: Gold Effects, Inc.
    Inventor: Daniel A. McLaughlin
  • Patent number: 5374346
    Abstract: A process of electroplating comprising formation of a semiconductive coating over an article having both metallic and non-metallic portions, dissolving the metal surface underlying the semiconductive coating and removing the semiconductive coating by a high pressure water spray. The process is useful for the formation of printed circuit boards.
    Type: Grant
    Filed: August 9, 1993
    Date of Patent: December 20, 1994
    Assignee: Rohm and Haas Company
    Inventors: John J. Bladon, Carl Colangelo, John Robinson, Michael Rousseau
  • Patent number: 5372701
    Abstract: The invention relates to an improved process and apparatus for electroplating an object and removing the excess electroplating solution from the electroplating object. The improvement comprises performing the electroplating process utilizing an apparatus and in a manner which eliminates all waste rinse solution and which provides substantially complete recovery of the chemicals utilized, but not used up, in the plating process.
    Type: Grant
    Filed: December 3, 1991
    Date of Patent: December 13, 1994
    Inventors: Louis J. Gerdon, James R. Worth
  • Patent number: 5348639
    Abstract: A surface treatment for a R-TM-X type of permanent magnet comprising the steps: Etching the magnet with nitric acid having a concentration of 0.2 to 10 vol %, then etching the magnet with a mixture of oxygenated water having a hydrogen peroxide concentration of 0.2 to 10 vol % and acetic acid having a concentration of 10-30 vol %, and next plating the magnet with a copper plating initially followed by a nickel plating. R represents an element or a mixture of rare earth elements, TM is mainly composed of iron and transition elements other than iron and X represents one or more of a mixture of elements to enhance the coercivity of the magnet. This improvement of the magnet material itself improves the corrosion resistance of the protective film on the magnet surface.
    Type: Grant
    Filed: August 6, 1991
    Date of Patent: September 20, 1994
    Assignee: Hitachi Magnetics Corporation
    Inventor: Katsuo Mitsuji
  • Patent number: 5342501
    Abstract: Novel aqueous accelerating solutions and methods for their use in connection with metal plating of dielectric materials are disclosed and claimed. The accelerating solutions are mildly basic aqueous solutions including dilute concentrations of copper ions.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: August 30, 1994
    Assignee: Eric F. Harnden
    Inventor: Kiyoshi Okabayashi
  • Patent number: 5316867
    Abstract: Addition polymer substrates comprising structural groups derived from olefinic nitriles and conjugated dienes, especially ABS resin substrates, are treated with aqueous tetravalent cerium in a concentration of at least about 0.1 M, preferably with a tetravalent cerium solution, to improve adhesion to metal coatings subsequently deposited non-electrolytically; for example, by electroless deposition. The metallized articles are heat treated following metal deposition. Further metal coatings may be deposited, preferably followed by further heat treatment.
    Type: Grant
    Filed: May 17, 1993
    Date of Patent: May 31, 1994
    Assignee: General Electric Company
    Inventors: Herbert S. Chao, Carol L. Fasoldt
  • Patent number: 5306525
    Abstract: A method of processing the surface of a metallic rod, wherein coating films (2, 22 and 32) are applied onto portions other than the shape where grooves are to be formed on the surface of the rod, the surfaces of the rods (1, 21 and 31) which are not coated are dissolved and processed by chemical polishing or etching, whereby patterns of very shallow grooves (6, 24 and 34) are formed on the surface of the rod, so that making of grooves on the surface of a very heavy rod, a long rod and a curved rod, which have been considered difficult by the conventional machining, can be easily and accurately carried out. Furthermore, after the making of the grooves, the surface of a rod (41) is plated in a state (42) of being coated by photoresist films and screens, whereby the grooves and the recessed portions (43) are plated (44), and thereafter, the coating films (42) are removed by buffing (45) and the like and the plated surface is finished, thus effectively plating the grooves and the recessed portions.
    Type: Grant
    Filed: October 15, 1992
    Date of Patent: April 26, 1994
    Assignees: Kabushiki Kaisha Komatsu Seisakusho, Komatsu Zenoah Kabushiki Kaisha
    Inventors: Yasuki Semura, Hiroshi Ando, Nobuyuki Nagahashi
  • Patent number: 5286366
    Abstract: A magnetically anisotropic magnet substrate is coated with a triple layer of nickel plating preferably followed by a chromate layer. The layer of nickel plating includes an inner layer of a non-bright nickel plating, followed by an intermediate nickel-strike layer, followed by an outer layer of a semi-bright nickel plating. The inner layer contains much less sulfur than the other two layers, whereby the resulting difference in electromotive force provides a localized battery that permits the outer layers to be sacrificed without permitting the inner layer to be destroyed. One embodiment adds a copper under-layer below the nickel plating.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: February 15, 1994
    Assignee: Hitachi Magnetic Corp.
    Inventor: Katsuo Mitsuji
  • Patent number: 5268088
    Abstract: Improved methods for electroplating non-conducting substrates are disclosed utilizing aqueous alkali metal containing adhesion promoter solutions to enhance the surface deposition of colloidal metal activating catalysts to form conducting layers capable of direct electroplating. The adhesion promoter solutions contain sufficient alkali metal ions to deposit trace amounts of metal ions onto the substrate surface to be plated. Copper ions may be incorporated into the adhesion promoters to enhance this effect. These adhesion promoter solutions eliminate the swelling and related problems associated with the direct electroplating of acrylic and epoxy containing substrates. Following adhesion promoter treatment, the substrates are conditioned with a cleaner/conditioner solution and catalytically activated with a colloidal catalyst of palladium and tin forming a highly conductive catalytically treated surface which will support subsequent direct electroplating in conventional plating baths.
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: December 7, 1993
    Assignee: Eric F. Harnden
    Inventor: Kiyoshi Okabayashi
  • Patent number: 5262042
    Abstract: Improved methods for electroplating non-conducting substrates are disclosed utilizing aqueous saline adhesion promoter solutions and rinse solutions to enhance the surface deposition of colloidal metal activating catalysts to form conducting layers capable of direct electroplating. One variation of the process recycles excess activating catalyst into the aqueous saline adhesion promoter to eliminate waste.
    Type: Grant
    Filed: December 12, 1991
    Date of Patent: November 16, 1993
    Assignee: Eric F. Harnden
    Inventor: Kiyoshi Okabayashi
  • Patent number: 5240589
    Abstract: A two-step process for the coating of magnesium and its alloys is disclosed. The first step comprises immersing the magnesium workpiece in an aqueous solution comprising about 0.2 to 5 molar ammonium fluoride having a pH of about 5 to 8 and a temperature of about 40.degree. to 100.degree. C. The second step is an electrochemical treatment of the pretreated article in an aqueous electrolytic solution having a pH of at least about 12.5 and which solution comprises about 2 to 12 g/L of a aqueous soluble hydroxide, about 2 to 15 g/L of a fluoride-containing composition selected from the group consisting of fluorides and fluorosilicates, and about 5 to 30 g/L of a silicate. This process results in a superior coating which has increased abrasion and corrosion resistance.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: August 31, 1993
    Assignee: Technology Applications Group, Inc.
    Inventors: Duane E. Bartak, Brian E. Lemieux, Earl R. Woolsey
  • Patent number: 5213841
    Abstract: A process for metal plating characterized by use of an accelerator solution of a metal reducible by stannous tin between a step of catalysis and metal deposition.
    Type: Grant
    Filed: May 15, 1990
    Date of Patent: May 25, 1993
    Assignee: Shipley Company Inc.
    Inventors: Michael Gulla, Prasit Sricharoenchaikit
  • Patent number: 5198096
    Abstract: Method of modifying a polycarbonate surface to improve adhesion of a metal layer thereon and to the articles produced therefrom. The surface is first rendered hydrophilic by an exposure to actinic light such as ultraviolet light. The surface is then impregnated with a diffuser such as hydrochloric acid. The surface after impregnation is etched with a base such as potassium hydroxide and cleaned by oxidizing it with a solution of an oxidizing agent such as potassium permanganate. The cleaned surface is then neutralized by contacting it with a mild reducing agent. The chemically and physically modified surface is electrolessly plated with a primary metal layer. A secondary metal layer is then electrolessly or electrolytically applied on top of the primary metal layer until a metal layer of a desired thickness is attained.
    Type: Grant
    Filed: November 28, 1990
    Date of Patent: March 30, 1993
    Assignee: General Electric Company
    Inventors: Donald F. Foust, Lewis A. Bernstein
  • Patent number: 5194139
    Abstract: An acidic pretreating solution for silver plating, which comprises as an agent for preventing the silver deposition by displacement, an inorganic acid and/or an organic acid, and a silver plating process which uses this pretreating solution. The pretreating solution provides long lasting preventive effect against silver deposition by displacement and the resulting silver plated layer firmly adheres to a metal substrate surface.
    Type: Grant
    Filed: March 8, 1991
    Date of Patent: March 16, 1993
    Assignee: Nippon Mining Company Limited
    Inventors: Takashi Kinase, Yoshiyuki Hisumi
  • Patent number: 5185185
    Abstract: A process of pretreatment of metal-plating a resin molded article molded from a resin composition containing as main components a polyphenylene sulfide (PPS) resin, a glass-reinforcing agent and optionally one or more other thermoplastic resins comprises(1) treating the resin molded article by immersion in an oxidative acid solution (A treatment),(2) treatng the resulting resin molded article by immersion in an organic polar solvent-containing liquid (B treatment), and then(3) treating the resulting resin molded article by immersion in a solvent which can dissolve one or both of the glass reinforcing agent and one or more of the other thermoplastic resins (C treatment). The PPS resin contains a paraphenylene sulfide unit ##STR1## in an amount of at least 70 mole % of all recurring units. Total amount of PPS resin and the glass-reinforcing agent is at least 60% by weight of the resin composition, and the ratio of the PPS resin to the glass-reinforcing agent is in the range of 2:8 to 9:1 by weight.
    Type: Grant
    Filed: December 24, 1990
    Date of Patent: February 9, 1993
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Chiharu Nishizawa, Yoshiharu Kondo, Masaru Ohto
  • Patent number: 5166037
    Abstract: Disclosed is a method of fabricating a microelectronic package, especially a microelectronic package having copper circuitization on a dielectric substrate. The method includes the steps of depositing, imaging, developing the photoresist for additive circuitization, and forming a pattern of copper circuitization on the so exposed portions of the package. In order to avoid the formation of deleterious air bubbles on the exposed walls of the imaged and developed resist, the panel is exposed to and wetted by a liquid mist.
    Type: Grant
    Filed: February 14, 1991
    Date of Patent: November 24, 1992
    Assignee: International Business Machines Corporation
    Inventors: John M. Atkinson, Russell E. Darrow, John D. Larnerd, Ronald J. Moore
  • Patent number: 5145572
    Abstract: The process for manufacturing through-hole contacting plated printed circuit boards by direct metal electrodeposition on catalytically activated surfaces of the substrate material is improved by pre-treatment prior to electrodepositing the metal, preferably with a solution containing one or more nitrogen-containing organic compounds.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: September 8, 1992
    Assignee: Blasberg Oberflachentechnik GmbH
    Inventors: Jurgen Hupe, Herbert Iwan
  • Patent number: 5143592
    Abstract: Described herein is a process for desmearing and etching back the surface of a nonconductive substrate which comprises (a) contacting the substrate with a strong acid; (b) then contacting the substrate with an aqueous basic solution; and (c) contacting the substrate with a reducing agent dissolved in a strong acid.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: September 1, 1992
    Assignee: Olin Corporation
    Inventor: Salvador Toro
  • Patent number: 5137618
    Abstract: The invention is for the formation of multilayer circuit boards where layers are formed sequentially using selective plating techniques and imaging of dielectric materials to achieve fine line resolution and interconnections between circuits. The invention permits the sequential formation of multilayers of higher density using imaging techniques. The method may also be used in single-sided and double-sided circuit board fabrication and for inner layers used in multilayer circuit boards.
    Type: Grant
    Filed: June 7, 1991
    Date of Patent: August 11, 1992
    Assignee: Foster Miller, Inc.
    Inventors: James M. Burnett, Richard J. Mathisen
  • Patent number: 5104507
    Abstract: An electrodeposition method wherein a conductive substrate such as, for example, a metal fastener is first coated by means of an anodic electrodeposition process, then subjected to thermal curing, and then subjected to a cathodic electrodeposition process. The anodic electrodeposition process is carried out until the coating insulates the substrate at which point the coating process stops. The curing step lowers the dielectric strength of the anodically deposited coating, thereby allowing the substrate to accept a cathodically deposited top coat. The resultant coated substrate demonstrates superior corrosion resistance properties and improved cosmetic appeal.
    Type: Grant
    Filed: October 2, 1989
    Date of Patent: April 14, 1992
    Assignee: Illinois Tool Works Inc.
    Inventor: Mark J. Offenburger
  • Patent number: 5100516
    Abstract: A high volume workpiece treating system includes horizontally arranged treating staions, including vertically arranged treating stations. A conveyor system moves workpieces sequentially and cyclically through the vertically arranged treating stations so that, while one treating station is loaded with workpieces and carrying out a treating procedure, the next station in the vertical group is being loaded with the next batch of workpieces. A single conveyor is arranged to supply a group of vertical treating stations with workpieces and to remove the workpieces from each station at the completion of the treating process. The conveyor and treating stations are arranged to handle sequential batches of workpieces with a minimum of idle time to achieve maximum efficiency. Each group of vertical treating stations is associated with a single piece of auxiliary equipment that controls the flow of treating solution through each of the treating cells of the group.
    Type: Grant
    Filed: January 23, 1990
    Date of Patent: March 31, 1992
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Kazuyuki Nishimura, Hirohiko Ikegaya