Nickel Patents (Class 205/271)
  • Patent number: 9631293
    Abstract: Electrodeposition baths, systems and methods are provided. In some embodiments, the baths, systems and methods are used to deposit metal alloy coatings.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 25, 2017
    Assignee: Xtalic Corporation
    Inventors: Alan C. Lund, Nazila Dadvand, John Cahalen, Daniel J. Montville
  • Patent number: 9194530
    Abstract: A nickel-plated steel sheet for manufacturing a pipe having corrosion resistance against fuel vapor; and a pipe and a fuel supply pipe. In the pipe and fuel supply pipe, a nickel plating layer having a plating thickness of 0.5 to 10 ?m is formed on an inner surface of a pipe formed of a steel sheet thus having corrosion resistance against fuel vapor. In the fuel supply pipe formed of a steel sheet for supplying fuel to a fuel tank, the fuel supply pipe includes: a large-diameter pipe portion through which the fuel passes; and a small-diameter pipe portion which makes an upper portion of the large-diameter pipe portion and a lower portion of the large-diameter pipe portion communicate with each other for ventilation, and a nickel plating layer having a plating thickness of 0.5 to 10 ?m is formed on an inner surface of at least the small-diameter pipe portion.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 24, 2015
    Assignee: TOYO KOHAN CO., LTD.
    Inventors: Tatsuo Tomomori, Koh Yoshioka, Hideyuki Minagi
  • Publication number: 20150041329
    Abstract: A method of depositing nickel on a surface of an object, the method including the steps of providing a source of direct current having a positive and a negative terminal; connecting the object to the negative terminal; connecting an anode to the positive terminal; and submerging the object and anode in a solution comprising nickel. The anode is positioned at a distance equal to or less than 2 mm from the surface of the object and when the source of direct current is switched on, nickel in the solution comprising nickel is deposited on the surface of the object.
    Type: Application
    Filed: April 10, 2014
    Publication date: February 12, 2015
    Inventor: Mohammad Sakhawat HUSSAIN
  • Patent number: 8912126
    Abstract: A substrate of the present invention includes a copper layer, an alloy layer containing copper and nickel, formed on the copper layer, a nickel layer formed on the alloy layer, and an intermediate layer formed on the nickel layer. The concentration of nickel in the alloy layer at the interface between the alloy layer and the nickel layer is greater than the concentration of nickel in the alloy layer at the interface between the alloy layer and the copper layer. According to the present invention, there can be provided a substrate that allows the AC loss of a superconducting wire to be reduced, a method of producing a substrate, a superconducting wire, and a method of producing a superconducting wire.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Takashi Yamaguchi, Masaya Konishi, Hajime Ota
  • Publication number: 20140100112
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. As exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. An exemplary article may comprise a biaxially textured base material, and at least one biaxially textured layer selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer is formed by electrodeposition on the biaxially textured base material.
    Type: Application
    Filed: October 16, 2013
    Publication date: April 10, 2014
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: Raghu N. BHATTACHARYA, Sovannary PHOK, Priscila SPAGNOL, Tapas CHAUDHURI
  • Publication number: 20140069816
    Abstract: Disclosed herein are a nickel plating solution and a method for forming a nickel layer on an external electrode of a chip component by using the nickel plating solution, the nickel plating solution including: a nickel ion; a chloride ion; and a pH buffer, wherein the pH buffer is used by mixing an inorganic acid, and an organic acid and a salt thereof, so that the damage to a body of the chip component can be reduced by containing organic acid and a salt thereof in the nickel plating solution for forming the nickel plating layer on the external electrode of the chip component having a body formed of a material including ferrite or manganese oxide.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 13, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Mi Geum KIM, Hyo Seung NAM
  • Patent number: 8529747
    Abstract: An exposed surface on a steel component is prepared for an application of a nickel high speed solution. The nickel high speed solution is applied to the exposed surface to create an intermediate surface on the component. The intermediate surface is prepared for an application of a nickel sulfamate solution. The nickel sulfamate solution is applied to the intermediate surface to create a duplex brush plating.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: September 10, 2013
    Assignee: The Boeing Company
    Inventors: Stephen P. Gaydos, Mary Ann Gilman
  • Patent number: 8523966
    Abstract: The surface of cutters for dentistry is rendered passive to electroplating by immersion in a concentrated aqueous solution of nitric acid for a certain period of time. This is followed by painting a length including the surface marked out by the slots, the surface inside the slots and the surface at the tip, using an electrically insulating paint resistant to acids. Each cutter is then ground using a grinding wheel with rotating disk having an abrasive edge shaped like the continuous profile of the painted surface. Grinding removes the paint together with a micrometric layer of metal from the surface except for that inside the slots. The shank is ground and painted for a length adjacent to the slots.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: September 3, 2013
    Assignee: North Bel International Srl
    Inventor: Fabio Cantoni
  • Publication number: 20130199936
    Abstract: Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Jiguang Zhang, Wu Xu, Gordon L. Graff, Xilin Chen, Fei Ding, Yuyan Shao
  • Publication number: 20130188296
    Abstract: In one embodiment, an electrochemical system includes an interconnector busbar including a substrate and a coating contacting the substrate, the coating including a layer of electroplated elemental nickel.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Humi Widhalm
  • Publication number: 20130168259
    Abstract: An electrolytic bath for electrodeposition includes nickel salt, phosphoric acid, phosphonic acid, and boric acid in solution. A method for producing an electrolytic bath includes the steps of mixing a nickel salt, phosphoric acid, phosphonic acid, and boric acid, and adding nickel carbonate in order to increase the pH value.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 4, 2013
    Applicant: IPT International Plating Technologies GmbH
    Inventor: IPT International Plating Technologies GmbH
  • Publication number: 20130089751
    Abstract: The present invention provides a steel sheet for a container including a cold-rolled steel sheet and a composite film formed on the cold-rolled steel sheet through an electrolysis process in a solution containing: at least one metal ion of an Sn ion, an Fe ion, and an Ni ion; Zr ion; a nitric acid ion: and an ammonium ion, in which the composite film contains at least one element of: Zr of 0.1 to 100 mg/m2 in equivalent units of metal Zr; Sn of 0.3 to 20 g/m2 in equivalent units of metal Sn; Fe of 5 to 2000 mg/m2 in equivalent units of metal Fe; and Ni of 5 to 2000 mg/m2 in equivalent units of metal Ni.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 11, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Shigeru Hirano, Akira Tachiki, Hirokazu Yokoya, Morio Yanagihara, Makoto Kawabata
  • Patent number: 8394507
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the CLTE of the metallic layer and the one of the substrate is mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 12, 2013
    Assignee: Integran Technologies, Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha
  • Patent number: 8354036
    Abstract: A method for the pre-treatment of titanium components for the subsequent coating thereof is provided. The method includes at least the following steps: a) etching of the component in an acidic solution containing fluoride and nitric acid (HNO3); b) activation pickling of the etched component in a solution containing at least sodium nitrate (NaNO3) and tetrafluoroboric acid (HBF4); and c) activation of the activation-pickled component in a bath containing acid or in an acidic bath containing nickel.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: January 15, 2013
    Assignee: MTU Aero Engines GmbH
    Inventors: Helena Catalan-Asenjo, Michael Scheid, Josef Linska, Matthias Schmidt
  • Patent number: 8337688
    Abstract: Disclosed are metal plating compositions for plating a metal on a substrate. The metal plating compositions include compounds which influence the leveling and throwing performance of the metal plating compositions. Also disclosed are methods of depositing metals on a substrate.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: December 25, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo U. Desmaison, Zukra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8329018
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: December 11, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo U. Desmaison, Zukra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8192607
    Abstract: An electrolytic composition for the deposition of a matt metal layer onto a substrate and deposition process where the composition comprises a source of metal from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, In, Sn, Sb, Re, Pt, Au, Bi, and combinations thereof; a substituted or unsubstituted polyalkylene oxide or its derivative as an emulsion and/or dispersion former; and a compound comprising fluorated or perfluorated hydrophobic chains or which is a polyalkylene oxide substituted quaternary ammonium compound as wetting agent; wherein the electrolytic composition forms a microemulsion and/or dispersion.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: June 5, 2012
    Assignee: Enthone Inc.
    Inventors: Andreas Königshofen, Danica Elbick, Christoph Werner, Wolfgang Clauberg, Peter Pies, Andreas Möbius
  • Patent number: 8152914
    Abstract: Described is a new process for applying a metal coating to a non-conductive substrate comprising the steps of (a) contacting the substrate with an activator comprising a noble metal/group IVA metal sol to obtain a treated substrate, (b) contacting said treated substrate with a composition comprising a solution of: (i) a Cu(II), Ag, Au or Ni soluble metal salt or mixtures thereof, (ii) 0.05 to 5 mol/l of a group IA metal hydroxide and (iii) a complexing agent for an ion of the metal of said metal salt, wherein an iminosuccinic acid or a derivative thereof is used as said complexing agent.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 10, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Sigrid Schadow, Brigitte Dyrbusch, Carl Christian Fels
  • Publication number: 20120040202
    Abstract: The invention relates to the field of materials science and material physics and relates to a coated magnetic alloy material, which can be used, for example, as a magnetic cooling material for cooling purposes. The object of the present invention is to disclose a coated magnetic alloy material, which has improved mechanical and/or chemical properties. The object is attained with a magnetic alloy material with a NaZn13 type crystal structure and a composition according to the formula RaFe100-a-x-y-zTxMyLz and the surface of which is coated with a material composed of at least one element from the group Al, Si, C, Sn, Ti, V, Cd, Cr, Mn, W, Co, Ni, Cu, Zn, Pd, Ag, Pt, Au or combinations thereof The object is furthermore attained by a method in which the magnetic alloy material is coated by means of a method from the liquid phase.
    Type: Application
    Filed: December 10, 2009
    Publication date: February 16, 2012
    Inventors: Julia Lyubina, Mihaela Buschbeck, Oliver Gutfleisch
  • Patent number: 8066864
    Abstract: The invention relates to polymers which comprise at least partially cross-linked main chains constructed from repeat units of the general formula I and possibly repeat units of the general formula II and also possibly repeat units comprising five- or six-membered aza aromatics or nitrogen-containing heterocycles. Polymers of this type are used as additive in electroplating baths since these enable a better layer thickness distribution of the electroplated layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 29, 2011
    Assignee: Coventya GmbH
    Inventors: Alexander Jimenez, Thorsten Kühler
  • Publication number: 20110272289
    Abstract: Boric acid is replenished in an electroplating bath via a replenishment solution comprising boric acid dissolved in pure water, in which the solubility at room temperature is comparable to that in the plating bath at operating temperature. The replenishment solution may be used to replace all or part of the water lost by evaporation. An automated device may be used to replenish boric acid in the electroplating bath.
    Type: Application
    Filed: April 2, 2011
    Publication date: November 10, 2011
    Applicant: ECI Technology, Inc.
    Inventors: Eugene Shalyt, Peter Bratin
  • Patent number: 8048284
    Abstract: Disclosed are metal plating compositions for plating a metal on a substrate. The metal plating compositions include compounds which influence the leveling and throwing performance of the metal plating compositions. Also disclosed are methods of depositing metals on a substrate.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 1, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8048572
    Abstract: A lead acid electric storage battery uses conventional lead-acid secondary battery chemistry. The battery may be a sealed battery, an unsealed battery or a conventional multi-cellbattery. It has 12 to 25 cells in a single case. The case is less than 12 inches long and may be less than 6 inches long. The battery has a set of positive battery grids (plates) which are constructed with a core of thin titanium expanded metal having a thickness preferably, for start batteries etc. in the range 0.1 mm to 0.7 mm and most preferably 0.2 mm to 0.4 mm. The grid cores are of a titanium alloy containing a platinum group metal. The cores are coated with hot melt dip lead and are not lead electroplated. The grid cores expand and contract, with temperature changes, much less than conventional lead grids.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: November 1, 2011
    Inventor: Eliot Samuel Gerber
  • Publication number: 20110233065
    Abstract: This invention relates to an electrolyte as well as a method for the deposition of a matte metal layer on a substrate surface, where the matte metal layer is V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, In, Sn, Sb, Te, Re, Pt, Au, TI, Bi, or an alloy thereof, and there is a halogenide, sulphate, or sulfonate of an element of the group consisting of sodium, potassium, aluminum, magnesium, or boron to facilitate deposition of a smooth and even layer with much lower deposition metal requirements.
    Type: Application
    Filed: July 8, 2009
    Publication date: September 29, 2011
    Applicant: ENTHONE INC.
    Inventors: Andreas Königshofen, Danica Elbick, Helmut Starke
  • Patent number: 8012334
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 6, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Publication number: 20110155582
    Abstract: A nickel plating bath for plating a semi-bright nickel deposit on a substrate comprising a) nickel sulfateions; b) a soluble salt of chloroacefic acid, acetic acid, glycolic acid, proprionic acid, benzoic acid, salicylic acid or chlorobenzoic acid; and c) at least one diol selected from the group consisting of hexyne diol, butyne diol and combinations of the foregoing. The semi-bright nickel plating bath described herein produces sulfur-free semi-bright deposits over a very wide current density range. The plating bath described herein is at least substantially free of coumarin and produces desirable leveling characteristics. The bath also requires no aldehydes to achieve simultaneous thickness and electrolytic potential (STEP) and has extremely low stress and excellent ductility.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventor: Robert A. Tremmel
  • Publication number: 20110090621
    Abstract: A capacitor with an anode, a dielectric on the anode and a cathode on the dielectric. A blocking layer is on the cathode. A metal filled layer is on said blocking layer and a plated layer is on the metal filled layer.
    Type: Application
    Filed: December 20, 2010
    Publication date: April 21, 2011
    Inventors: Antony Chacko, Randy Hahn
  • Patent number: 7927733
    Abstract: Disclosed is a battery casing, comprising one or more sub-layers as constitutional elements, wherein at least one region selected from the group consisting of a surface of the casing and the sub-layers of the casing is coated partially or totally with a metal having a grain size of 50 nm or less. A battery comprising the same casing is also disclosed. The casing efficiently inhibits degradation of the safety of a battery, caused by internal or external factors, and thus provides a battery with excellent safety.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: April 19, 2011
    Assignees: LG Chem, Ltd., Future Metal Corporation
    Inventors: Seo Jae Lee, Ki Young Lee, Ho Kyung Byun, Yong Bum Park, Chang Sung Ha, Byung Gi Jeon, Young Tack An, Sung Min Hwang, Joon Sung Bae
  • Publication number: 20110062030
    Abstract: The electrolyte composition is used in a method of depositing metals, in particular, onto substrates, especially solar cells. The electrolyte composition is particularly suitable for the deposition of metals, in particular silver, onto solar cells. The electrolyte composition is preferably free of cyanides and contains at least one metal, preferably silver, and an iminodisuccinate derivative, preferably a sodium or postassium iminodisuccinate.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 17, 2011
    Inventors: Lothar Lippert, Stefan Dauwe
  • Publication number: 20110065804
    Abstract: Articles having metallic finishes including antimicrobial agents dispersed throughout the finish and methods of electroplating said metallic finishes on a material. The metallic finishes include highly-decorative electroplated finishes for bathroom and kitchen hardware, door hardware, and other highly lustrous products where antimicrobial protection is preferred.
    Type: Application
    Filed: March 25, 2009
    Publication date: March 17, 2011
    Applicants: PAVCO INC., MICROBAN INTERNATIONAL LTD.
    Inventors: Leonard L. Diaddario, Matthew W. Stauffer
  • Publication number: 20110045351
    Abstract: A method, including placing a substrate of a battery in a bath consisting of a metal M chosen from a metal group consisting of Fe, Ni, Co, Cu, W, V, and Mn, an oxidant selected from an oxidant group consisting of oxygen and sulfur, and a polymer. The method also includes applying an electrical current so as to form on the substrate a metal M compound cathode having a nanoscale grain structure.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 24, 2011
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Diana Golodnitsky, Hadar Mazor-Shafir, Kathrin Freedman, Tania Ripenbein
  • Publication number: 20110026187
    Abstract: The present invention provides an improved electrostatic chuck for a substrate processing system. The electrostatic chuck comprising a main body having a top surface configured to support the substrate, a power supply to apply a voltage to the main body and a sealing ring disposed between the main body and the substrate wherein the sealing ring has a conductive layer.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 3, 2011
    Inventor: Glyn J. Reynolds
  • Publication number: 20100294669
    Abstract: A method is provided for imparting corrosion resistance onto a surface of a substrate. The method comprises contacting the surface of the substrate with an electrolytic plating solution comprising (a) a source of deposition metal ions of a deposition metal selected from the group consisting of zinc, palladium, silver, nickel, copper, gold, platinum, rhodium, ruthenium, chrome, and alloys thereof, (b) a pre-mixed dispersion of non-metallic nano-particles, wherein the non-metallic particles have a pre-mix coating of surfactant molecules thereon; and applying an external source of electrons to the electrolytic plating solution to thereby electrolytically deposit a metal-based composite coating comprising the deposition metal and non-metallic nano-particles onto the surface.
    Type: Application
    Filed: December 10, 2008
    Publication date: November 25, 2010
    Applicant: ENTHONE INC.
    Inventors: Joseph A. Abys, Edward J. Kudrak, JR., Jingye Li, Chen Xu, Chonglun Fan
  • Publication number: 20100167084
    Abstract: Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).
    Type: Application
    Filed: August 1, 2005
    Publication date: July 1, 2010
    Applicant: Midwest Research Institute
    Inventors: Raghu N. Bhattacharya, Sovannary Phok, Priscila Spagnol, Tapas Chaudhuri
  • Publication number: 20100135466
    Abstract: A bonded assembly includes a member, and a substrate comprising beryllium, the substrate configured to be bonded to the member. The bonded assembly includes a first barrier applied to a surface of the substrate, a second barrier applied to a surface of the first barrier, a bonding material disposed between the second barrier and the member, and wherein the second barrier is configured to prevent dissolution of the first barrier into the bonding material.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Inventors: Gregory Alan Steinlage, Thomas C. Tiearney, Donald Robert Allen
  • Patent number: 7713388
    Abstract: A structure has at least one structure component formed of a first material residing on a substrate, such that the structure is out of a plane of the substrate. A first coating of a second material then coats the structure. A second coating of a non-oxidizing material coats the structure at a thickness less than a thickness of the second material.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: May 11, 2010
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Christopher L. Chua, Thomas Hantschel, David K. Fork, Koenraad F. Van Schuylenbergh, Yan Yan Yang
  • Publication number: 20100101962
    Abstract: A composition and method for inhibiting corrosion is disclosed. Metals and metal alloys are treated with compositions which contain inorganic and organic acids that prevent oxide formation on the metals and metal alloys.
    Type: Application
    Filed: December 29, 2009
    Publication date: April 29, 2010
    Inventors: Danny Lau, Raymund W. M. Kwok, Fai Lung Ting, Jeffrey N. Crosby
  • Publication number: 20100089613
    Abstract: Disclosed is an electronic component comprising a connecting terminal part having a surface of an electroconductive base material and a germanium-containing nickel plating film provided on the surface. In the electronic component, the plating film provided on the surface of the electroconductive base material in the connecting terminal part possesses excellent heat resistance and solder wettability.
    Type: Application
    Filed: March 10, 2009
    Publication date: April 15, 2010
    Inventors: Mamoru Takayanagi, Kazuhiro Oda, Takayoshi Michino, Takehiko Suzuki
  • Publication number: 20100044240
    Abstract: When depositing a metal or a compound of the metal from a liquid crystal phase comprising a metal compound, e.g. a metal salt, by electrochemical means, high concentrations of the salt may be employed by using an ionic surfactant in place of the commonly used non-ionic surfactant.
    Type: Application
    Filed: September 7, 2007
    Publication date: February 25, 2010
    Inventors: Jennifer Kimber, Daniel Peat
  • Patent number: 7659008
    Abstract: The invention relates to a lubricating metal coating and to a process for its preparation. The material constituting the coating in a composite material comprising a metal matrix within which talc particles are distributed as lamellae, the metal matrix being composed of a metal chosen from Fe, Co, Ni, Mn, Cr, Cu, W, Mo, Zn, Au, Ag, Pb or Sn or of an alloy of these metals or of a metal/semimetal alloy. The coating is obtained by a process consisting in carrying out an electrolytic deposition using a solution of precursors of the metal matrix of the coating which additionally comprises talc particles in suspension, which particles are modified at the surface by irreversible adsorption of a cellulose-derived compound by replacement of all or part of the hydroxyl groups.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: February 9, 2010
    Assignee: Centre National de la Recherche Scientifique
    Inventors: François Martin, Jean-Pierre Bonino, Patrice Bacchin, Stéphane Vaillant, Eric Ferrage, William Vautrin, Philippe Barthes
  • Publication number: 20090308756
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 17, 2009
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Publication number: 20090242418
    Abstract: The present invention provides a coating method, in which a composite coating layer is formed on a surface of an alloy base member by utilizing a rotary electrode device. The coating method includes the steps of: preparing an electrolytic solution containing A ion wherein A is Co or Ni; preparing a MCrAlY powder wherein M denotes at least one element selected from the group consisting of Ni and Co, and the MCrAlY powder contains at least Ni when A is Co or the MCrAlY powder contains at least Co when A is Ni; preparing a dispersion liquid by dispersing the MCrAlY powder into the electrolytic solution; immerging the cylindrical rotary electrode and the alloy base member into the dispersion liquid; and electrolyzing the surface of the alloy base member while the cylindrical rotary electrode covered with the nonwoven fabric layer is rolled on the on the surface of the alloy base member thereby to form the composite coating layer onto the surface of the alloy base member.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 1, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masahiro Saito, Yomei Yoshioka, Kazuhiro Kitayama, Hiroaki Okamoto, Yoshiaki Sakai
  • Publication number: 20090224422
    Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.
    Type: Application
    Filed: January 9, 2009
    Publication date: September 10, 2009
    Inventor: Valery M. Dubin
  • Publication number: 20090223830
    Abstract: A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.
    Type: Application
    Filed: October 2, 2006
    Publication date: September 10, 2009
    Applicants: C. UYEMURA & CO., LTD., OSAKA UNIVERSITY
    Inventors: Masanobu Tsujimoto, Isamu Yanada, Katsuaki Suganuma, Keunsoo Kim
  • Publication number: 20090123789
    Abstract: There is disclosed articles for and methods of confining volatile materials in the void volume defined by crystalline void materials. In one embodiment, the hydrogen isotopes are confined inside carbon nanotubes for storage and the production of energy. There is also disclosed a method of generating various reactions by confining the volatile materials inside the crystalline void structure and releasing the confined volatile material. In this embodiment, the released volatile material may be combined with a different material to initiate or sustain a chemical, thermal, nuclear, electrical, mechanical, or biological reaction.
    Type: Application
    Filed: May 9, 2008
    Publication date: May 14, 2009
    Inventors: William K. Cooper, James F. Loan, Christopher H. Cooper
  • Publication number: 20090084682
    Abstract: Disclosed are methods for treating metal substrates, including ferrous substrates, such as cold rolled steel and electrogalvanized steel. The methods include depositing an electropositive metal onto at least a portion of the substrate, and then contacting the substrate with a pretreatment composition that is substantially free of crystalline phosphates and chromates. The present invention also relates to coated substrates produced thereby.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Mark W. McMillen, Edward F. Rakiewicz, Richard F. Karabin, Michelle S. Miles
  • Publication number: 20090047473
    Abstract: A Ni-containing plating film includes a lower plating film and an upper plating film laminated on lower plating film. The lower plating film is formed by plating with no saccharin sodium added to a plating bath, and the upper plating film is formed by plating with saccharin sodium added to a plating bath. In the upper plating film, a NiS layer exists at a position below the film surface.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 19, 2009
    Inventors: Yoshihiro Kanada, Shio Takahashi, Koichi Fujita, Mitsuhiro Gotoh
  • Patent number: 7473343
    Abstract: Provided are a method of manufacturing a rare-earth magnet with superior corrosion resistance, and a plating bath used for the method. A first protective film including nickel and a second protective film including nickel and sulfur are laminated in order on a magnet body including a rare-earth element. The first protective film is formed through electroplating with a first plating bath including a nickel source, a conductive salt and a pH stabilizer, and having a concentration of the nickel source of 0.3 mol/l to 0.7 mol/l on a nickel atom basis and a conductivity of 80 mS/cm or over. Thereby, a rare-earth-rich phase can be prevented from being leached out, and the production of pinholes can be reduced. Therefore, the corrosion resistance of the rare-earth magnet can be improved.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: January 6, 2009
    Assignee: TDK Corporation
    Inventors: Takeshi Sakamoto, Yasuyuki Nakayama, Tatsuhiro Iwai, Tomomi Yamamoto
  • Publication number: 20080190310
    Abstract: A method for coating a printing press cylinder, namely a plate cylinder or a transfer cylinder, is disclosed. In an embodiment, the method includes providing a printing press cylinder with a metallic cylinder basic body, which has an outer surface area and at least one lockup slot, and applying a coating containing nickel to the cylinder basic body in the region of the outer surface area as well as in the region of the, or each, lockup slot by autocatalytic and/or chemical deposition.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 14, 2008
    Applicant: MAN Roland Druckmaschinen AG
    Inventors: Ralph KLARMANN, Christian Fuchs
  • Publication number: 20080187675
    Abstract: Disclosed herein arc novel liposome compositions generally including a foreign inclusion (e.g., diamond) component, and a liposome (e.g., i paucilamellar liposome) component. Also disclosed are methods of using these composition for plating and plate obtained thereby. Novel liposome compositions including components such as diamonds, are also disclosed, which can be used in a variety of applications, such as in abrasive, cosmetic or medical applications.
    Type: Application
    Filed: September 10, 2007
    Publication date: August 7, 2008
    Applicant: Frank C. Scarpa
    Inventors: Frank C. Scarpa, Dennis Johnson