Capacitor For Signal Storage In Combination With Non-volatile Storage Means Patents (Class 257/298)
  • Publication number: 20040178434
    Abstract: As for a “system on panel” in which a control circuit and a driver circuit as well as a display device are integrally formed over a substrate such as a glass substrate, more sophistication is expected by fabricating an input unit over the same substrate. Input of a semiconductor device is generally performed by pushing or touching a button like input unit with fingers or the like. In that case, glass is often used for a counter substrate; however, it is difficult to form a button from glass and to provide it directly on the substrate due to the nature of the material. It is an object of the present invention to provide a semiconductor device at a lower price, in which the input operation can be performed without employing an external input unit.
    Type: Application
    Filed: March 8, 2004
    Publication date: September 16, 2004
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Toshihiko Saito
  • Publication number: 20040178433
    Abstract: A DRAM memory cell includes a semiconductor substrate, an interlayer dielectric having storage node contact plugs that is formed on the semiconductor substrate, and storage node electrodes that are formed on the interlayer dielectric to contact the storage node contact plugs. The storage node contact plugs are formed such that an entrance portion is formed to be larger in linewidth than a contacting portions, and they are formed in gaps between the bit line structures. From a plan view perspective, the storage node electrodes of one column are offset from the storage node contact plugs in an adjacent column, such that the storage node electrodes are in a diagonal arrangement throughout the semiconductor substrate.
    Type: Application
    Filed: November 7, 2003
    Publication date: September 16, 2004
    Inventors: Cheol-ju Yun, Sun-hoo Park
  • Patent number: 6791137
    Abstract: In semiconductor integrated circuit devices having fine memory cells and a reduced bit line capacity, a side wall insulating film of gate electrodes (word line) is made of silicon nitride and a side wall insulating film of silicon oxide having a dielectric constant smaller than that of the side wall insulating film made of silicon nitride, thereby reducing the capacity for a word line formed over the gate electrode (word line). By setting the level of the upper end of the side wall insulating film made of silicon oxide to be lower than that of the top face of a cap insulating film, the diameter in the upper part of a plug buried in each space (contact holes) between the gate electrodes is set larger than the diameter in the bottom part to assure a contact area between the contact hole and a through hole formed on the contact hole.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: September 14, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Satoru Yamada, Kiyonori Oyu, Takafumi Tokunaga, Hiroyuki Enomoto, Toshihiro Sekiguchi
  • Patent number: 6791135
    Abstract: A semiconductor device includes: a digital circuit including a first capacitive element of metal-insulator-metal structure, and an analogue circuit including a second capacitive element of metal-insulator-metal structure. Bottom electrodes, capacitive insulation layers, and top electrodes of the first and second capacitive elements are formed in the same or common processes to each other. The bottom electrodes are electrically connected with contacts in an underlying inter-layer insulator. The top electrodes are electrically connected with other contacts in an overlying inter-layer insulator.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 14, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Motohiro Takenaka
  • Patent number: 6787411
    Abstract: Disclosed are a gain cell structure capable of making a memory cell compact in size and a method of manufacturing the same at low cost. A memory cell is constituted of a reading MIS transistor and a writing MIS transistor. The reading MIS transistor has a pair of n+ type semiconductor regions (source region and drain region) formed on a main surface of a semiconductor substrate and a first gate electrode formed on a path of the n+ type semiconductor regions 13 via a first gate insulating film. The writing MIS transistor is arranged on the reading MIS transistor and has a layered structure made by laminating a lower semiconductor layer (source region), an intermediate semiconductor layer (channel forming region), and an upper semiconductor layer (drain region) in this order. The writing MIS transistor has a vertical structure in which a second gate electrode is arranged on both sidewalls of the layered structure via a second gate insulating film.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: September 7, 2004
    Assignees: Renesas Technology Corp., Hitachi ULSI Systems Co., Ltd.
    Inventors: Teruaki Kisu, Kazuo Nakazato, Masahito Takahashi
  • Patent number: 6787833
    Abstract: This invention relates to contact structures for use in integrated circuits and methods of fabricating contact structures. In one embodiment, a contact structure includes a conductive layer, one or more barrier layers formed above the conductive layer, and a barrier structure encircling the polysilicon layer and the one or more barrier layers. In an alternate embodiment, a contact structure is fabricated by forming a polysilicon layer on a substrate, forming a tungsten nitride layer above the polysilicon layer, and etching the polysilicon layer and the tungsten nitride layer to a level below the surface of a substrate structure. A silicon nitride layer is formed above the tungsten nitride layer, and a ruthenium silicide layer is formed above the silicon nitride layer. The ruthenium silicide layer is then polished.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: September 7, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn
  • Patent number: 6784474
    Abstract: A memory cell in a DRAM, which is a semiconductor memory device, is provided with a bit line 21a connected to a bit line plug 20b and a local interconnect 21b, over a first interlevel insulating film 18. A conductor sidewall 40 of TiAlN is formed on side faces of hard mask 37, upper barrier metal 36, Pt film 35 and BST film 34. No contact hole is provided on the Pt film 35 constituting an upper electrode 35a. The upper electrode 35a is connected to an upper interconnect (a Cu interconnect 42) via the conductor sidewall 40, dummy lower electrode 33b, dummy cell plug 30 and local interconnect 21b. The Pt film 35 is not exposed to a reducing atmosphere, and therefore deterioration in characteristics of the capacitive insulating film 34a can be prevented.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: August 31, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisashi Ogawa, Yoshihiro Mori, Akihiko Tsuzumitani
  • Patent number: 6784481
    Abstract: A flash memory having a charge-storage dielectric layer. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 31, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You-Cheol Shin, Jong-Woo Park, Jung-Dal Choi
  • Patent number: 6784041
    Abstract: A NAND type semiconductor device is disclosed, in which a first insulating film embedded between the memory cell gates and between the memory cell gates and the selecting gate does not contain nitrogen as a major component, a second insulating film is formed on the first insulating film, and an interlayer insulating film is formed on the second insulating film whose major component is different from a manor component of the second insulating film.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: August 31, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuji Takeuchi, Masayuki Ichige, Akira Goda
  • Patent number: 6784055
    Abstract: A flash memory having a charge-storage dielectric layer and a method for forming the same are provided. According to one embodiment, charge-storage dielectric layers are formed over the first and second active regions. The charge-storage layer over the first active region is not connected to the charge-storage layer over the second active region. A gate line overlies the charge-storage layer and extends across the first and second active regions and the isolation region. The charge-storage layer can be formed only where a gate line intersects an active region of a semiconductor substrate, not on an isolation region. Thus, undesirable influence or disturbance from adjacent memory cells can be avoided.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: August 31, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: You-Cheol Shin, Jong-Woo Park, Jung-Dal Choi
  • Patent number: 6781178
    Abstract: A solid state image pickup device is provided which performs a new form of image signal reading operation. The image pickup deice comprises a semiconductor substrate and a plurality of pixels that are formed on the semiconductor substrate, with each pixel having a photodetection element, which generates signal charges upon receiving incident light, a first MOS transistor structure, which has a first floating gate that is disposed above the semiconductor substrate and a first control gate that is capacitively coupled to the first floating gate, and a second MOS transistor structure, which has a second floating gate that is disposed above the semiconductor substrate and is electrically connected to the first floating gate and a second control gate that is capacitively coupled to the second floating gate.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: August 24, 2004
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Makoto Shizukuishi
  • Patent number: 6777731
    Abstract: A magnetoresistive tunnel element includes first and second electrodes and a tunnel barrier disposed between the two electrodes, the tunnel barrier having at least two barrier layers made of different barrier materials, the profile of a quantum mechanical barrier height within the tunnel barrier being asymmetrical and the conductivity of the tunnel element, therefore, being dependent on the polarity of a voltage Um between the two electrodes. Also provided is a magnetoresistive memory cell, a cell array of magnetoresistive memory cells, and a memory device having cell arrays.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: August 17, 2004
    Assignee: Infineon Technologies AG
    Inventor: Franz Kreupl
  • Patent number: 6773929
    Abstract: The present invention provides a ferroelectric memory device and a manufacturing method forming the same capable of preventing characteristic deterioration of a ferroelectric layer due to an plasma. The ferroelectric memory device divided into a first area including a plurality of ferroelectric capacitor and a second area not including the ferroelectric capacitor, includes a semiconductor substrate; a first insulating layer formed on the semiconductor substrate; and a bottom electrode of the ferroelectric capacitor formed in the first insulating layer, wherein a top surface of the bottom electrode is planarized with the first insulating layer; a ferroelectric layer of the ferroelectric capacitor covering not only the bottom electrode but also all the first area; and a top electrode of the ferroelectric capacitor formed on the ferroelectric layer and overlapped with the bottom electrode.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 10, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sang-Hyun Oh, Chung-Won Suh, Jin-Yong Seong
  • Publication number: 20040150024
    Abstract: An integrated memory circuit includes at least one memory cell formed by a single transistor whose gate (GR) has a lower face insulated from a channel region by an insulation layer containing a succession of potential wells, which are substantially arranged at a distance from the gate and from the channel region in a plane substantially parallel to the lower face of the gate. The potential wells are capable of containing an electric charge which is confined in the plane and can be controlled to move in the plane towards a first confinement region next to the source region or towards a second confinement region next to the drain region so as to define two memory states for the cell.
    Type: Application
    Filed: November 5, 2003
    Publication date: August 5, 2004
    Applicant: STMICROELECTRONICS S.A.
    Inventors: Pascale Mazoyer, Alexandre Villaret, Thomas Skotnicki
  • Patent number: 6770925
    Abstract: A structure of a flash memory, having a deep P-well formed in an N-type substrate, an N-well formed in the deep P-well, a stacked gate structure formed on the substrate, an N-type source region and an N-type drain region formed in an N-well at two respective sides of the stacked gate, where the N-type source region is in electric contact with the N-well, a P-well formed in the N-well to encompass the N-type source region and to extend towards the N-type drain region through the portion under the stacked gate, and a contact window formed at the junction of the N-type source region and the P-well to electrically short circuit the N-type source region and the P-well. The flash memory uses F-N tunneling effect for programming and the channel F-N tunneling effect to perform the erase operation.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: August 3, 2004
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Chih-Wei Hung, Da Sung
  • Patent number: 6767785
    Abstract: Disclosed are methods of forming resistors and diodes from semiconductive material, and static random access memory (SRAM) cells incorporating resistors, and to integrated circuitry incorporating resistors and diodes. A node to which electrical connection is to be made is provided. An electrically insulative layer is provided outwardly of the node. An opening is provided in the electrically insulative layer over the node. The opening is filed with semiconductive material which depending on configuration serves as one or both of a vertically elongated diode and resistor.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: J. Brett Rolfson, Monte Manning
  • Patent number: 6766960
    Abstract: A smart card having improved non-volatile memory and a processor. The memory includes of a plurality of memory cells. The semiconductor memory cells each have a data storage element constructed around an ultra-thin dielectric, such as gate oxide. The gate oxide is used to store information by stressing the ultra-thin dielectric into breakdown (soft or hard breakdown) to set the leakage current level of the memory cell. The memory cell is read be sensing the current drawn by the cell. A suitable ultra-thin dielectric is high quality gate oxide of about 50 angstroms thickness or less, as commonly available from presently available advance CMOS logic process.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: July 27, 2004
    Assignee: Kilopass Technologies, Inc.
    Inventor: Jack Zezhong Peng
  • Patent number: 6768150
    Abstract: A magnetic memory cell is disclosed. The memory cell includes first conductor and second conductors coupled to first and second electrodes of a magnetic element. A plurality of memory cells is interconnected by first and second conductors to form a memory array or block. The second conductor is coupled to the second electrode via a conductive strap having a fuse portion. The fuse portion can be blown to sever the connection between the second conductor and magnetic element, Nitride.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: July 27, 2004
    Assignee: Infineon Technologies Aktiengesellschaft
    Inventors: Kia Seng Low, Joerg Dietrich Schmid
  • Patent number: 6768154
    Abstract: There is provided a semiconductor device having a storage node free of defect in geometry and capable of preventing a cylinder from collapsing, protecting an interface with an SC's polycrystalline silicon barrier metal against oxidation, and furthermore reducing current leakage. The device includes a storage node contact insulation film disposed on a semiconductor substrate and provided with a storage node, a storage node insulation film and the storage node penetrating the storage node insulation film and positioned to extend from the storage node insulation film upward, and a storage node contact is recessed toward a bottom of the storage node and the storage node's bottom has a protruding geometry embedded in the recess.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: July 27, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Miyajima
  • Patent number: 6765257
    Abstract: In FLASH EPROM cells, source diffusion continuity between horizontal and vertical source lines is provided by an arsenic implant under the stack in vertical source lines.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: July 20, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Freidoon Mehrad, Kyle A. Picone
  • Patent number: 6765252
    Abstract: Disclosed are a DRAM cell having independent and asymmetric source/drain regions and a method of forming the same. The DRAM cell has an asymmetric structure in which source junctions are thick and drain junctions are thin. Therefore, the source/drain junctions have an asymmetric configuration via separate ion injection steps independent from each other, thereby preventing leakage current due to punch-through. Also, it is not necessary to form an ion injection layer for restraining punch-through, and a relatively low value of electric field is applied to the junctions to prolong refresh time. Further, the relatively thick spacer can be formed adjacent to the source regions thereby decreasing GIDL and further reducing electric field.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: July 20, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Bong Nam
  • Patent number: 6759709
    Abstract: A nonvolatile semiconductor memory device including a semiconductor substrate 1, a plurality of memory cells 1a on the semiconductor substrate including transistors having floating gate electrodes and control gate electrodes. Source lines 30 are formed in a self-alignment manner with respect to a control gate electrodes. The surface of the semiconductor substrate 1 has such a periodical unevenness along the source lines 30 which has a diffusion layer 30a that an impurity is distributed along the surface of the semiconductor substrate 1 and a buried diffusion layer 30b that an impurity is distributed at a position deeper than said diffusion layer 30a. The buried diffusion layer 30b connects a plurality of portions of the diffusion layers 30a under the bottom surface 5b of the recess portion 5 to each other.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 6, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Shu Shimizu
  • Patent number: 6753618
    Abstract: An MIM capacitor with low leakage and high capacitance is disclosed. A layer of titanium nitride (TiN) or boron-doped titanium nitride (TiBN) material is formed as a lower electrode over an optional capacitance layer of hemispherical grained polysilicon (HSG). Prior to the dielectric formation, the first layer may be optionally subjected to a nitridization or oxidation process. A dielectric layer of, for example, aluminum oxide (Al2O3) formed by atomic layer deposition (ALD) is fabricated over the first layer and after the optional nitridization or oxidation process. An upper electrode of titanium nitride (TiN) or boron-doped titanium nitride (TiBN) is formed over the dielectric layer.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Thomas M. Graettinger
  • Patent number: 6753570
    Abstract: A non-volatile memory device includes insulators between floating gates. The insulators each include both a lower trench-fill insulator portion in a trench in the substrate, and an upper protruding portion that protrudes from the substrate. Floating gates extend between the protruding portions of adjacent insulators, and are in contact with the protruding portions of the adjacent insulators. An interpoly dielectric overlies the floating gates, and a control gate overlies the interpoly dielectric. The insulators and the floating gates may make a substantially planar surface for the interpoly dielectric, which may themselves be planar.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: June 22, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Nicholas H. Tripsas, Kuo-Tung Chang, Mark T. Ramsbey
  • Publication number: 20040113192
    Abstract: Briefly, in accordance with an embodiment of the invention, a phase change memory and a method to manufacture a phase change memory is provided. The phase change memory may include a memory material and a first tapered contact adjacent to the memory material. The phase change memory may further include a second tapered contact separated from the first tapered contact and adjacent to the memory material, wherein the first and second tapered contacts are adapted to provide a signal to the memory material.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 17, 2004
    Inventor: Guy C. Wicker
  • Patent number: 6750506
    Abstract: A high-voltage semiconductor device includes: a drain region; a metal electrode electrically connected to the drain region; and electrically floating plate electrodes formed on a field insulating film over a semiconductor regionm. Parts of the metal electrodes are extended onto the interlevel dielectric film and located over the respective plate electrodes. Each part of the metal electrode is capacitively coupled to associated one of the plate electrodes.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: June 15, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaaki Noda, Teruhisa Ikuta
  • Patent number: 6744088
    Abstract: Briefly, in accordance with an embodiment of the invention, a phase change memory and a method to manufacture a phase change memory is provided. The phase change memory may include an electrode, an adhesive material, an insulating material between the electrode and the adhesive material, wherein a portion of the adhesive material, a portion of the insulating material, and a portion of the electrode form a substantially planar surface. The phase change memory may further include a phase change material on the substantially planar surface and contacting the electrode, the adhesive material, and the insulating material.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: June 1, 2004
    Assignee: Intel Corporation
    Inventor: Charles H. Dennison
  • Patent number: 6744085
    Abstract: A method of manufacturing an electronic device includes the steps of: (a) preparing a (001) oriented ReO3 layer; and (b) forming a (001) oriented oxide ferroelectric layer having a perovskite structure on the ReO3 layer. Preferably, the step (a) includes the steps of: (a-1) preparing a (001) oriented MgO layer; and (a-2) forming a (001) oriented ReO3 layer on the MgO layer. An electronic device capable of obtaining a ferroelectric layer of a large polarization and a method of manufacturing the same are provided.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: June 1, 2004
    Assignee: Fujitsu Limited
    Inventors: Kenji Maruyama, Masao Kondo, Masaki Kurasawa
  • Patent number: 6744089
    Abstract: A self-aligned lateral-transistor DRAM cell structure is disclosed by the present invention, in which a trench structure comprises a trench region and a trench-isolation region being formed in a side portion of the trench region and a self-aligned lateral-transistor structure comprises a merged common-source diffusion region, a self-aligned gate-stack region, and a self-aligned common-drain diffusion region being formed in another side portion of the trench region by using spacer-formation techniques. The unit cell size of the self-aligned lateral-transistor DRAM cell structure can be fabricated to be equal to 6 F2 or smaller. The self-aligned lateral-transistor DRAM cell structure is used to implement two contactless DRAM arrays for high-speed read and write operations.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 1, 2004
    Assignee: Intelligent Sources Development Corp.
    Inventor: Ching-Yuan Wu
  • Patent number: 6740918
    Abstract: The invention provides a semiconductor memory device having a trench part serving as an isolation area formed on semiconductor substrate, control gate used for controlling write-operation and read-operation formed orthogonally to the trench part, a source line of a first diffused layer formed on the surface of the trench part along one of the longitudinal sides of the control gate, and on the semiconductor substrate between the neighboring trench parts, silicide layer formed over the surface of the source line, and a drain of a second diffused layer formed between the trench parts in the other of the longitudinal sides.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: May 25, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Makoto Ooi
  • Patent number: 6740603
    Abstract: A method for fabricating a non-FLASH integrated circuit that minimizes Vmin shift. A protective overcoat (134) is deposited to protect and encapsulate the top metal interconnect layer (118). The protective overcoat (134) is patterned and etched to form bondpad windows either before or after depositing the final metal interconnect layer (136). A sinter that is normally performed after forming the bondpad windows is either omitted or the temperature of the sinter is kept at or below 350° C.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: May 25, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Steven P. Zuhoski, Mercer L. Brugler, Cameron Gross, Edward L. Mickler
  • Patent number: 6737694
    Abstract: A ferroelectric memory device along with a method of forming the same are provided. A first interlayer insulating layer is formed on a semiconductor substrate. A buried contact structure is formed on the first interlayer insulating layer. The buried contact structure is electrically connected to the substrate through a first contact hole extending through the first interlayer insulating layer. A blocking layer covers or encapsulates the buried contact structure and the first interlayer insulating layer. A second interlayer insulating layer is formed on the blocking layer. A ferroelectric capacitor formed on the second interlayer insulating layer and is electrically connected to the buried contact structure through a second contact hole that penetrates the second interlayer insulating layer and the blocking layer.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: May 18, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Nam Kim, Yoon-Jong Song
  • Patent number: 6734479
    Abstract: In a semiconductor integrated circuit device having a memory cell which includes a MIS.FET and a capacitance element, the conductivity type of a low-resistance polysilicon film which constitutes the gate electrode (5g) of the memory cell selecting MIS.FET (Q) of n-channel type constituting the memory cell is set at p+-type in order to enhance the refresh characteristics of the memory cell.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: May 11, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Ogishima, Kiyonori Ohyu
  • Patent number: 6734481
    Abstract: Lead interconnection layers and are electrically connected to the respective source and drain regions of a pair of a monitor transistor MT. Lead interconnection layers and are both formed on same insulating layer and on same insulating layer as is a bit line conductive layer of a memory cell area. Furthermore, lead interconnection layers and have respective contact sections each with a large width and to each of which a needle of a probe can be connected externally. With such a structure adopted, there can be obtained a semiconductor device capable of monitoring a transistor characteristic correctly and easily by reducing parasitic resistance, further, at an early stage in a wafer process; and a fabrication process therefor.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 11, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Masahiko Takeuchi
  • Publication number: 20040084706
    Abstract: An object of the present invention is to provide a semiconductor memory device suitable for larger-capacity storage because of its ability to store 3 or more bits in one element and capable of a high-speed and high-efficiency write operation due to a reduced leakage current during the write operation and provide a fabrication method therefor. According to the present invention, each of elements has a source region, a drain region, a control gate, two charge storage regions, and one or more assist gates. During a write operation, source side injection writing is performed with respect to a write target element by using the assist gates, while adjacent elements are isolated by field isolation using the assist gates.
    Type: Application
    Filed: October 21, 2003
    Publication date: May 6, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Taro Osabe, Tomoyuki Ishii, Takashi Kobayashi
  • Publication number: 20040084705
    Abstract: A memory device includes a coupling capacitor and a field-effect transistor. The coupling capacitor is formed from (1) a first dopant region in a second dopant region on a substrate, (2) a gate dielectric atop the first dopant region, and (3) a first gate conductor atop the gate dielectric. The coupling capacitor has the first gate conductor coupled to a second gate conductor of the field-effect transistor. A voltage can be applied to the second dopant region to isolate the coupling capacitor from the substrate by reverse biasing a PN junction formed between the first dopant region and the second dopant region.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 6, 2004
    Inventor: Paul M. Moore
  • Patent number: 6730949
    Abstract: A magnetoresistance effect devices having a magnetization free layer free to rotate in an applied magnetic field. The magnetization free layer may include first and second ferromagnetic material layers with a nonmagnetic material layer disposed between the two ferromagnetic material layers. Those ferromagnetic materials are antiferromagnetically coupled with each other at a magnetic coupling field J (−3 [kOe]≦J<0 [kOe]) or ferromagnetically coupled with each other. Alternatively, the magnetization free film includes a first ferromagnetic material layer including a center region having a first magnetization and edge regions having a second magnetization different from the first magnetization and a second ferromagnetic material layer including a center region having a third magnetization parallel to the first magnetization and edge regions having a fourth magnetization different from the third magnetization.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: May 4, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuya Kishi, Minoru Amano, Yoshiaki Saito, Shigeki Takahashi, Kentaro Nakajima, Masayuki Sagoi
  • Patent number: 6727541
    Abstract: A semiconductor memory device having a trench capacitor, comprising: a semiconductor substrate of a fist conductivity type, having a trench which is formed from an upper surface of the semiconductor substrate to a predetermined depth; a capacitor formed in a lower portion of the trench and the semiconductor substrate of the fist conductivity type which is adjacent to the lower portion of the trench; a first conductive layer formed in the first trench and right above the first capacitor to which the first conductive layer is electrically connected; a first insulation film formed in the trench and right above the first conductive layer; a first diffusion layer formed in the semiconductor substrate of the fist conductivity type which is adjacent to the first conductive layer and the first insulation film, the first diffusion layer served as a source/drain electrode; a gate insulation film formed on a predetermined portion of the trench, the predetermined portion being located above the first insulation film; a s
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: April 27, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenichi Nishikawa
  • Patent number: 6727548
    Abstract: An active negative differential resistance element (an NDR FET) and a memory device (such as an SRAM) using such elements is disclosed. Soft error rate (SER) performance for NDR FETs and such memory devices are enhanced by adjusting a location of charge traps in a charge trapping layer that is responsible for effectuating an NDR behavior. Both an SER and a switching speed performance characteristic can be tailored by suitable placement of the charge traps.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: April 27, 2004
    Assignee: Progressant Technologies, Inc.
    Inventor: Tsu-Jae King
  • Publication number: 20040075127
    Abstract: The invention is directed to a thin-film capacitor device that is adapted to be mounted on a printed wiring board together with an LSI device. After forming a plurality of grooves in a core substrate, a first conductive film is formed, and a first conductor is filled into each groove. After forming a metal film on the first conductive film, a dielectric film is generated by selective anodic oxidation of the metal film. A second conductive film is formed on the dielectric film, and an electrode connected to the second conductive film is formed. After removing the back surface of the core substrate until the grooves are exposed therein, an electrode for connection to the first conductor in each groove is formed. A capacitor is formed by the first conductive film and second conductive film sandwiching the dielectric film therebetween.
    Type: Application
    Filed: September 30, 2003
    Publication date: April 22, 2004
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Tomoo Yamasaki, Kiyoshi Ooi, Akio Rokugawa
  • Patent number: 6724026
    Abstract: An improved cell design for series memory architecture is disclosed. The improved cell design facilitates the formation of capacitors using a single etch process instead of two, as conventionally required. In one embodiment, each capacitor of a capacitor pair is provided with at least one plug contacting a common diffusion region of two adjacent cell transistors. In another embodiment, a large plug with sufficient overlap to the bottom electrodes of pair of capacitors is used.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 20, 2004
    Assignees: Infineon Technologies Aktiengesellschaft, Kabushiki Kaisha Toshiba
    Inventors: Michael Jacob, Andreas Hilliger, Thomas Roehr, Susumo Shuto, Toru Ozaki
  • Patent number: 6720598
    Abstract: An IC with a memory array having a series architecture is disclosed. The memory cells of the series group are arranged in pairs in which the capacitors of a memory cell pair are stacked one on top of the other. This advantageously allows for larger capacitor arrays without increasing the chip size.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: April 13, 2004
    Assignee: Infineon Technologies Aktiengesellschaft
    Inventor: Joerg Wohlfahrt
  • Patent number: 6720596
    Abstract: A nonvolatile semiconductor storage element, which is provided with a floating gate electrode, and a dielectric capacitor and a ferroelectric capacitor both connected to the floating gate electrode. By applying voltage between a first polarization voltage supplying terminal and a second polarization voltage supplying terminal, polarization serving as information is generated in the ferroelectric film of the ferroelectric capacitor. Additionally, when a read-out voltage is applied between the ground terminal and the power source voltage terminal that are in connection with the source and drain regions, the MISFET is turned either on or off in correspondence to the state of the charge held in the floating gate electrode, and thus information within the floating gate electrode is read out.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: April 13, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Ohtsuka, Kiyoyuki Morita, Michihito Ueda
  • Patent number: 6720608
    Abstract: A metal-insulator metal (MIM) capacitor structure has a copper layer within a dielectric layer positioned on a substrate, an alloy layer atop the copper layer, a metal oxide layer atop the alloy layer and a top pad layer atop the metal oxide layer.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: April 13, 2004
    Assignee: United Microelectronics Corp.
    Inventor: Chiu-Te Lee
  • Patent number: 6720600
    Abstract: There is provided a semiconductor device having a ferroelectric capacitor, which comprises capacitor protection films for covering an upper surface and a side surface the ferroelectric capacitor that is formed on a first insulating film, a hole formed in a second insulating film, which is formed on the capacitor protection films and the first insulating film, to be positioned adjacently to the side surface of the ferroelectric capacitor via the capacitor protection films, and a conductive plug formed in the hole. Accordingly, alignment margin of the contact hole to be formed next to the capacitor can be reduced.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: April 13, 2004
    Assignee: Fujitsu Limited
    Inventor: Yoichi Okita
  • Patent number: 6717196
    Abstract: The present invention discloses a ferroelectric memory device and a method of forming the same. The ferroelectric memory device includes a semiconductor substrate, a capacitor lower electrode, a ferroelectric layer, and a capacitor upper electrode. The semiconductor substrate has a lower structure. The capacitor lower electrode has a cylindrical shape and a certain height. The ferroelectric layer is conformally stacked over substantially the entire surface of the semiconductor substrate including the capacitor lower electrode. The capacitor upper electrode has a spacer shape and is formed around the sidewall of the ferroelectric layer that surrounds the lower electrode. In the method of forming the ferroelectric memory device, a semiconductor substrate having an interlayer dielectric layer and a lower electrode contact formed through the interlayer dielectric layer is prepared. A cylindrical capacitor lower electrode is formed on the interlayer dielectric layer to cover the contact.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: April 6, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Suk-Ho Joo
  • Patent number: 6717198
    Abstract: A first insulating hydrogen barrier film is filled between lower electrodes of some ferroelectric capacitors arranged along one direction out of a word line direction and a bit line direction among a plurality of ferroelectric capacitors included in a ferroelectric memory of this invention. A common capacitor dielectric film commonly used by the some ferroelectric capacitors arranged along the one direction is formed on the lower electrodes of the some ferroelectric capacitors arranged along the one direction and on the first insulating hydrogen barrier film. A common upper electrode commonly used by the some ferroelectric capacitors arranged along the one direction is formed on the common capacitor dielectric film. A second insulating hydrogen barrier film is formed so as to cover the common upper electrode.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: April 6, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takafumi Yoshikawa, Takumi Mikawa
  • Patent number: 6717199
    Abstract: A method for tailoring properties of high k thin layer perovskite materials, and devices comprising such insulators are herein presented. The method comprise the steps of, first, substantially completing the manufacture of a device, which device contains the high k insulator in a polycrystalline form. The device, such as a capacitor, or an FET, went through the typically high temperature manufacturing process of a fabrication line. In the next step, the device is in situ ion implanted with such a dose and energy to convert a fraction of the polycrystalline material into an amorphous material state, hereby tailoring the properties of the insulator. The fraction of polycrystalline material converted to amorphous material might be 1. This process can be applied to many electronic devices and some optical devices. The process results in novel perovskite thin layer materials and novel devices fabricated with such materials.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Robert Benjamin Laibowitz, John David Baniecki, Johannes Georg Bednorz, Jean-Pierre A. Locquet
  • Patent number: 6713834
    Abstract: A first insulation film, a first conductor film, and a cap are sequentially formed on a semiconductor substrate. The first insulation film, the first conductor film, and the cap, and the substrate are etched in the same pattern. A second insulation film is placed in that etched pattern. The cap is removed. A second conductor film is formed on the side face of the second insulation film.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: March 30, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Mori, Mitsuhiro Noguchi
  • Patent number: 6707088
    Abstract: In one implementation, integrated circuitry includes a first capacitor electrode layer received over a substrate. A capacitor dielectric layer is received over the first capacitor electrode layer. The capacitor dielectric layer has an edge terminus. A second capacitor electrode layer is received over the capacitor dielectric layer. The first capacitor electrode layer and the second capacitor electrode layer, respectively, have opposing lateral edges. The capacitor dielectric layer edge terminus is laterally coincident with at least a portion of one of the opposing lateral edges of the second capacitor electrode layer. An insulative silicon nitride including cap is received over the capacitor dielectric layer edge terminus and the one opposing lateral edge of the second capacitor electrode layer. The cap does not contact any portion of the opposing lateral edges of the first capacitor electrode layer. Other aspects and implementations are disclosed.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: March 16, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Fred Fishburn