Stacked Capacitor Patents (Class 257/303)
  • Patent number: 8816419
    Abstract: Provided is a semiconductor device having a high switching speed. A semiconductor device is provided with an n-type epitaxial layer having a plurality of trenches arranged at prescribed intervals; an embedded electrode formed on an inner surface of the trench through a silicon oxide film to embed each trench; and a metal layer, which is capacitively coupled with the embedded electrode by being arranged above the embedded electrode through a silicon oxide film. In the semiconductor device, a region between the adjacent trenches operates as a channel (current path). A current flowing in the channel is interrupted by covering the region with a depletion layer formed at the periphery of the trenches, and the current is permitted to flow through the channel by eliminating the depletion layer at the periphery of the trenches.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 26, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 8802532
    Abstract: Disclosed are example bipolar transistors capable of reducing the area of a collector, reducing the distance between a base and a collector, and/or reducing the number of ion implantation processes. A bipolar transistor may includes a trench formed by etching a portion of a semiconductor substrate. A first collector may be formed on the inner wall of the trench. A second collector may be formed inside the semiconductor substrate in the inner wall of the trench. A first isolation film may be formed on the sidewall of the first collector. An intrinsic base may be connected to the third collector. An extrinsic base may be formed on the intrinsic base and inside the first isolation film. A second isolation film may be formed on the inner wall of the extrinsic base. An emitter may be formed by burying a conductive material inside the second isolation film.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam Joo Kim
  • Patent number: 8796795
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 5, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Ebrahim Abedifard
  • Patent number: 8779490
    Abstract: A top semiconductor layer and conductive cap structures over deep trench capacitors are simultaneously patterned by an etch. Each patterned portion of the conductive cap structures constitutes a conductive cap structure, which laterally contacts a semiconductor material portion that is one of patterned remaining portions of the top semiconductor layer. Gate electrodes are formed as discrete structures that are not interconnected. After formation and planarization of a contact-level dielectric layer, passing gate lines are formed above the contact-level dielectric layer in a line level to provide electrical connections to the gate electrodes. Gate electrodes and passing gate lines that are electrically connected among one another constitute a gate line that is present across two levels.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Babar A. Khan, Effendi Leobandung
  • Patent number: 8772862
    Abstract: A vertical channel transistor includes a pillar formed over a substrate, and a gate electrode formed on sidewalls of the pillar, wherein the pillar includes a source area, a vertical channel area over the source area, a drain area over the vertical channel area, and a leakage prevention area interposed between the vertical channel area and the drain area.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: July 8, 2014
    Assignee: SK Hynix Inc.
    Inventor: Heung-Jae Cho
  • Patent number: 8766345
    Abstract: An on-chip decoupling capacitor is disclosed. One or more carbon nanotubes are coupled to a first electrode of the capacitor. A dielectric skin is formed on the one or more carbon nanotubes. A metal coating is formed on the dielectric skin. The dielectric skin is configured to electrically isolate the one or more carbon nanotubes from the metal coating.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Damon B. Farmer, Aaron D. Franklin, Shu-Jen Han, George S. Tulevski
  • Patent number: 8766399
    Abstract: To improve a performance of a semiconductor device having a capacitance element. An MIM type capacitance element, an electrode of which is formed with comb-shaped metal patterns composed of the wirings, is formed over a semiconductor substrate. A conductor pattern, which is a dummy gate pattern for preventing dishing in a CMP process, and an active region, which is a dummy active region, are disposed below the capacitance element, and these are coupled to shielding metal patterns composed of the wirings and then connected to a fixed potential. Then, the conductor pattern and the active region are disposed so as not to overlap the comb-shaped metal patterns in the wirings in a planar manner.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Satoshi Maeda, Yasushi Sekine, Tetsuya Watanabe
  • Patent number: 8759893
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor disposed on the substrate, the capacitor having an anode component that includes a plurality of first conductive features and a cathode component that includes a plurality of second conductive features. The first conductive features and the second conductive features each include two metal lines extending along the first axis. At least one metal via extending along a third axis that is perpendicular to the surface of the substrate and interconnecting the two metal lines. The first conductive features are interdigitated with the second conductive features along both the second axis and the third axis.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsiu-Ying Cho
  • Patent number: 8754501
    Abstract: An integrated circuit with a high precision MIM capacitor and a high precision resistor with via etch stop landing pads on the resistor heads that are formed with the capacitor bottom plate material. A process of forming an integrated circuit with a high precision MIM capacitor and a high precision resistor where via etch stop landing pads over the resistor heads are formed using the same layer that is used to form the capacitor bottom plate.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Imran Mahmood Khan, John Paul Campbell, Neal Thomas Murphy
  • Patent number: 8742540
    Abstract: A metal-insulator-metal (MIM) capacitor and a method for forming the same are provided. The MIM capacitor includes an insulator on a bottom metal plate, a top metal plate on the insulator, a dielectric layer on the top metal plate and on at least sidewalls of the top metal plate and the insulator, and an anti-reflective coating (ARC) layer over the top metal plate and the bottom metal plate. The dielectric layer preferably extends on an exposed portion of the bottom metal plate not covered by the top metal plate and the insulator.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yao Hsiang Liang
  • Patent number: 8723249
    Abstract: A non-volatile memory includes a substrate, a gate dielectric layer, a gate conductive layer, a nitride layer, a spacer, a first oxide layer, and a second oxide layer. The gate conductive layer, substrate and gate dielectric layer cooperatively constitute a symmetrical opening thereamong. The nitride layer has an L-shape and formed with a vertical part extending along a sidewall of the gate conductive layer and a horizontal part extending into the opening, wherein the vertical part and the horizontal part are formed as an integral structure and a height of the vertical part is below a top surface of the gate conductive layer. The spacer is disposed on the substrate and the nitride layer. The first oxide layer is disposed among the gate conductive layer, the nitride layer and the gate dielectric layer. The second oxide layer is disposed among the gate dielectric layer, the nitride layer and the substrate.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: May 13, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Hung Chen, Tzu-Ping Chen, Yu-Jen Chang
  • Patent number: 8716778
    Abstract: Metal-insulator-metal capacitors are provided that are formed in integrated circuit dielectric stacks. A line-plate-line capacitor is provided that alternates layers that contain metal plates with layers that contain straight or angled parallel lines of alternating polarity. A segmented-plate capacitor is provided that has metal plates that alternate in polarity both within a layer and between layers. The line-plate-line and segmented-plate capacitors may exhibit a reduced parasitic inductive coupling. The capacitances of the line-plate-line capacitor and the metal-insulator-metal capacitor may have an enhanced contribution from an interlayer capacitance component with a vertical electric field than a horizontal intralayer capacitance component with a horizontal electric field.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: May 6, 2014
    Assignee: Altera Corporation
    Inventors: Shuxian Chen, Jeffrey T. Watt, Mojy Curtis Chian
  • Patent number: 8710564
    Abstract: Provided is a semiconductor device including an insulating layer of a cubic system or a tetragonal system, having good electrical characteristics. The semiconductor device includes a semiconductor substrate including an active region, a transistor that is formed in the active region of the semiconductor substrate, an interlevel insulating layer that is formed on the semiconductor substrate and a contact plug that is formed in the interlevel insulating layer and that is electrically connected to the transistor. The semiconductor device may include a lower electrode that is formed on the interlevel insulating layer and that is electrically connected to the contact plug, an upper electrode that is formed on the lower electrode and an insulating layer of a cubic system or a tetragonal system including a metal silicate layer. The insulating layer may be formed between the lower electrode and the upper electrode.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-cheol Lee, Jun-noh Lee, Ki-vin Im, Ki-yeon Park, Sung-hae Lee, Sang-yeol Kang
  • Patent number: 8704283
    Abstract: A semiconductor device includes a lower electrode, a supporting member enclosing at least an upper portion of the lower electrode, a dielectric layer on the lower electrode and the supporting member, and an upper electrode disposed on the dielectric layer. The supporting member may have a first portion that extends over an upper part of the sidewall of the lower electrode, and a second portion covering the upper surface of the lower electrode. The first portion of the supporting member protrudes above the lower electrode.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: April 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Kyu Kim, Sang-Sup Jeong, Sung-Gil Choi, Heung-Sik Park, Kuk-Han Yoon, Yong-Joon Choi
  • Patent number: 8698219
    Abstract: A semiconductor device has a non-volatile memory cell including a write transistor which includes an oxide semiconductor and has small leakage current in an off state (off-state current) between a source and a drain, a read transistor including a semiconductor material different from that of the write transistor, and a capacitor. Data is written or to the memory cell by applying a potential to a node where one of a source electrode and drain electrode of the write transistor, one electrode of the capacitor, and a gate electrode of the read transistor are electrically connected to one another so that the predetermined amount of charge is held in the node. The memory window width is changed by 2% or less, before and after 1×109 times of writing.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: April 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yusuke Sekine, Yutaka Shionoiri, Kiyoshi Kato, Shunpei Yamazaki
  • Patent number: 8698147
    Abstract: Provided are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes a thin-film transistor (TFT), which includes an active layer, a gate electrode, and source/drain electrodes; an organic electroluminescent device electrically connected to the TFT and includes a pixel electrode formed on the same layer as the gate electrode, an intermediate layer including an organic light emitting layer, and a counter electrode that are stacked in the order stated; and a capacitor, which includes a bottom electrode, which is formed on the same layer and of the same material as the active layer and is doped with an impurity; a top electrode formed on the same layer as the gate electrode; and a metal diffusion medium layer formed on the same layer as the source/drain electrodes and is connected to the bottom electrode.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choi, Na-Young Kim, Dae-Woo Lee
  • Patent number: 8693163
    Abstract: A device includes a substrate having a front surface and a back surface opposite the front surface. A capacitor is formed in the substrate and includes a first capacitor plate; a first insulation layer encircling the first capacitor plate; and a second capacitor plate encircling the first insulation layer. Each of the first capacitor plate, the first insulation layer, and the second capacitor plate extends from the front surface to the back surface of the substrate.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: An-Jhih Su, Chi-Chun Hsieh, Tzu-Yu Wang, Wei-Cheng Wu, Hsien-Pin Hu, Shang-Yun Hou, Wen-Chih Chiou, Shin-Puu Jeng
  • Patent number: 8680599
    Abstract: To provide a more reliable semiconductor device including a lower-cost and more reliable capacitor and a method of manufacturing the same. This manufacturing method comprises the steps of: preparing a semiconductor substrate; and forming, over one of the major surfaces of the semiconductor substrate, a first metal electrode including an aluminum layer, a dielectric layer over the first metal electrode, and a second metal electrode over the dielectric layer. In the step of forming the first metal electrode, the aluminum layer is formed so that the surface thereof satisfies a relationship of Rmax<80 nm, Rms<10 nm, and Ra<9 nm. The step of forming the first metal electrode comprises the steps of: forming at least one first barrier layer; forming the aluminum layer over the first barrier layer; and recrystallizing a crystal constituting the aluminum layer.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 25, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Mitsuyama, Yasuhisa Fujii, Keiichi Yamada
  • Patent number: 8680602
    Abstract: A semiconductor device includes a substrate including a first region and a second region, a gate group disposed in the first region of the substrate, the gate group including a plurality of cell gate patterns and at least one selection gate pattern, a first gate pattern disposed in the second region of the substrate, a group spacer covering a top surface and a side surface of the gate group, the group spacer having a first inflection point, and a first pattern spacer covering a top surface and a side surface of the first gate pattern, the first pattern spacer having a second inflection point.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hwang Sim, Jae-Bok Baek
  • Patent number: 8680649
    Abstract: A multi-layer capacitor of staggered construction is formed of one or more layers having tapered sidewall(s). The edge(s) of the capacitor film(s) can be etched to have a gentle slope, which can improve adhesion of the overlying layers and provide more uniform film thickness. The multi-layer capacitor can be used in various applications such as filtering and decoupling.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventor: Guillaume Guégan
  • Patent number: 8674421
    Abstract: The semiconductor device includes a first conductor formed over a semiconductor substrate; a first insulator formed over the first conductor; a second insulator formed over the first insulator, the second insulator having an etching characteristic different from an etching characteristic of the first insulator; a second conductor formed on the second insulator, the second conductor being in contact with the second insulator; a third insulator formed over the second conductor, the third insulator having an etching characteristic different from the etching characteristic of the second insulator; a first contact hole formed through the third insulator and the second conductor, the first contact hole reaching the second insulator; a third conductor formed in the first contact hole, wherein a side wall of the third conductor is electrically connected to a side wall of the second conductor; a second contact hole formed through the third insulator and the first insulator, the second contact hole reaching the first c
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiji Ema, Tohru Anezaki
  • Publication number: 20140070294
    Abstract: A finFET trench circuit is disclosed. FinFETs are integrated with trench capacitors by employing a trench top oxide over a portion of the trench conductor. A passing gate is then disposed over the trench top oxide to form a larger circuit, such as a DRAM array. The trench top oxide is formed by utilizing different growth rates between polysilicon and single crystal silicon.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jonathan E. Faltermeier, Veeraraghavan S. Basker, Kangguo Cheng, Theodorus Eduardus Standaert
  • Patent number: 8664660
    Abstract: A p channel IFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: March 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Patent number: 8653596
    Abstract: An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8633529
    Abstract: A semiconductor structure having U-shaped transistors includes source/drain regions at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. Methods of forming semiconductor structures are also disclosed.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8629017
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Patent number: 8627259
    Abstract: According to one exemplary embodiment, a method for adjusting geometry of a capacitor includes fabricating a first composite capacitor residing in a first standard cell with a first set of process parameters. The method further includes using a second standard cell having substantially same dimensions as the first standard cell. The method further includes using a capacitance value from the first composite capacitor to adjust a geometry of a second composite capacitor residing in the second standard cell, wherein the second composite capacitor is fabricated with a second set of process parameters. The geometry of the second composite capacitor can be adjusted to cause the second composite capacitor to have a capacitance value substantially equal to the capacitance value from the first composite capacitor.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 7, 2014
    Assignee: Broadcom Corporation
    Inventors: Peter Huang, Ming-Chun Chen
  • Patent number: 8627258
    Abstract: According to one exemplary embodiment, a method for adjusting geometry of a capacitor includes fabricating a first composite capacitor residing in a first standard cell with a first set of process parameters. The method further includes using a second standard cell having substantially same dimensions as the first standard cell. The method further includes using a capacitance value from the first composite capacitor to adjust a geometry of a second composite capacitor residing in the second standard cell, wherein the second composite capacitor is fabricated with a second set of process parameters. The geometry of the second composite capacitor can be adjusted to cause the second composite capacitor to have a capacitance value substantially equal to the capacitance value from the first composite capacitor.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: January 7, 2014
    Assignee: Broadcom Corporation
    Inventors: Peter Huang, Ming-Chun Chen
  • Patent number: 8614472
    Abstract: An integrated circuit metal oxide metal (MOM) variable capacitor includes a first plate; one or more pairs of second plates positioned on both sides of the first plate; one or more pairs of control plates positioned on both sides of the first plate and positioned between the pairs of second plates; and a switch coupled to each control plate and a fixed potential.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 24, 2013
    Assignee: Integrated Device Technology, Inc.
    Inventors: Syed S. Islam, Mansour Keramat
  • Patent number: 8604531
    Abstract: A semiconductor device includes a semiconductor substrate, an isolation structure disposed in the semiconductor substrate, a conductive layer disposed over the isolation structure, a capacitor disposed over the isolation structure, the capacitor including a top electrode, a bottom electrode, and a dielectric disposed between the top electrode and the bottom electrode, and a first contact electrically coupling the conductive layer and the bottom electrode, the bottom electrode substantially engaging the first contact on at least two faces.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Kuo-Chi Tu
  • Patent number: 8592884
    Abstract: A substrate is provided with a first wiring layer 111, an interlayer insulating film 132 on the first wiring layer 111, a hole 112A formed in the interlayer insulating film, a first metal layer 112 covering the hole 112A, a second metal layer 113 formed in the hole 112A, a dielectric insulating film 135 on the first metal layer 112, and second wiring layers 114-116 on the dielectric insulating film 135, wherein the first metal layer 112 constitutes at least part of the lower electrode, an area, facing the lower electrode, of the second wiring layers 114-116 constitutes the upper electrode, and a capacitor 160 is constructed of the lower electrode, the dielectric insulating film 135 and the upper electrode P1.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8592883
    Abstract: An embodiment may be a semiconductor structure, comprising; a workpiece having a front side and a back side; and a capacitor disposed in the workpiece, the capacitor including a bottom electrode electrically coupled to a back side of said workpiece. In an embodiment, the bottom electrode may form a conductive pathway to the front side of the workpiece. In an embodiment, the capacitor may be a trench capacitor.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Infineon Technologies AG
    Inventors: Dieter Claeys, Bernd Eisener, Guenter Pfeifer, Detlef Wilhelm
  • Patent number: 8594604
    Abstract: Capacitive circuits are implemented with desirable quality factors in various implementations. According to an example embodiment, a fringe capacitor includes two capacitive circuits (e.g., plates), respectively having a plurality of capacitive fingers extending from an end structure, and respectively having a connecting pin that is adjacent the connecting pin of the other capacitive circuit, on a common side fringe capacitor. The capacitive fingers are arranged in stacked layers, with vias connecting the fingers in different layers back to the connecting pins.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 26, 2013
    Assignee: NXP, B.V.
    Inventors: Edwin van der Heijden, Lukas Frederik Tiemeijer, Maristella Spella
  • Patent number: 8587047
    Abstract: A capacitor structure for a pumping circuit includes a substrate, a U-shaped bottom electrode in the substrate, a T-shaped top electrode in the substrate and a dielectric layer disposed between the U-shaped bottom and T-shaped top electrode. The contact area of the capacitor structure between the U-shaped bottom and T-shaped top electrode is extended by means of the cubic engagement of the U-shaped bottom electrode and the T-shaped top electrode.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: November 19, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Yu-Wei Ting, Shing-Hwa Renn, Yu-Teh Chiang, Chung-Ren Li, Tieh-Chiang Wu
  • Patent number: 8581315
    Abstract: To provide a semiconductor device including: plural capacitors each including a cylindrical lower electrode having an internal wall and an external wall, and an upper electrode that covers the external wall of the lower electrode via a capacitance dielectric film; and a supporting film having a buried portion buried in an internal region surrounded by the internal wall of the lower electrode, and a supporting portion a part of which is positioned within the internal region and remaining parts of which are positioned at outside of the internal region. The supporting portion sandwiches an upper end of the lower electrode at both ends of the upper end by covering the internal wall and the external wall of the upper end of the lower electrode.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Satoru Isogai, Takahiro Kumauchi
  • Patent number: 8575624
    Abstract: In one embodiment, a semiconductor device includes a semiconductor substrate, a gate electrode provided on the semiconductor substrate via an insulating layer, and a gate insulator provided on a side surface of the gate electrode. The device includes a stacked layer including a lower main terminal layer of a first conductivity type, an intermediate layer, and an upper main terminal layer of a second conductivity type which are successively stacked on the semiconductor substrate, the stacked layer being provided on the side surface of the gate electrode via the gate insulator. The upper or lower main terminal layer is provided on the side surface of the gate electrode via the gate insulator and the semiconductor layer.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahisa Kanemura, Masaki Kondo
  • Patent number: 8575696
    Abstract: A multi-gate structure is used and a width (d1) of a high concentration impurity region sandwiched by two channel forming regions in a channel length direction is set to be shorter than a width (d2) of low concentration impurity regions in the channel length direction. Thus, a resistance of the entire semiconductor layer of a TFT which is in an on state is reduced to increase an on current. In addition, a carrier life time due to photoexcitation produced in the high concentration impurity region can be shortened to reduce light sensitivity.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroshi Shibata, Shinji Maekawa
  • Patent number: 8575671
    Abstract: A bilayer second electrode for a MIM DRAM capacitor is formed wherein the layer of the electrode that is in contact with the dielectric layer (i.e. bottom layer) has a composition that is resistant to oxidation during subsequent anneal steps and have rutile templating capability. Examples include SnO2 and RuO2. The capacitor stack including the bottom layer is subjected to a PMA treatment to reduce the oxygen vacancies in the dielectric layer and reduce the interface states at the dielectric/second electrode interface. The other component of the bilayer (i.e. top layer) is a high work function, high conductivity metal or conductive metal compound.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 5, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Hanhong Chen, Hiroyuki Ode
  • Patent number: 8558294
    Abstract: A semiconductor device includes a semiconductor substrate formed with an active element, an oxidation resistant film formed over the semiconductor substrate so as to cover the active element, a ferroelectric capacitor formed over the oxidation resistance film, the ferroelectric capacitor having a construction of consecutively stacking a lower electrode, a ferroelectric film and an upper electrode, and an interlayer insulation film formed over the oxidation resistance film so as to cover the ferroelectric capacitor, wherein there are formed, in the interlayer insulation film, a first via-plug in a first contact hole exposing the first electrode and a second via-plug in a second contact hole exposing the lower electrode, and wherein there is formed another conductive plug in the interlayer insulation film in an opening exposing the oxidation resistant film.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 8552485
    Abstract: A semiconductor structure includes a through-substrate-via (TSV) structure disposed in a substrate. A first etch stop layer is disposed over the TSV structure. A first dielectric layer is disposed in contact with the first etch stop layer. A first conductive structure is disposed through the first etch stop layer and the first dielectric layer. The first conductive structure is electrically coupled with the TSV structure. The TSV structure is substantially wider than the first conductive structure. A second etch stop layer is disposed in contact with the first dielectric layer. A metal-insulator-metal (MIM) capacitor structure is disposed in contact with the second etch stop layer.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hua Chang, Sung-Hui Huang, Der-Chyang Yeh
  • Patent number: 8552486
    Abstract: A plurality of metal layers includes a top metal layer. An Ultra-Thick Metal (UTM) layer is disposed over the top metal layer, wherein no additional metal layer is located between the UTM layer and the top metal layer. A Metal-Insulator-Metal (MIM) capacitor is disposed under the UTM layer and over the top metal layer.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kun-Mao Wu, Chih-Hsun Lin, Yu-Lung Yeh, Kuan-Chi Tsai
  • Patent number: 8541868
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. A metal oxide second electrode layer is formed above the dielectric layer. The metal oxide second electrode layer has a crystal structure that is compatible with the crystal structure of the dielectric layer. Optionally, a second electrode bulk layer is formed above the metal oxide second electrode layer.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 24, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8536636
    Abstract: An RF switch to controllably withstand an applied RF voltage Vsw, or a method of fabricating such a switch, which includes a string of series-connected constituent FETs with a node of the string between each pair of adjacent FETs. The method includes controlling capacitances between different nodes of the string to effectively tune the string capacitively, which will reduce the variance in the RF switch voltage distributed across each constituent FET, thereby enhancing switch breakdown voltage. Capacitances are controlled, for example, by disposing capacitive features between nodes of the string, and/or by varying design parameters of different constituent FETs. For each node, a sum of products of each significant capacitor by a proportion of Vsw appearing across it may be controlled to approximately zero.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 17, 2013
    Assignee: Peregrine Semiconductor Corporation
    Inventor: Robert Mark Englekirk
  • Patent number: 8513130
    Abstract: A semiconductor substrate includes a wafer including an element area and a non-element area delineating the element area, a first layered structure situated in the element area, a first insulating film covering the first layered structure, and exhibiting a first etching rate with respect to an etching recipe, a second insulating film covering the first layered structure covered by the first insulating film in the element area, and exhibiting a second etching rate with respect to the etching recipe, the second etching rate being greater than the first etching rate, and a second layered structure situated in the non-element area, wherein the second layered structure includes at least a portion of the first layered structure.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: August 20, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tetsuo Yaegashi
  • Patent number: 8508020
    Abstract: A method for manufacturing a semiconductor device includes at least forming a lower electrode comprising titanium nitride on a semiconductor substrate, forming a dielectric film comprising zirconium oxide as a primary constituent on the lower electrode, forming a first protective film comprising a titanium compound on the dielectric film, and forming an upper electrode comprising titanium nitride on the first protective film. The method can include a step of forming a second protective film on the lower electrode before the step of forming the dielectric film on the lower electrode.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: August 13, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Toshiyuki Hirota, Takakazu Kiyomura
  • Patent number: 8497540
    Abstract: A device comprises a substrate having at least one active region, an insulating layer above the substrate, and an electrode in a gate electrode layer above the insulating layer, forming a metal-oxide-semiconductor (MOS) capacitor. A first contact layer is provided on the electrode, having an elongated first pattern extending in a first direction parallel to the electrode. A contact structure contacts the substrate. The contact structure has an elongated second pattern extending parallel to the first pattern. A dielectric material is provided between the first and second patterns, so that the first and second patterns and dielectric material form a side-wall capacitor connected in parallel to the MOS capacitor.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 30, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Di An, Chien-Hung Chen, Yu-Juan Chan
  • Patent number: 8492822
    Abstract: A method for manufacturing an LC circuit, including forming a first conductive layer pattern serving as a lower electrode of a capacitor on a first interlayer insulating layer, forming a dielectric layer pattern storing electric charges on the first conductive layer pattern, forming a second conductive layer pattern serving as an upper electrode of the capacitor on the dielectric layer pattern, forming a second interlayer insulating layer on the second conductive layer pattern, forming a contact via exposing one of the first or second conductive layer pattern in the second interlayer insulating layer, and filling the contact via with a contact plug, and forming a third conductive layer pattern on the second interlayer insulating layer having the contact plug, wherein the third conductive layer pattern is electrically connected to the contact plug, and is etched in a metal interconnection type layer and functions as an inductor.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Sung Lim, Chul-Ho Chung
  • Patent number: 8492817
    Abstract: An improved trench structure, and method for its fabrication are disclosed. Embodiments of the present invention provide a trench in which the collar portion has an air gap instead of a solid oxide collar. The air gap provides a lower dielectric constant. Embodiments of the present invention can therefore be used to make higher-performance devices (due to reduced parasitic leakage), or smaller devices, due to the ability to use a thinner collar to achieve the same performance as a thicker collar comprised only of oxide (with no air gap). Alternatively, a design choice can be made to achieve a combination of improved performance and reduced size, depending on the application.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Anne Marie Ebert, Johnathan E. Faltermeier
  • Patent number: 8450738
    Abstract: An active matrix substrate includes: pixel regions (5L, 5R, and 5M) provided in line and column direction; scan signal lines (16? and 16?); data signal lines (Sp, Sq, sp, and sq) crossing the scan signal lines at right angles; a gate insulating film covering the scan signal lines; and an interlayer insulating film covering the data signal lines, two of the data signal lines (Sq and sp) being provided (i) so as to overlap a gap between two of the pixel regions (5L and 5R) which are adjacent to each other in the line direction or (ii) so as to overlap a region which extends along the gap, the interlayer insulating film having a hollow part K so that the hollow part K and a gap between the two of the data signal lines (Sq and sp) overlap each other, and part of the hollow part K and the scan signal lines (16? and 16?) overlap each other via the gate insulating film.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: May 28, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshihide Tsubata, Toshinori Sugihara
  • Patent number: 8440537
    Abstract: A method for doping a dielectric material by pulsing a first dopant precursor, purging the non-adsorbed precursor, pulsing a second precursor, purging the non-adsorbed precursor, and pulsing a oxidant to form an intermixed layer of two (or more) metal oxide dielectric dopant materials. The method may also be used to form a blocking layer between a bulk dielectric layer and a second electrode layer. The method improves the control of the composition and the control of the uniformity of the dopants throughout the thickness of the doped dielectric material.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 14, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra Malhotra, Hanhong Chen, Wim Deweerd, Toshiyuki Hirota, Hiroyuki Ode