Stacked Capacitor Patents (Class 257/303)
  • Patent number: 8441097
    Abstract: Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Joseph M. Steigerwald, Nick Lindert, Steven J. Keating, Christopher J. Jezewski, Timothy E. Glassman
  • Patent number: 8441057
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 8426815
    Abstract: A thermal imaging microelectronic device including: a support, a plurality of metal levels for interconnecting electronic components formed on the support, an array of thermal detectors formed on the support, each detector including a membrane with which radiant energy may be absorbed and one or more electric signals may be provided depending on the absorbed radiant energy, and a readout circuit that reads out the electric signals from the membrane, the readout circuit being integrated to the support, and at least several of the detectors having a readout circuit provided with an integrator including at least one integration capacitor disposed facing the membrane, the capacitor having at least one upper plate made in a given interconnection metal level of the plurality of interconnection metal levels.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: April 23, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Bertrand Dupont
  • Publication number: 20130087841
    Abstract: A method and structure is directed to eDRAM cells with high-conductance electrodes. The method includes forming upper layers on a semiconductor substrate and forming an opening in the upper layers. The method further includes forming a trench in the semiconductor substrate, aligned with the opening.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 11, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. BASKER, Richard Q. WILLIAMS
  • Patent number: 8384140
    Abstract: A dual contact trench capacitor and design structure for a dual contact trench capacitor is provided. The structure includes a first plate extending from a trench and isolated from a wafer body, and a second plate extending from the trench and isolated from the wafer body and the first plate.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy W. Kemerer, Jenifer E. Lary, James S. Nakos, Steven M. Shank
  • Patent number: 8384141
    Abstract: Provided is a semiconductor device having a vertical channel transistor and method of fabricating the same. The semiconductor device includes first and second field effect transistors, wherein a channel region of the first field effect transistor serves as source/drain electrodes of the second field effect transistor, and a channel region of the second field effect transistor serves as source/drain electrodes of the first field effect transistor.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daeik Kim, Yongchul Oh, Yoosang Hwang, Hyun-Woo Chung, Young-Seung Cho
  • Patent number: 8384143
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 26, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Toshiyuki Hirota
  • Patent number: 8384191
    Abstract: The present invention discloses a stack capacitor structure and method of making the same. The top plate of the stack capacitor structure is connected to each other through a connecting node. The method of forming the stack capacitor structure includes providing an insulating substrate with a doped insulating material layer disposed therein. Then, the insulating substrate is patterned to form a trench, wherein an inner sidewall of the trench has a first region and a second region and the doped insulating material layer within the second region is entirely removed to form a hole. Later, a top plate is formed to surround the inner sidewall of the trench, and the top plate fills in the hole. Next, a capacitor dielectric layer is formed to surround the top plate. Finally, a storage node is formed to fill up the trench.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: February 26, 2013
    Assignee: Nanya Technology Corp.
    Inventor: Shih-Fan Kuan
  • Patent number: 8368176
    Abstract: A lower electrode includes a metal-containing oxide layer having a thickness of 2 nm or less on the surface layer. A metal-containing oxide layer is formed by oxidizing the surface of the lower electrode. A dielectric film includes a first phase appearing at room temperature in the bulk state and a second phase appearing at a higher temperature than that in the first phase in the bulk state. The second phase has a higher relative permittivity than that of the first phase.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 5, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takayuki Iwaki, Takamasa Itou, Kana Shimizu
  • Patent number: 8368173
    Abstract: The present invention relates to a semiconductor package and a method for making the same. The semiconductor package includes a base material, a first metal layer, a first dielectric layer, a first upper electrode and a first protective layer. The first metal layer is disposed on a first surface of the base material, and includes a first inductor and a first lower electrode. The first dielectric layer is disposed on the first lower electrode. The first upper electrode is disposed on the first dielectric layer, and the first upper electrode, the first dielectric layer and the first lower electrode form a first capacitor. The first protective layer encapsulates the first inductor and the first capacitor. Whereby, the first inductor and the first lower electrode of the first capacitor are disposed on the same layer, so that the thickness of the product is reduced.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 5, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chien-Hua Chen, Teck-Chong Lee
  • Patent number: 8367497
    Abstract: A method is provided that includes forming a trench isolation structure in a dynamic random memory region (DRAM) of a substrate and patterning an etch mask over the trench structure to expose a portion of the trench structure. A portion of the exposed trench structure is removed to form a gate trench that includes a first corner formed by the substrate and a second corner formed by the trench structure. The etch mask is removed and the first corner of the gate trench is rounded to form a rounded corner. This is followed by the formation of an oxide layer over a sidewall of the gate trench, the first rounded corner, and the semiconductor substrate adjacent the gate trench. The trench is filled with a gate material.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 5, 2013
    Assignee: Agere Systems LLC
    Inventors: Nace M. Rossi, Ranbir Singh, Xiaojun Yuan
  • Patent number: 8310026
    Abstract: A semiconductor device and a method for fabricating the same are provided. The method includes: forming a contact plug passing through an inter-layer insulation layer; sequentially forming a lower electrode layer, a dielectric layer and an upper electrode layer on the inter-layer insulation layer; patterning the upper electrode layer; patterning the dielectric layer and the lower electrode layer, thereby obtaining a capacitor including an upper electrode, a patterned dielectric layer and a lower electrode; and sequentially forming a first metal interconnection line connected with the contact plug and second metal interconnection lines connected with the capacitor.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: November 13, 2012
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jin-Youn Cho
  • Patent number: 8278694
    Abstract: The present invention provides a semiconductor device having a plurality of vertical transistors, which includes, on a substrate, a semiconductor pillar 5; gate electrode 11 provided on the side of the pillar via gate insulating film 10; first diffusion layer 9 connected to the bottom of the pillar; and second diffusion layer 16 connected to the top of the pillar, second diffusion layer 16 includes first portion 14 formed within the area over the pillar, and second portion 15 which is an epitaxial growth layer, formed on the first portion and contacting with insulating film 17 which is provided between adjacent vertical transistors.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: October 2, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Yoshinori Ikebuchi, Yoshihiro Takaishi
  • Patent number: 8253191
    Abstract: A vertical semiconductor material mesa upstanding from a semiconductor base that forms a conductive channel between first and second doped regions. The first doped region is electrically coupled to one or more first silicide layers on the surface of the base. The second doped region is electrically coupled to a second silicide layer on the upper surface of the mesa. A gate conductor is provided on one or more sidewalls of the mesa.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 28, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Chandra Mouli, John K. Zahurak
  • Patent number: 8255858
    Abstract: According to one exemplary embodiment, a method for adjusting geometry of a capacitor includes fabricating a first composite capacitor residing in a first standard cell with a first set of process parameters. The method further includes using a second standard cell having substantially same dimensions as the first standard cell. The method further includes using a capacitance value from the first composite capacitor to adjust a geometry of a second composite capacitor residing in the second standard cell, wherein the second composite capacitor is fabricated with a second set of process parameters. The geometry of the second composite capacitor can be adjusted to cause the second composite capacitor to have a capacitance value substantially equal to the capacitance value from the first composite capacitor.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 28, 2012
    Assignee: Broadcom Corporation
    Inventors: Peter Huang, Ming-Chun Chen
  • Patent number: 8242551
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate, an isolation structure formed in the semiconductor substrate, a conductive layer formed over the isolation structure, and a metal-insulator-metal (MIM) capacitor formed over the isolation structure. The MIM capacitor has a crown shape that includes a top electrode, a first bottom electrode, and a dielectric disposed between the top electrode and the first bottom electrode, the first bottom electrode extending at least to a top surface of the conductive layer.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Kuo-Chi Tu, Chun-Yao Chen
  • Patent number: 8237146
    Abstract: In a first aspect, a method of forming a memory cell is provided that includes (1) forming a metal-insulator-metal (MIM) stack, the MIM stack including (a) a first conductive carbon layer; (b) a low-hydrogen, silicon-containing carbon layer above the first conductive carbon layer; and (c) a second conductive carbon layer above the low-hydrogen, silicon-containing carbon layer; and (2) forming a steering element coupled to the MIM stack. Numerous other aspects are provided.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: August 7, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Franz Kreupl, Jingyan Zhang, Huiwen Xu
  • Patent number: 8227848
    Abstract: A substrate is provided with a first wiring layer 111, an interlayer insulating film 132 on the first wiring layer 111, a hole 112A formed in the interlayer insulating film, a first metal layer 112 covering the hole 112A, a second metal layer 113 formed in the hole 112A, a dielectric insulating film 135 on the first metal layer 112, and second wiring layers 114-116 on the dielectric insulating film 135, wherein the first metal layer 112 constitutes at least part of the lower electrode, an area, facing the lower electrode, of the second wiring layers 114-116 constitutes the upper electrode, and a capacitor 160 is constructed of the lower electrode, the dielectric insulating film 135 and the upper electrode P1.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: July 24, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Patent number: 8227806
    Abstract: A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: July 24, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Jun Koyama
  • Patent number: 8212299
    Abstract: In a thin film transistor, each of an upper electrode and a lower electrode is formed of at least one material selected from the group consisting of a metal and a metal nitride, represented by TiN, Ti, W, WN, Pt, Ir, Ru. A capacitor dielectric film is formed of at least one material selected from the group consisting of ZrO2, HfO2, (Zrx, Hf1?x)O2(0<x<1), (Zry, Ti1?y)O2(0<y<1), (Hfz, Ti1?z)O2(0<z<1), (Zrk,Til, Hfm)O2(0<k, l, m<1, k+l+m=1), by an atomic layer deposition process. The thin film transistor thus formed has a minimized leakage current and an increased capacitance.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: July 3, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Iizuka, Tomoe Yamamoto, Mami Toda, Shintaro Yamamichi
  • Patent number: 8207567
    Abstract: A stacked metal-oxide-metal (MOM) capacitor structure and method of forming the same to increase an electrode/capacitor dielectric coupling area to increase a capacitance, the MOM capacitor structure including a plurality of metallization layers in stacked relationship; wherein each metallization layer includes substantially parallel spaced apart conductive electrode line portions having a first intervening capacitor dielectric; and, wherein the conductive electrode line portions are electrically interconnected between metallization layers by conductive damascene line portions formed in a second capacitor dielectric and disposed underlying the conductive electrode line portions.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: June 26, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Chi Chin, Ming-Chu King, Chen Cheng Chou
  • Patent number: 8207563
    Abstract: A method of forming a plurality of capacitors includes providing a plurality of capacitor electrodes comprising sidewalls. The plurality of capacitor electrodes are supported at least in part with a retaining structure which engages the sidewalls, with the retaining structure comprising a fluid pervious material. A capacitor dielectric material is deposited over the capacitor electrodes through the fluid pervious material of the retaining structure effective to deposit capacitor dielectric material over portions of the sidewalls received below the retaining structure. Capacitor electrode material is deposited over the capacitor dielectric material through the fluid pervious material of the retaining structure effective to deposit capacitor electrode material over at least some of the capacitor dielectric material received below the retaining structure. Integrated circuitry independent of method of fabrication is also contemplated.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: June 26, 2012
    Assignee: Round Rock Research, LLC
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Patent number: 8207565
    Abstract: A semiconductor device includes: a stacked body including a conductive layer and an insulating layer alternately stacked on a base body; a pair of wall portions formed on the base body with a height equivalent to or larger than a thickness of the stacked body and opposed with a spacing wider than a thickness for one layer of the conductive layer; a contact layer interposed between the wall portions and connected to the conductive layer in the stacked body through an open end between the wall portions; and a contact electrode provided on the contact layer and connected to the contact layer.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: June 26, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Sato
  • Patent number: 8198663
    Abstract: A dual contact trench capacitor and design structure for a dual contact trench capacitor is provided. The structure includes a first plate extending from a trench and isolated from a wafer body, and a second plate extending from the trench and isolated from the wafer body and the first plate.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: Timothy W. Kemerer, Jenifer E. Lary, James S. Nakos, Steven M. Shank
  • Patent number: 8198664
    Abstract: A semiconductor memory device including a plurality of supports extending parallel to each other in a first direction on a semiconductor substrate, and capacitor lower electrode rows including a plurality of capacitor lower electrodes arranged in a line along the first direction between two adjacent supports from among the plurality of supports, each capacitor lower electrode including outside walls, wherein each of the capacitor lower electrodes includes two support contact surfaces on the outside walls of the capacitor lower electrode, the support contact surfaces respectively contacting the two adjacent supports from among the plurality of supports.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: June 12, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Gil-sub Kim
  • Patent number: 8188527
    Abstract: A semiconductor device with an embedded capacitor structure. A dielectric layer is disposed on a substrate, having a contact opening exposing the substrate and a trench opening above the contact opening. A first metal electrode layer is conformally disposed over the sidewalls and bottoms of the contact and trench openings. A second metal electrode layer is conformally disposed over the sidewalls and bottoms of the contact and trench openings. A capacitor dielectric layer is interposed between the first and second metal electrode layers. A method for fabricating the semiconductor device is also disclosed.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: May 29, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Chyi Liu, Chi-Hsin Lo
  • Patent number: 8188528
    Abstract: A memory device is provided that in one embodiment includes a trench capacitor located in a semiconductor substrate including an outer electrode provided by the semiconductor substrate, an inner electrode provided by a conductive fill material, and a node dielectric layer located between the outer electrode and the inner electrode; and a semiconductor device positioned centrally over the trench capacitor. The semiconductor device includes a source region, a drain region, and a gate structure, in which the semiconductor device is formed on a semiconductor layer that is separated from the semiconductor substrate by a dielectric layer. A first contact is present extending from an upper surface of the semiconductor layer into electrical contact with the semiconductor substrate, and a second contact from the drain region of the semiconductor device in electrical contact to the conductive material within the at least one trench.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: May 29, 2012
    Assignee: International Buiness Machines Corporation
    Inventors: Chengwen Pei, Kangguo Cheng, Herbert L. Ho, Subramanian S. Iyer, Byeong Y. Kim, Geng Wang, Huilong Zhu
  • Patent number: 8183614
    Abstract: The invention provides a method for forming a stack capacitor of a memory device, including providing a substrate, forming a patterned sacrificial layer with a plurality of first openings over the substrate, conformally forming a first conductive layer on the patterned sacrificial layer and in the first openings, forming a second conductive layer on the first conductive layer to seal the first openings with a void formed therein, removing a portion of the first and second conductive layers to expose the patterned sacrificial layer, and removing at least a portion of the patterned sacrificial layer to form bottom cell plates.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 22, 2012
    Assignee: Nanya Technology Corporation
    Inventor: Shin-Yu Nieh
  • Patent number: 8169013
    Abstract: A semiconductor device having a logic section and a memory section that are formed on the same semiconductor chip, including: a first transistor formed in the logic section and having gate electrodes and source and drain regions, and a second transistor formed in the memory section having gate electrodes, source and drain regions and a capacitor, the capacitor being of a MIM structure and having an upper and a lower metal electrode and a capacitor dielectric film sandwiched therebetween, the capacitor dielectric film being formed of a dielectric material which is selected from the group consisting of ZrO2, Hf92, (Zrx, Hf1-x)O2 (0<x<1), (Zry, Ti1-y)o2 (0<y<1), (Hfz, Ti1-z)92 (0<z<1 and (Zrk, Til, Hfm)o2 (0<k, l, m<1, k+l+m?1), wherein each of the first and second transistors has a refractory metal silicide layer formed over each of the source and drain regions thereof and the lower metal electrode is connected through a metal plug to the refractory metal silicide layer formed over one o
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: May 1, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Iizuka, Tomoe Yamamoto, Mami Toda, Shintaro Yamamichi
  • Publication number: 20120091520
    Abstract: A semiconductor device includes a semiconductor substrate, a first interlayer insulating film over the semiconductor substrate, a first interconnect over the first interlayer insulating film, and a via plug penetrating the semiconductor substrate and the first interlayer insulating film. The via plug is coupled to the first interconnect.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Nobuyuki NAKAMURA
  • Publication number: 20120091519
    Abstract: A semiconductor device includes a semiconductor substrate, an isolation structure disposed in the semiconductor substrate, a conductive layer disposed over the isolation structure, a capacitor disposed over the isolation structure, the capacitor including a top electrode, a bottom electrode, and a dielectric disposed between the top electrode and the bottom electrode, and a first contact electrically coupling the conductive layer and the bottom electrode, the bottom electrode substantially engaging the first contact on at least two faces.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Kuo-Chi Tu
  • Patent number: 8159012
    Abstract: Provided is a semiconductor device including an insulating layer of a cubic system or a tetragonal system, having good electrical characteristics. The semiconductor device includes a semiconductor substrate including an active region, a transistor that is formed in the active region of the semiconductor substrate, an interlevel insulating layer that is formed on the semiconductor substrate and a contact plug that is formed in the interlevel insulating layer and that is electrically connected to the transistor. The semiconductor device may include a lower electrode that is formed on the interlevel insulating layer and that is electrically connected to the contact plug, an upper electrode that is formed on the lower electrode and an insulating layer of a cubic system or a tetragonal system including a metal silicate layer. The insulating layer may be formed between the lower electrode and the upper electrode.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: April 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-cheol Lee, Jun-noh Lee, Ki-vin Im, Ki-yeon Park, Sung-hae Lee, Sang-yeol Kang
  • Patent number: 8148764
    Abstract: A semiconductor device having a high aspect cylindrical capacitor and a method for fabricating the same is presented. The high aspect cylindrical type capacitor is a stable structure which is not prone to causing bunker defects and losses in a guard ring. The semiconductor device includes the cylindrical type capacitor structure, a storage node oxide, a guard ring hole, a conducive layer, and a capping oxide. The cylindrical type capacitor structure in a cell region includes a cylindrical type lower electrode, a dielectric and an upper electrode. The storage node oxide is in a peripheral region over the semiconductor substrate. The conductive layer coating the guard ring hole. The guard ring hole at a boundary of the peripheral region that adjoins the cell region over the semiconductor substrate. The capping oxide partially fills in a part of the conductive layer. The gapfill film filling in the rest of the conductive layer.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 3, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Hwan Park, Ho Jin Cho, Dong Kyun Lee
  • Patent number: 8148223
    Abstract: Embedded memories. The devices include a substrate, a first dielectric layer, a second dielectric layer, a third dielectric layer, and a plurality of capacitors. The substrate comprises transistors. The first dielectric layer, embedding first and second conductive plugs electrically connecting the transistors therein, overlies the substrate. The second dielectric layer, comprising a plurality of capacitor openings exposing the first conductive plugs, overlies the first dielectric layer. The capacitors comprise a plurality of bottom plates, respectively disposed in the capacitor openings, electrically connecting the first conductive plugs, a plurality of capacitor dielectric layers respectively overlying the bottom plates, and a top plate, comprising a top plate opening, overlying the capacitor dielectric layers. The top plate opening exposes the second dielectric layer, and the top plate is shared by the capacitors.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: April 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ching Lin, Chun-Yao Chen, Chen-Jong Wang, Shou-Gwo Wuu, Chung S. Wang, Chien-Hua Huang, Kun-Lung Chen, Ping Yang
  • Patent number: 8143659
    Abstract: A capacitor is described which includes a substrate with a doped area of the substrate forming a first electrode of the capacitor. A plurality of trenches is arranged in the doped area of the substrate, the plurality of trenches forming a second electrode of the capacitor. An electrically insulating layer is arranged between each of the plurality of trenches and the doped area for electrically insulating the trenches from the doped area. The doped area includes first open areas and at least one second open area arranged between neighboring trenches of the plurality of trenches, wherein the at least one open area is arranged below the at least one substrate contact. A shortest first distance between neighboring trenches is separated by the first open areas and is shorter than a shortest second distance between neighboring trenches separated by the at least one second open area.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 27, 2012
    Assignee: Infineon Technologies AG
    Inventor: Stefan Pompl
  • Patent number: 8143699
    Abstract: An integrated circuit structure includes a chip having a first region and a second region. A first metal-insulator-metal (MIM) capacitor is formed in the first region. The first MIM capacitor has a first bottom electrode; a first top electrode over the first bottom electrode; and a first capacitor insulator between and adjoining the first bottom electrode and the first top electrode. A second MIM capacitor is in the second region and is substantially level with the first MIM capacitor. The second MIM capacitor includes a second bottom electrode; a second top electrode over the second bottom electrode; and a second capacitor insulator between and adjoining the second bottom electrode and the second top electrode. The second capacitor insulator is different from the first capacitor insulator. The first top electrode and the first bottom electrode may be formed simultaneously with the second top electrode and the second bottom electrode, respectively.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: March 27, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Ching, Kuo-Chi Tu
  • Patent number: 8138536
    Abstract: To provide a semiconductor device including: plural capacitors each including a cylindrical lower electrode having an internal wall and an external wall, and an upper electrode that covers the external wall of the lower electrode via a capacitance dielectric film; and a supporting film having a buried portion buried in an internal region surrounded by the internal wall of the lower electrode, and a supporting portion a part of which is positioned within the internal region and remaining parts of which are positioned at outside of the internal region. The supporting portion sandwiches an upper end of the lower electrode at both ends of the upper end by covering the internal wall and the external wall of the upper end of the lower electrode.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: March 20, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Satoru Isogai, Takahiro Kumauchi
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 8129770
    Abstract: A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Shigeru Shiratake
  • Patent number: 8124978
    Abstract: A capacitor and method of manufacturing the same include an insulating interlayer, a lower electrode, a protection structure, a dielectric layer and an upper electrode. The insulating interlayer may include a conductive pattern formed on a substrate. The lower electrode may be electrically connected to the conductive pattern. The protection structure may be formed on an outer sidewall of the cylindrical lower electrode and on the insulating interlayer.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Young Kim, Rak-Hwan Kim, Young-Joo Cho, Won-sik Shin
  • Patent number: 8120006
    Abstract: Provided is a non-volatile memory device having a stacked structure that is easily highly integrated and a method of economically fabricating the non-volatile memory device. The non-volatile memory device may include at least one first electrode and at least one second electrode that cross each other. At least one data storage layer may be disposed on a section where the at least one first electrode and the at least one second electrode cross each other. The at least one first electrode may include a first conductive layer and a first semiconductor layer.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: February 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-pil Kim, June-mo Koo, Tae-eung Yoon
  • Patent number: 8111113
    Abstract: A semiconductor device has a first coil structure formed over the substrate. A second coil structure is formed over the substrate adjacent to the first coil structure. A third coil structure is formed over the substrate adjacent to the second coil structure. The first and second coil structures are coupled by mutual inductance, and the second and third coil structures are coupled by mutual inductance. The first, second, and third coil structures each have a height greater than a skin current depth of the coil structure defined as a depth which current reduces to 1/(complex permittivity) of a surface current value. A thin film capacitor is formed within the semiconductor device by a first metal plate, dielectric layer over the first metal plate, and second and third electrically isolated metal plates opposite the first metal plate. The terminals are located on the same side of the capacitor.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: February 7, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Kai Liu, Robert Charles Frye
  • Patent number: 8101985
    Abstract: Capacitors are formed in metallization layers of semiconductor device in regions where functional conductive features are not formed, more efficiently using real estate of integrated circuits. The capacitors may be stacked and connected in parallel to provide increased capacitance, or arranged in arrays. The plates of the capacitors are substantially the same dimensions as conductive features, such as conductive lines or vias, or are substantially the same dimensions as fill structures of the semiconductor device.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies AG
    Inventor: Matthias Hierlemann
  • Patent number: 8097910
    Abstract: The invention includes a semiconductor structure having U-shaped transistors formed by etching a semiconductor substrate. In an embodiment, the source/drain regions of the transistors are provided at the tops of pairs of pillars defined by crossing trenches in the substrate. One pillar is connected to the other pillar in the pair by a ridge that extends above the surrounding trenches. The ridge and lower portions of the pillars define U-shaped channels on opposite sides of the U-shaped structure, facing a gate structure in the trenches on those opposite sides, forming a two sided surround transistor. Optionally, the space between the pillars of a pair is also filled with gate electrode material to define a three-sided surround gate transistor. One of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The invention also includes methods of forming semiconductor structures.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 17, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8093640
    Abstract: A method and system for fabricating a stacked capacitor and a DMOS transistor are disclosed. In one aspect, the method and system include providing a bottom plate, an insulator, and an additional layer including first and second plates. The insulator covers at least a portion of the bottom plate and resides between the first and second top plates and the bottom plate. The first and second top plates are electrically coupled through the bottom plate. In another aspect, the method and system include forming a gate oxide. The method and system also include providing SV well(s) after the gate oxide is provided. A portion of the SV well(s) resides under a field oxide region of the device. Each SV well includes first, second, and third implants having a sufficient energy to provide the portion of the SV well at a desired depth under the field oxide region without significant additional thermal processing. A gate, source, and drain are also provided.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 10, 2012
    Assignee: Atmel Corporation
    Inventors: Stefan Schwantes, Volker Dudek, Michael Graf, Alan Renninger, James Shen
  • Patent number: 8093642
    Abstract: A semiconductor memory device includes a memory cell portion and a peripheral circuit portion. The memory cell portion includes a pillar capacitor with a lower electrode, a dielectric film, and an upper electrode sequentially formed on a side surface of a first insulating portion which is parallel to a predetermined direction, and a transistor electrically connected to the lower electrode. The peripheral circuit portion includes a plate electrode, a cylinder capacitor with an upper electrode, a dielectric film, and a lower electrode sequentially formed on a side surface of the plate electrode which is parallel to the predetermined direction, and a transistor electrically connected to the lower electrode.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 10, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Mitsunari Sukekawa
  • Publication number: 20120001245
    Abstract: Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kurt D. Beigel, Jigish D. Trivedi, Kevin G. Duesman
  • Patent number: 8084803
    Abstract: A capacitor with a mixed structure of a Metal Oxide Semiconductor (MOS) capacitor and a Poly-silicon Insulator Poly-silicon (PIP) capacitor includes a substrate and a diffusion junction region formed over the substrate. A high concentration diffusion junction region may be formed in a portion of the diffusion junction region. An oxide layer may be formed over the substrate, the oxide layer having an opening that exposes a portion of the high concentration diffusion junction region. A first polysilicon plate may be formed over a portion of the oxide layer and spaced from the opening, and a nitride layer may be formed over a portion of the first polysilicon plate. A sidewall may be formed over a side of the first polysilicon layer, over a side of the nitride layer, and over a portion of the oxide layer between the side of the polysilicon layer and the opening. A second polysilicon plate may be formed over the nitride layer, over the sidewall, and over the high concentration diffusion junction region.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: December 27, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam-Joo Kim
  • Patent number: 8076717
    Abstract: A vertical semiconductor material mesa upstanding from a semiconductor base that forms a conductive channel between first and second doped regions. The first doped region is electrically coupled to one or more first silicide layers on the surface of the base. The second doped region is electrically coupled to a second silicide layer on the upper surface of the mesa. A gate conductor is provided on one or more sidewalls of the mesa.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Chandra Mouli, John K. Zahurak
  • Patent number: 8072024
    Abstract: A nonvolatile semiconductor memory device with a substrate. A plurality of dielectric films and electrode films are alternately stacked on the substrate and have a through hole penetrating in the stacking direction. A semiconductor pillar is formed inside the through hole. A charge storage layer is provided at least between the semiconductor pillar and the electrode film. At least part of a side surface of a portion of the through hole located in the electrode film is sloped relative to the stacking direction.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masao Ishikawa, Katsunori Yahashi