With Increased Effective Electrode Surface Area (e.g., Tortuous Path, Corrugated, Or Textured Electrodes) Patents (Class 257/309)
  • Patent number: 8901629
    Abstract: A semiconductor device includes a semiconductor substrate divided into a cell region and a peripheral circuit region defined in a first direction, wherein the peripheral circuit region is divided into a first region and a second region defined in a second direction substantially orthogonal to the first direction; gate lines formed over the semiconductor substrate in the cell region and arranged in the second direction; and a capacitor including lower electrodes over the semiconductor substrate, a dielectric layer and an upper electrode, wherein the lower electrodes in the first and second regions, separated from each other in the first direction and coupled to each other in the first region, the dielectric layer is formed along surfaces of the lower electrodes in the second region, and the upper electrode is formed over the dielectric layer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Jung Ryul Ahn, Yun Kyoung Lee
  • Patent number: 8890227
    Abstract: Implementations disclosed herein may relate to a memory cell, such as a DRAM memory cell, for example.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 18, 2014
    Assignee: AP Memory Corp, USA
    Inventors: Wenliang Chen, Lin Ma
  • Patent number: 8884351
    Abstract: Devices having hybrid-vertical contacts. In certain embodiments, a substrate includes a lower patterned layer that has a target conductor. A hybrid-vertical contact may be disposed directly on the target conductor. The hybrid vertical contact may include a lower-vertical contact directly on the target conductor and an upper-vertical contact directly on the lower-vertical contact. The upper-vertical contact may have an upper width that is greater than a lower width of the lower-vertical contact.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: November 11, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jonathan Doebler
  • Patent number: 8884350
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 11, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Toshiyuki Hirota
  • Patent number: 8878274
    Abstract: A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 4, 2014
    Assignee: Micron Technology, Inc.
    Inventors: R. Jacob Baker, Kurt D. Beigel
  • Patent number: 8860111
    Abstract: An array of phase change memory cells is manufactured by forming a separation layer over an array of contacts, forming a patterning layer on the separation layer and forming an array of mask openings in the patterning layer using lithographic process. Etch masks are formed within the mask openings by a process that compensates for variation in the size of the mask openings that result from the lithographic process. The etch masks are used to etch through the separation layer to define an array of electrode openings exposing the underlying contacts. Electrode material is deposited within the electrode openings; and memory elements are formed over the bottom electrodes. Finally, bit lines are formed over the memory elements to complete the memory cells. In the resulting memory array, the critical dimension of the top surface of bottom electrode varies less than the width of the memory elements in the mask openings.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: October 14, 2014
    Assignees: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Hsiang-Lan Lung, Chung Hon Lam, Matthew J. Breitwisch
  • Patent number: 8860115
    Abstract: A capacitor includes a lower electrode having a curved surface, a first seed on a sidewall of the lower electrode, which the first seed includes a metal silicide and has a shape corresponding to the curved surface of the lower electrode, a dielectric layer on the lower electrode, the dielectric layer covering the first seed, and an upper electrode on the dielectric layer.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Ryul Jun
  • Patent number: 8847353
    Abstract: Capacitance blocks (first block and second block) respectively formed on two different adjacent common pad electrodes are electrically connected in series through an upper electrode. A distance between two adjacent capacitance blocks connected in series through an upper electrode film for the upper electrode corresponds to a distance between opposing lower electrodes disposed in an outermost perimeter of each capacitance block, and is two or less times than a total film thickness of the upper electrode film embedded between the two adjacent capacitance blocks.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Eiji Hasunuma
  • Patent number: 8842412
    Abstract: A chip capacitor and interconnecting wiring is described incorporating a metal insulator metal (MIM) capacitor, tapered vias and vias coupled to one or both of the top and bottom electrodes of the capacitor in an integrated circuit. A design structure tangibly embodied in a machine readable medium is described incorporating computer readable code defining a MIM capacitor, tapered vias, vias and wiring levels in an integrated circuit.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Zhong-Xiang He, Anthony K. Stamper
  • Patent number: 8836135
    Abstract: A semiconductor device including: a semiconductor substrate; a plurality of interconnect layers disposed at different heights from the semiconductor substrate, each interconnect layer including an interconnection formed therein; and a via formed in a columnar shape extending in the stack direction of the interconnect layers, the via electrically connecting the interconnections of the different interconnect layers, the interconnections including an intermediate interconnection in contact with the via in the intermediate portion thereof, and the intermediate interconnection including a first type intermediate interconnection passing through the via in a direction perpendicular to the stack direction and in contact with the via on the top surface, bottom surface, and both side surfaces thereof.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hirokazu Kikuchi
  • Patent number: 8766347
    Abstract: Some embodiments include capacitors. The capacitors may include container-shaped storage node structures that have, along a cross-section, a pair of upwardly-extending sidewalls. Individual sidewalls may have a narrower segment over a wider segment. Capacitor dielectric material and capacitor electrode material may be along the narrower and wider segments of the sidewalls. Some embodiments include methods of forming capacitors in which an initial container-shaped storage node structure is formed to have a pair of upwardly-extending sidewalls along a cross-section, with the sidewalls being of thickness that is substantially constant or increasing from a base to a top of the initial structure. The initial structure is then converted into a modified storage node structure by reducing thicknesses of upper segments of the sidewalls while leaving thicknesses of lower segments of the sidewalls substantially unchanged.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Duane M. Goodner, Sanjeev Sapra, Darwin Franseda Fan
  • Patent number: 8742541
    Abstract: A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: June 3, 2014
    Assignee: Tessera, Inc.
    Inventors: Ilyas Mohammed, Belgacem Haba, Cyprian Uzoh, Piyush Savalia, Vage Oganesian
  • Patent number: 8742482
    Abstract: A semiconductor device including: a bit line being arranged on top surfaces of first and second contact plugs via a first insulation layer and extending in a direction connecting a first impurity diffusion layer and a second impurity diffusion layer; a bit line contact plug being formed through the first insulation layer and electrically connecting the bit line to the first contact plug; a first cell capacitor having a first lower electrode beside one of side surfaces of the bit line; a first insulation film insulating the bit line and the first lower electrode from each other; and a first contact conductor electrically connecting a bottom end of the first lower electrode to a side surface of the second contact plug.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 3, 2014
    Inventor: Hiroyuki Uchiyama
  • Patent number: 8710567
    Abstract: The semiconductor device of the present invention includes a silicon substrate having a logic region and a RAM region, an NMOS transistor formed in the logic region, and an NMOS transistor formed in the RAM region. The NMOS transistor has a stack structure obtained by sequentially stacking the gate insulating film and the metal gate electrode over the silicon substrate. The NMOS transistor has a cap film containing an element selected from a group consisting of lanthanum, ytterbium, magnesium, strontium, and erbium as a composition element between the silicon substrate and metal gate electrode. The cap film is not formed in the NMOS transistor.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 29, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Tomohiko Moriya
  • Patent number: 8698279
    Abstract: The semiconductor device includes a capacitor including a plurality of interconnection layers stacked over each other, the plurality of interconnection layers each including a plurality of electrode patterns extended in a first direction, a plurality of via parts provided between the plurality of interconnection layers and electrically interconnecting the plurality of the electrode patterns between the interconnection layers adjacent to each other, and an insulating films formed between the plurality of interconnection layers and the plurality of via parts. Each of the plurality of via parts is laid out, offset from a center of the electrode pattern in a second direction intersecting the first direction, and the plurality of electrode patterns has a larger line width at parts where the via parts are connected to, and a distance between the electrode patterns and the adjacent electrode patterns is reduced at the parts.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: April 15, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kenichi Watanabe, Nobuhiro Misawa
  • Patent number: 8653629
    Abstract: A semiconductor device has a semiconductor substrate. The semiconductor device has a plurality of LSI regions that are formed on the semiconductor substrate and are provided with a first power supply wiring layer including a first power supply wire. The semiconductor device has a first power supply terminal formed on the semiconductor substrate. The semiconductor device has a second power supply wiring layer including a second power supply wire that electrically connects the first power supply wire and the first power supply terminal, the second power supply wiring layer is formed in a dicing region between the LSI regions along a dicing line that separates the LSI regions and the dicing line region. A first barrier metal film is formed at least in the LSI regions at a boundary between the first power supply wire and the second power supply wire.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: February 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoji Seta, Yojiro Hamasaki
  • Patent number: 8629033
    Abstract: A method for manufacturing a semiconductor device prevents a lower electrode from leaning, in a dip-out process of an interlayer insulation film forming a lower electrode. A conductive material of a lower electrode is used as a support layer instead of a conventional nitride film support layer. This prevents a crack from being generated in a nitride film support layer. A method for manufacturing the semiconductor device is also disclosed.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: January 14, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Wook Bae
  • Patent number: 8618593
    Abstract: Some embodiments of the invention include thin film capacitors formed on a package substrate of an integrated circuit package. At least one of the film capacitors includes a first electrode layer, a second electrode layer, and a dielectric layer between the first and second electrode layers. Each of the first and second electrode layers and the dielectric layer is formed individually and directly on the package substrate. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: Islam A. Salama, Yongki Min
  • Patent number: 8614471
    Abstract: Collections of laterally crystallized semiconductor islands for use in thin film transistors and systems and methods for making same are described. A display device includes a plurality of thin film transistors (TFTs) on a substrate, such that the TFTs are spaced apart from each other and each include a channel region that has a crystalline microstructure and a direction along which a channel current flows. The channel region of each of the TFTs contains a crystallographic grain that spans the length of that channel region along its channel direction. Each crystallographic grain in the channel region of each of the TFTs is physically disconnected from and crystallographically uncorrelated with each crystallographic grain in the channel region of each adjacent TFT.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 24, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: James S. Im, Ui-Jin Chung
  • Patent number: 8581320
    Abstract: Capacitors include a first electrical terminal that has fins formed from doped semiconductor on a top layer of doped semiconductor on a semiconductor-on-insulator substrate; a second electrical terminal that has an undoped material having bottom surface shape that is complementary to the first electrical terminal, such that an interface area between the first electrical terminal and the second electrical terminal is larger than a capacitor footprint; and a dielectric layer separating the first and second electrical terminals.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8580681
    Abstract: A device manufacturing method includes: sequentially forming a first sacrificial film, a first support film, a second sacrificial film, and a second support film on a semiconductor substrate; forming a hole to pass through these films; forming a crown-shaped electrode covering an inner surface of the hole and connected to the second support film and the first support film; forming a first opening in the second support film into a first pattern designed such that the connection between the crown-shaped electrode and the second support film is at least partially maintained; removing at least a part of the second sacrificial film through the first opening; forming a second opening in the first support film with use of the first opening; and removing the first sacrificial film through the second opening. This method is able to prevent misalignment of openings between the support films.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Nobuyuki Sako
  • Patent number: 8518819
    Abstract: A semiconductor contact structure and method provide contact structures that extend through a dielectric material and provide contact to multiple different subjacent materials including a silicide material and a non-silicide material such as doped silicon. The contact structures includes a lower composite layer formed using a multi-step ionized metal plasma (IMP) deposition operation. A lower IMP film is formed at a high AC bias power followed by the formation of an upper IMP film at a lower AC bias power. The composite layer may be formed of titanium. A further layer is formed as a liner over the composite layer and the liner layer may advantageously be formed using CVD and may be TiN. A conductive plug material such as tungsten or copper fills the contact openings.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 27, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih Chieh Chang, Chih-Chung Chang, Kei-Wei Chen, Ying-Lang Wang
  • Patent number: 8497565
    Abstract: In a disclosed embodiment, a stacked capacitor (100) has bottom, middle and top metal electrode layers (141A, 141B, 141C) interleaved with dielectric layers (142A, 142B) conformally disposed within holes (140A, 140B, 140C) in a protective overcoat or backend dielectric layer (110) over a top metal layer (115) of an integrated circuit (105). A top electrode (155) contacts the top metal electrode layer (141C). A bottom electrode (150) electrically couples an isolated part of the top metal electrode layer (141C) through a bottom electrode via (165A) to a first contact node (135A) in the top metal layer (115) which is in contact with the bottom metal electrode layer (141A). A middle electrode (160) electrically couples a part of the middle metal electrode layer (141B) not covered by the top metal layer (115) through a middle electrode via (165B) to a second contact node (135B) in the top metal electrode layer (115).
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Byron Lovell Willaims, Maxwell Walthour Lippitt, III, Betty Mercer, Scott Montgomery, Binghua Hu
  • Publication number: 20130187212
    Abstract: Devices having hybrid-vertical contacts. In certain embodiments, a substrate includes a lower patterned layer that has a target conductor. A hybrid-vertical contact may be disposed directly on the target conductor. The hybrid vertical contact may include a lower-vertical contact directly on the target conductor and an upper-vertical contact directly on the lower-vertical contact. The upper-vertical contact may have an upper width that is greater than a lower width of the lower-vertical contact.
    Type: Application
    Filed: February 26, 2013
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Patent number: 8482048
    Abstract: A bypass capacitor is directly integrated on top of a MOSFET chip. The capacitor comprises multi layers of conductive material and dielectric material staking on top of each other with connection vias through dielectric layer for connecting different conductive layers. The method of integrating the bypass capacitor comprises repeating steps of depositing a dielectric layer, forming connection vias through the dielectric layer, depositing a conductive layer and patterning the conductive layer.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 9, 2013
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Anup Bhalla, Hamza Yilmaz, Jun Lu
  • Patent number: 8471321
    Abstract: A semiconductor device, having a memory cell region and a peripheral circuit region, includes an insulating film, having an upper surface, formed on a major surface of a semiconductor substrate to extend from the memory cell region to the peripheral circuit region. A capacitor lower electrode assembly is formed in the memory cell region to upwardly extend to substantially the same height as the upper surface of the insulating film on the major surface of the semiconductor substrate. Additionally, the lower electrode assembly includes first and second lower electrodes that are adjacent through the insulating film. A capacitor upper electrode is formed on the capacitor lower electrode through a dielectric film, to extend onto the upper surface of the insulating film. The capacitor lower electrode includes a capacitor lower electrode part having a top surface and a bottom surface.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: June 25, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshinori Tanaka, Masahiro Shimizu, Hideaki Arima
  • Patent number: 8455959
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include cobalt titanium oxide on a substrate for use in a variety of electronic systems. The cobalt titanium oxide may be structured as one or more monolayers. The cobalt titanium oxide may be formed by a monolayer by monolayer sequencing process such as atomic layer deposition.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: June 4, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8405129
    Abstract: A design structure tangibly embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit includes a plurality of bit line structures, a plurality of word line structures intersecting said plurality of bit line structures to form a plurality of cell locations, and a plurality of cells located at said plurality of cell locations, each of said cells being selectively coupled to a corresponding bit line structure under control of a corresponding word line structure, each of said cells comprising a logical storage element having at least a first n-type field effect transistor and at least a first p-type field effect transistor, wherein said at least first n-type field effect transistor is formed with a relatively thick buried oxide layer sized to reduce capacitance of said bit line structures, and said at least first p-type field effect transistor is formed with a relatively thin buried oxide layer.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ching-Te K. Chuang, Fadi H. Gebara, Keunwoo Kim, Jente Benedict Kuang, Hung C. Ngo
  • Patent number: 8390047
    Abstract: An implantable, miniaturized platform and a method for fabricating the platform is provided, where the e platform includes a top cover plate and a bottom substrate, top cover plate including an epitaxial, Si-encased substrate and is configured to include monolithically grown devices and device contact pads, the Si-encased substrate cover plate including a gold perimeter fence deposited on its Si covered outer rim and wherein the bottom substrate is constructed of Si and includes a plurality of partial-Si-vias (PSVs), electronic integrated circuits, device pads, pad interconnects and a gold perimeter fence, wherein the device pads are aligned with a respective device contact pad on the top cover plate and includes gold bumps having a predetermined height, the top cover plate and the bottom substrate being flip-chip bonded to provide a perimeter seal and to ensure electrical connectivity between the plurality of internal devices and at least one external component.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 5, 2013
    Inventors: Faquir Chand Jain, Fotios Papadimitrakopoulos
  • Patent number: 8384144
    Abstract: An interdigitated Metal-Insulator-Metal (MIM) capacitor provides self-shielding and accurate capacitance ratios with small capacitance values. The MIM capacitor includes two terminals that extend to a plurality of interdigitated fingers separated by an insulator. Metal plates occupy layers above and below the fingers and connect to fingers of one terminal. As a result, the MIM capacitor provides self-shielding to one terminal. Additional shielding may be employed by a series of additional shielding layers that are isolated from the capacitor. The self-shielding and additional shielding may also be implemented at an array of MIM capacitors.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: February 26, 2013
    Assignee: Kenet, Inc.
    Inventor: Michael P. Anthony
  • Patent number: 8384143
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: February 26, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Toshiyuki Hirota
  • Patent number: 8378405
    Abstract: A capacitor under bitline DRAM memory cell and method for its fabrication provides a high density memory cell with the capacitor formed in the PMD layer. The memory cell utilizes several variations of storage contact pillar structures as, for example, a storage plate of the memory cell capacitor formed within a trench in the PMD layer. This capacitor plate structure is overlaid with a capacitor dielectric layer which is overlaid with another conductive layer, for example, the M1 layer to form the other capacitor plate. An access transistor formed between substrate active regions and a word line, is in electrical communication with a bit line contact, the storage contact capacitor plate, and the word line respectively. The high density memory cell benefits from the simple standard processes common to logic processes, and in one embodiment requiring only one additional masking step.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Patent number: 8354703
    Abstract: A semiconductor capacitor and its method of fabrication are disclosed. A non-linear nitride layer is used to increase the surface area of a capacitor plate, resulting in increased capacitance without increase in chip area used for the capacitor.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David Vaclav Horak, Shom Ponoth, Hosadurga Shobha, Chih-Chao Yang
  • Patent number: 8299518
    Abstract: A semiconductor device includes an Si substrate having a first surface provided with semiconductor elements, such as a CMOS transistor and a diode, and a second surface opposite to the first surface. On one of the first and the second surfaces, a bypass capacitor is formed. The bypass capacitor includes a Vcc power supply layer and a GND layer which serve to supply a power supply voltage to the semiconductor element, and a high dielectric constant layer sandwiched between the Vcc power supply layer and the GND layer.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 30, 2012
    Assignee: Liquid Design Systems Inc.
    Inventor: Seisei Oyamada
  • Patent number: 8294219
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: October 23, 2012
    Assignee: Intermolecular, Inc.
    Inventors: Sandra G. Malhotra, Pragati Kumar, Sean Barstow, Tony Chiang, Prashant B. Phatak, Wen Wu, Sunil Shanker
  • Patent number: 8242551
    Abstract: The present disclosure provides a semiconductor device that includes a semiconductor substrate, an isolation structure formed in the semiconductor substrate, a conductive layer formed over the isolation structure, and a metal-insulator-metal (MIM) capacitor formed over the isolation structure. The MIM capacitor has a crown shape that includes a top electrode, a first bottom electrode, and a dielectric disposed between the top electrode and the first bottom electrode, the first bottom electrode extending at least to a top surface of the conductive layer.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: August 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Kuo-Chi Tu, Chun-Yao Chen
  • Patent number: 8236645
    Abstract: Integrated circuits having place-efficient capacitors and methods for fabricating the same are provided. A dielectric layer is formed overlying a conductive feature on a semiconductor substrate. A via opening is formed into the dielectric layer to expose a portion of the conductive feature. A partial opening is etched into the dielectric layer and positioned over the conductive feature. Etch resistant particles are deposited overlying the dielectric layer and in the partial opening. The dielectric layer is further etched using the etch resistant particles as an etch mask to extend the partial opening. A first conductive layer is formed overlying the extended partial opening and electrically contacting the conductive feature. A capacitor insulating layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the insulating layer.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 7, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventor: Dmytro Chumakov
  • Patent number: 8217427
    Abstract: A memory circuit includes a plurality of bit line structures, a plurality of word line structures intersecting the plurality of bit line structures to form a plurality of cell locations; and a plurality of cells located at the plurality of cell locations. Each of the cells is selectively coupled to a corresponding one of the bit line structures under control of a corresponding one of the word line structures, and each of the cells in turn includes a logical storage element having at least a first n-type field effect transistor and at least a first p-type field effect transistor. The at least first n-type field effect transistor is formed with a relatively thick buried oxide layer sized to reduce capacitance of the bit line structures, and the at least first p-type field effect transistor is formed with a relatively thin buried oxide layer.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ching-Te K. Chuang, Fadi H. Gebara, Keunwoo Kim, Jente Benedict Kuang, Hung C. Ngo
  • Patent number: 8183616
    Abstract: Provided is a technology capable of reducing parasitic capacitance of a capacitor while reducing the space occupied by the capacitor. A stacked structure is obtained by forming, over a capacitor composed of a lower electrode, a capacitor insulating film and an intermediate electrode, another capacitor composed of the intermediate electrode, another capacitor insulating film and an upper electrode. Since the intermediate electrode has a step difference, each of the distance between the intermediate electrode and lower electrode and the distance between the intermediate electrode and upper electrode in a region other than the capacitor formation region becomes greater than that in the capacitor formation region. For example, the lower electrode is brought into direct contact with the capacitor insulating film in the capacitor formation region, while the lower electrode is not brought into direct contact with the capacitor insulating film in the region other than the capacitor formation region.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: May 22, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsuyoshi Fujiwara, Toshinori Imai, Takeshi Saikawa, Yoshinori Kawasaki, Mitsuhiro Toya, Shunji Mori, Yoshiyuki Okabe
  • Patent number: 8178404
    Abstract: A Metal-Insulator-Metal (MIM) capacitor structure and method of fabricating the same in an integrated circuit improve capacitance density in a MIM capacitor structure by utilizing a sidewall spacer extending along a channel defined between a pair of legs that define portions of the MIM capacitor structure. Each of the legs includes top and bottom electrodes and an insulator layer interposed therebetween, as well as a sidewall that faces the channel. The sidewall spacer incorporates a conductive layer and an insulator layer interposed between the conductive layer and the sidewall of one of the legs, and the conductive layer of the sidewall spacer is physically separated from the top electrode of the MIM capacitor structure. In addition, the bottom electrode of a MIM capacitor structure may be ammonia plasma treated prior to deposition of an insulator layer thereover to reduce oxidation of the electrode.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignee: NXP B.V.
    Inventors: Michael Olewine, Kevin Saiz
  • Patent number: 8169015
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: May 1, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Toshiyuki Hirota
  • Patent number: 8143698
    Abstract: A problem of an increased manufacturing cost is caused in conventional semiconductor devices. A semiconductor device 1 includes: a lower electrode 102 provided on a semiconductor substrate 101; an insulating film 105, provided on the lower electrode 102 so as to be in contact with the lower electrode 102; an upper electrode 103, provided on the insulating film 105 so as to be in contact with the insulating film 105; an opening portion 121, provided in the lower electrode 102 and extending through the lower electrode 102; and an opening portion 122, provided in the upper electrode 103 and extending through the upper electrode 103. The insulating film 123 is embedded in the opening portion 121 that is provided in the lower electrode 102. Similarly, the insulating film 124 is embedded in the opening portion 122 that is provided in the upper electrode 103.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: March 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Chikashi Yoshinaga
  • Patent number: 8143723
    Abstract: A semiconductor device and its manufacture method wherein the semiconductor substrate has first and second insulating films, the first insulating film being an insulating film other than a silicon nitride film formed at least on a side wall of a conductive pattern including at least one layer of metal or metal silicide, and the second insulating film being a silicon nitride film formed to cover the first insulating film and the upper surface and side wall of the conductive pattern. The first insulating film may be formed to cover the upper surface and side wall of the conductive pattern. A semiconductor device and its manufacture method are provided which can realize high integrated DRAMs of 256 M or larger without degrading reliability and stability.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: March 27, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Shinichiroh Ikemasu, Narumi Okawa
  • Patent number: 8134200
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention includes a memory cell including, a charge storage layer on a gate insulating film, a multilayer insulator on the charge storage layer, and a control gate electrode on the multilayer insulator, the gate insulating film including a first tunnel film, a first high-dielectric-constant film on the first tunnel film and offering a greater dielectric constant than the first tunnel film, and a second tunnel film on the first high-dielectric-constant film and having the same configuration as that of the first tunnel film, the multilayer insulator including a first insulating film, a second high-dielectric-constant film on the first insulating film and offering a greater dielectric constant than the first insulating film, and a second insulating film on the second high-dielectric-constant film and having the same configuration as that of the first insulating film.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: March 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 8120084
    Abstract: Described is a modulatable injection barrier and a semiconductor element comprising same. More particularly, the invention relates to a two-terminal, non-volatile programmable resistor. Such a resistor can be applied in non-volatile memory devices, and as an active switch e.g. in displays. The device comprises, in between electrode layers, a storage layer comprising a blend of a ferro-electric material and a semiconductor material. Preferably both materials in the blend are polymers.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 21, 2012
    Assignee: Rijksuniversiteit Groningen
    Inventors: Paulus Wilhelmus Maria Blom, Bert de Boer, Kamal Asadi
  • Patent number: 8106438
    Abstract: The present teachings relate to a method of forming a container capacitor structure on a substrate. In one embodiment, the method comprises etching a recess in the substrate, depositing a first conductive layer on the substrate so as to overlie the substrate and the recess, depositing a filler layer so as to overlie the first conductive layer and fill the recess, and etching the first and second conductive layers so as to define a lower electrode within the recess. The method further comprises forming a cap layer on the lower electrode so as to overlie the first conductive layer and the filler layer and etching at least a portion of the substrate away from the lower electrode to thereby at least partially isolate the lower electrode. Subsequently, the remainder of the capacitor structure may be formed by depositing a dielectric layer on the lower electrode and depositing a second conductive layer on the dielectric layer so as to form an upper electrode.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: January 31, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Scott Meikle
  • Patent number: 8093643
    Abstract: A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: R. Jacob Baker, Kurt D. Beigel
  • Patent number: 8084367
    Abstract: Provided herein are etching, cleaning and drying methods using a supercritical fluid, and a chamber system for conducting the same. The etching method includes etching the material layer using a supercritical carbon dioxide in which an etching chemical is dissolved, and removing an etching by-product created from a reaction between the material layer and the etching chemical using a supercritical carbon dioxide in which a cleaning chemical is dissolved. Methods of manufacturing a semiconductor device are also provided.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 27, 2011
    Assignees: Samsung Electronics Co., Ltd, Pukyong National University
    Inventors: Hyo-san Lee, Chang-Ki Hong, Kun-Tack Lee, Woo-Gwan Shim, Jeong-Nam Han, Jung-Min Oh, Kwon-Taek Lim, Ha-Soo Hwang, Haldorai Yuvaraj, Jae-Mok Jung
  • Patent number: 8053824
    Abstract: Apparatuses and methods for increasing well distributed, high quality-factor on-chip capacitance of integrated circuit devices are disclosed. In one aspect, an integrated circuit device structure includes a first metal line implemented on a metallization layer of a semiconductor substrate, the first metal line having a first set of metal fingers extending therefrom; and a second metal line electrically isolated from the first metal line, the second metal line having a second set of metal fingers extending therefrom, the first set of metal fingers and the second set of metal fingers capacitively coupled. The basic structure of metal lines with interlocking metal fingers may be repeated on multiple adjacent metallization layers, with the metal lines oriented either in parallel or perpendicular.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 8, 2011
    Assignee: LSI Corporation
    Inventors: Greg Winn, Steve Howard