With Lightly Doped Portion Of Drain Region Adjacent Channel (e.g., Ldd Structure) Patents (Class 257/344)
  • Patent number: 6800891
    Abstract: An improved method for forming a flash memory is disclosed. A self-aligned source implanted pocket located underneath and around the source line junction is formed after the field oxide between adjacent word lines is removed, and before or after the self-aligned source doping is carried out, so that the configuration of the implanted boron follows the source junction profile.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Chun Chen
  • Patent number: 6794714
    Abstract: A transistor and a method for fabricating the same that involves a forming a device isolation oxide film semiconductor substrate, forming an opening in the device isolation oxide to open the substrate and define an active region, the junction between the oxide and the substrate having a rounded profile, and then forming a complex gate electrode structure in the active region. The preferred gate electrode structure comprises a gate oxide and a stacked conductor structure having a first and a second conductor, an optional hard mask layer formed on the second conductor, an oxide layer formed on the first conductor, and nitride spacers formed on the oxide layer on the sidewalls of the gate electrode. On either side of the gate electrode structure lightly doped drain (LDD) regions and source drain regions are then formed in the active region of the semiconductor substrate. The wafer is then planarized with one or more insulating films to condition the wafer for subsequent processing.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: September 21, 2004
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventor: Jae Goan Jeong
  • Publication number: 20040178446
    Abstract: A method is provided for forming a thin film transistor of a semiconductor integrated circuit, and an integrated circuit formed according to the same. A polysilicon gate electrode is formed over a portion of the integrated circuit. Agate oxide layer is formed over the gate electrode. A conformal polysilicon layer is formed over the gate oxide layer and a portion of the integrated circuit. The polysilicon layer is doped with an n-type dopant to form a channel region over the gate electrode. A screen oxide layer is formed over a portion of the polysilicon layer substantially over the gate electrode. The polysilicon layer not covered by the screen oxide layer is doped with a p−-type dopant to form a lightly doped drain region on each side of the channel region. A photoresist layer is formed over a portion of the screen oxide layer and one of the lightly doped drain regions. The polysilicon layer not covered by the photoresist layer is doped with a p+-type dopant. The photoresist layer is then removed.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Inventor: Ravishankar Sundaresan
  • Patent number: 6787849
    Abstract: Embodiments include a semiconductor device including a well structure such that well areas can be formed with a higher density of integration and a plurality of high-voltage endurable transistors can be driven independently of one another with different voltages, and a method of manufacturing the semiconductor device. The semiconductor device may include a triple well comprising a first well formed in a silicon substrate and having a first conductivity type (P-type), a second well formed in adjacent relation to the first well and having a second conductivity type (N-type), and a third well formed in the second well and having the first conductivity type (P-type). A high-voltage endurable MOSFET is provided in each of the wells. Each MOSFET has an offset area in the corresponding well around a gate insulating layer. The offset area is formed of a low-density impurity layer which is provided under an offset LOCOS layer on the silicon substrate.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: September 7, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Masahiro Hayashi
  • Publication number: 20040169224
    Abstract: The present invention has an object to provide a MOS type transistor with a simple process, in which a high concentration junction can be stably formed so shallowly as to prevent a high concentration region constituting a drain/source region from extending beyond a contact hole due to a production variation, which cannot be attained by a conventional MOS type transistor of an LDD structure. The present invention having the following feature. That is, in forming the contact hole of the MOS type transistor, a nitride film is used as an etch-stop film to keep an Si substrate from being overetched. By using the contact hole as a mask, ion implantation is carried out to form the high concentration diffusion region constituting the source/drain region.
    Type: Application
    Filed: December 30, 2003
    Publication date: September 2, 2004
    Inventor: Mika Ebihara
  • Patent number: 6784490
    Abstract: A high-voltage MOS transistor wherein a dopant concentration of a source offset region is set lower than a dopant concentration of a drain offset region whereby a resistance value of the resource region is set independently of a resistance value of the drain region in such a manner as to maintain a high sustaining breakdown voltage of the high-voltage MOS transistor, which is based on a voltage of the source offset region and a voltage of a substrate region directly under a gate insulating film during operation of the high-voltage MOS transistor.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: August 31, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Haruko Inoue, Yuichi Kitamura
  • Patent number: 6784488
    Abstract: A metal-oxide-semiconductor trench-gate semiconductor device in which a substantially intrinsic region (40) is provided below the gate trench (20), which extends from the base of the trench, substantially across the drain drift region (14) towards the drain contact region (14a), such that when the drain-source voltage falls during turn-on of the device its rate of decrease is higher. This reduces the switching losses of the device. The substantially intrinsic region (40) may, for example, be formed by implanting a region below the trench (20) with a damage implant.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: August 31, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Eddie Huang, Miron Drobnis, Martin J. Hill, Raymond J. E. Hueting
  • Patent number: 6777763
    Abstract: In a thin film transistor (TFT), a mask is formed on a gate electrode, and a porous anodic oxide is formed in both sides of the gate electrode using a relatively low voltage. A barrier anodic oxide is formed between the gate electrode and the porous anodic oxide and on the gate electrode using a relatively high voltage. A gate insulating film is etched using the barrier anodic oxide as a mask. The porous anodic oxide is selectively etched after etching barrier anodic oxide, to obtain a region of an active layer on which the gate insulating film is formed and the other region of the active layer on which the gate insulating film is not formed. An element including at least one of oxygen, nitrogen and carbon is introduced into the region of the active layer at high concentration in comparison with a concentration of the other region of the active layer. Further, N- or P-type impurity is introduced into the active layer.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Hideto Ohnuma, Naoaki Yamaguchi, Yasuhiko Takemura
  • Patent number: 6777711
    Abstract: An insulated-gate field-effect transistor adapted to be used in an active-matrix liquid-crystal display. The channel length, or the distance between the source region and the drain region, is made larger than the length of the gate electrode taken in the longitudinal direction of the channel. Offset regions are formed in the channel region on the sides of the source and drain regions. No or very weak electric field is applied to these offset regions from the gate electrode.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 17, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akira Mase, Masaaki Hiroki, Yasuhiko Takemura, Hongyong Zhang, Hideki Uochi, Hideki Nemoto
  • Patent number: 6774418
    Abstract: A method of depositing a silicon oxynitride spacer film on a gate stack in a semiconductor device involves contacting the gate stack with bistertiarybutylaminosilane (BTBAS), at least one nitrogen containing compound and oxygen (O2). The deposition is controlled to provide a wet etch rate for the deposited spacer film that is within the range of about 25 Angstroms per minute to less than or equal to about 1 Angstrom.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventor: John T. Moore
  • Patent number: 6770921
    Abstract: Devices, structures, and methods for enhancing devices using dual-doped polycrystalline silicon are discussed. One aspect of the present invention includes a p-type strip having a top, a bottom, two sides, and two ends; an n-type strip having a top, a bottom, two sides, and two ends; and a conductive inhibitor strip that adjoins a portion of one of the two sides of the p-type strip and a portion of one of the two sides of the n-type strip so as to inhibit cross-diffusion between the p-type strip and the n-type strip while electrical connection between n-type and p-type polycrystalline silicon is maintained.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: August 3, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Todd R. Abbott, Zhongze Wang
  • Publication number: 20040137688
    Abstract: A semiconductor device, and a process for fabricating the device, is disclosed. The semiconductor device is an MOS device in which the gate is bounded by spacers, which are in turn bounded by a trench in a trench dielectric layer formed on a semiconductor substrate. The device is formed by lithographically defining a sacrificial gate on the surface of the semiconductor substrate. The trench dielectric layer is then formed on the semiconductor substrate and adjacent to the sacrificial gate. The trench dielectric layer is planarized and, subsequent to planarization, the sacrificial gate is no longer covered by the trench dielectric layer. The sacrificial gate is then removed, which leaves a trench in the trench dielectric layer. Dielectric spacers are then formed in the trench. The distance between the spacers defines the gate length of the semiconductor device. After the spacers are formed, the device gate is formed. At least a portion of the gate is formed in the trench.
    Type: Application
    Filed: December 23, 2003
    Publication date: July 15, 2004
    Inventors: Chorng-Ping Chang, Chien-Shing Pai, Thi-Hong-Ha Vuong
  • Patent number: 6762456
    Abstract: A lateral RF MOS transistor with at least one conductive plug structure comprising: (1) a semiconductor material of a first conductivity type having a first dopant concentration and a top surface; (2) a conductive gate overlying and insulated from the top surface of the semiconductor material; (3) at least two enhanced drain drift regions of the second conductivity type of the RF MOS transistor; the first region laying partially underneath the gate; the second enhanced drain drift region contacting the first enhanced drain drift region, the dopant concentration of the second enhanced drain drift region is higher than the dopant concentration of the first enhanced drain drift region; (4) a drain region of the second conductivity type contacting the second enhanced drain drift region; (5) a body region of said RF MOS transistor of the first conductivity type with the dopant concentration being at least equal to the dopant concentration of the semiconductor epi layer; (6) a source region of the second conductivi
    Type: Grant
    Filed: February 8, 2003
    Date of Patent: July 13, 2004
    Assignee: Sirenza Microdevices, Inc.
    Inventors: Pablo D'Anna, Alan Lai-Wai Yan
  • Patent number: 6762458
    Abstract: In a high voltage transistor and a method for fabricating the same, a semiconductor substrate includes first, second, and third regions, the second and third regions neighboring the first region with boundaries. The first and second drift regions are respectively formed in the second and third regions at a first depth. Insulating films are formed at a second depth less than the first depth, having a predetermined width respectively based on the boundary between the first and second regions and the boundary between the first and third regions. A channel ion injection region is formed with a variable depth along a surface of the semiconductor substrate belonging to the first region and the insulating films. A gate insulating film is formed on the channel ion injection region, partially overlapping the insulating films at both sides around the channel ion injection region.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: July 13, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Da Soon Lee
  • Patent number: 6759717
    Abstract: A method of fabricating an integrated circuit having an n-channel and a p-channel transistor is provided. The method includes forming LDD regions for the n-channel transistors self-aligned to the gate electrodes. A first oxide is then formed over the structure and the n-type silicon regions are implanting with a p+ type dopant through the first oxide to form the source and drain regions of the p-channel transistor. A second oxide is formed over structure. The two oxide layers are then etched to provide sidewall spacers, having an inner portion formed from the first oxide and an outer portion formed from the second oxide. The p-type silicon regions are implanted with an n+ type dopant to form the low resistivity regions of the n-channel transistor. The p+ implants in the source and drain of the p-channel transistor typically outdiffuse toward the gates during further thermal processing of the device.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: July 6, 2004
    Assignee: STMicroelectronics, Inc.
    Inventors: Pervez Hassan Sagarwala, Mehdi Zamanian, Ravi Sundaresan
  • Patent number: 6759678
    Abstract: A high reliability semiconductor display device is provided. A semiconductor layer in the semiconductor display device has a channel forming region, an LDD region, a source region, and a drain region, and the LDD region overlaps a first gate electrode, sandwiching a gate insulating film.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: July 6, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Hideomi Suzawa, Koji Ono, Tatsuya Arao
  • Publication number: 20040124466
    Abstract: A three-dimensional flash memory array incorporates thin film transistors having a charge storage dielectric arranged in series-connected NAND strings to achieve a 4F2 memory cell layout. The memory array may be programmed and erased using only tunneling currents, and no leakage paths are formed through non-selected memory cells. Each NAND string includes two block select devices for respectively coupling one end of the NAND string to a global bit line, and the other end to a shared bias node. Pairs of NAND strings within a block share the same global bit line. The memory cells are preferably depletion mode SONOS devices, as are the block select devices. The memory cells may be programmed to a near depletion threshold voltage, and the block select devices are maintained in a programmed state having a near depletion mode threshold voltage. NAND strings on more than one layer may be connected to global bit lines on a single layer.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Andrew J. Walker, En-Hsing Chen, Sucheta Nallamothu, Roy E. Scheuerlein, Alper Ilkbahar, Luca Fasoli, Igor Kouznetsov, Christopher Petti
  • Patent number: 6756640
    Abstract: Memory elements, switching elements, and peripheral circuits to constitute a nonvolatile memory are integrally formed on a substrate by using TFTs. Since semiconductor active layers of memory element TFTs are thinner than those of other TFTs, impact ionization easily occurs in channel regions of the memory element TFTs. This enables low-voltage write/erase operations to be performed on the memory elements, and hence the memory elements are less prone to deteriorate. Therefore, a nonvolatile memory capable of miniaturization can be provided.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: June 29, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Keisuke Hayashi
  • Patent number: 6756637
    Abstract: High performance asymmetric transistors including controllable diode characteristics at the source and/or drain are developed by supplying impurities with high accuracy of location by angled implants in a trench or diffusion from a solid body formed as a sidewall of doped material. High concentration gradient of impurities to support high performance is achieved by providing for reduced heat treatment after the impurity is supplied in order to limit diffusion previously necessary to achieve the desired location of impurity structures. Damascene or quasi-Damascene gate structures are also provided for high dimensional uniformity, increased manufacturing yield and structural integrity of the transistor.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: June 29, 2004
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Michael J. Hargrove, Lyndon R. Logan, Isabel Y. Yang
  • Patent number: 6753576
    Abstract: An asymmetrical polysilicon thin film transistor is formed above a gate electrode on a semiconductor substrate. The transistor is separated from the gate electrode by a gate oxide layer, and includes a channel region immediately above the gate electrode. Highly doped source/drain regions are formed within the polysilicon on either side of the channel region. On the drain side of the channel only, a lightly doped drain region is formed between the channel region and the highly doped drain region. The highly doped source region is immediately adjacent the channel region.
    Type: Grant
    Filed: February 9, 1994
    Date of Patent: June 22, 2004
    Assignee: STMicroelectronics, Inc.
    Inventor: Ravishankar Sundaresan
  • Patent number: 6750489
    Abstract: An isolated high voltage p-type DMOS transistor comprises a layer of p-type semiconductor material in which a first n-well is disposed. A first annular p-type region is disposed in the first n-well. A first annular shallow trench isolation region is spaced apart from the first annular p-type region. An annular p-well region is spaced apart from the first shallow trench isolation region. An inner perimeter of the annular p-well region is disposed outside of the first annular p-type region. A second annular p-type region is disposed in the p-well. An annular gate has an inner perimeter aligned with the outer perimeter of the first annular p-type region and an outer perimeter disposed over the first shallow trench isolation region. A second annular n-well region is disposed outside of a second annular shallow trench isolation region. The second annular shallow trench isolation region is disposed outside of the annular p-well region.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 15, 2004
    Assignee: Foveon, Inc.
    Inventor: Richard B. Merrill
  • Patent number: 6747325
    Abstract: A thin film transistor having a single LDD structure is provided. The single LDD structure is disposed between source/drain structures, and having a first side adjacent to a first one of the source/drain structures and a second side spaced from a second one of the source/drain structures by essentially a semiconductor material. Another thin film transistor having a first kind of LDD and a second kind of LDD structure is also provided. The second kind of LDD structure is adjacent to the first kind of LDD structure. The process for manufacturing such thin film transistor is also disclosed.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: June 8, 2004
    Assignee: Toppoly Optoelectronics Corp.
    Inventor: An Shih
  • Patent number: 6747326
    Abstract: A method for adjusting Vt while minimizing parasitic capacitance for low voltage high speed semiconductor devices. The method uses shadow effects and an angled punch through prevention implant between vertical structures to provide a graded implant. The implant angle is greater than or equal to arc tangent of S/H where S is the horizontal distance between, and H is the height of, such vertical structures.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 8, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 6747316
    Abstract: A surface-channel MOS transistor comprising; a gate electrode formed on a semiconductor substrate with a gate dielectric film therebetween and source/drain regions formed in the semiconductor substrate wherein the gate electrode is formed at least a polysilicon layer of a thickness of 100 to 200 nm uniformly doped with an impurity and the source/drain regions contains the same impurity in self-alignment with the gate electrode.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: June 8, 2004
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshimasa Matsuoka, Seizou Kakimoto, Shigeki Hayashida, Hiroshi Iwata
  • Patent number: 6744099
    Abstract: By suppressing a short-channel effect of a MIS field-effect transistor and reducing a fringing capacitance of a gate, a signal delay in the transistor can be shortened. The MIS field-effect transistor is formed d by forming a side-wall spacer from a dielectric having a large dielectric constant and then forming an impurity diffusion layer area with the side-wall spacer used as an introduction end in an ion implantation process to introduce impurities. In this case, the side wall of the side-wall spacer having the large dielectric constant has an optimum film thickness in the range from 5 nm to 15 nm, which is required for achieving a large driving current. On the other hand, a side-wall spacer on an outer side is made of a silicon-dioxide film, which is a dielectric having a small dielectric constant.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: June 1, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Ryuta Tsuchiya, Masatada Horiuchi
  • Publication number: 20040099890
    Abstract: A gate electrode is formed on a semiconductor substrate with agate insulating film interposed therebetween. A channel region composed of a first-conductivity-type semiconductor layer is formed in a region of a surface portion of the semiconductor substrate located below the gate electrode. Source/drain regions each composed of a second-conductivity-type impurity layer are formed in regions of the surface portion of the semiconductor substrate located on both sides of the gate electrode. Second-conductivity-type extension regions are formed between the channel region and respective upper portion of the source/drain regions in contact relation with the source/drain regions. First-conductivity-type pocket regions are formed between the channel region and respective lower portion of the source/drain regions in contact relation with the source/drain regions and in spaced relation to the gate insulating film.
    Type: Application
    Filed: November 17, 2003
    Publication date: May 27, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroyuki Umimoto, Shinji Odanaka
  • Patent number: 6740932
    Abstract: A semiconductor device has a gate electrode formed on P type semiconductor substrate through a gate insulation film, a low concentration N− type drain region formed so as to be adjacent to the gate electrode, a high concentration N+ type drain region separated from the other end of said gate electrode and included in said low N− type drain region, and a middle concentration N type layer at a region spanning at least from said gate electrode to said high concentration N+ type drain region, and formed so that impurity concentration becomes low at a region near the gate electrode.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: May 25, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shuichi Kikuchi, Eiji Nishibe, Takuya Suzuki
  • Patent number: 6740944
    Abstract: The invention provides a transistor having low leakage currents and methods of fabricating the transistor on a semiconductor substrate. The transistor has a gate and a nonuniform gate oxide under the gate.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Altera Corporation
    Inventors: Peter John McElheny, Yowjuang (Bill) Liu
  • Patent number: 6737702
    Abstract: A zero power memory cell includes first and second NMOS transistors and a PMOS transistor, wherein the first NMOS transistor and first PMOS transistor each include a three-implant channel region, and wherein the second NMOS transistor further includes a two-implant channel region.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: May 18, 2004
    Assignee: Lattice Semiconductor Corporation
    Inventors: Chun Jiang, Sunil Mehta, Stewart Logie
  • Patent number: 6730962
    Abstract: A method of forming a semiconductor device includes forming a body region of a semiconductor substrate and forming a drift region adjacent at least a portion of the body region. A dopant is used to form the drift region. The dopant may comprise phosphorous. The method also includes forming a field oxide structure adjacent a portion of the drift region and a portion of a drain region. The field oxide structure is located between a gate electrode region and the drain region and is spaced apart from the gate electrode region. Atoms of the dopant accumulate adjacent a portion of the field oxide structure, forming an intermediate-doped region adjacent a portion of the field oxide structure. The method includes forming a gate oxide adjacent a portion of the body region and forming a gate electrode adjacent a portion of the gate oxide.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: May 4, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Xiaoju Wu
  • Patent number: 6730976
    Abstract: A transistor which has a stable characteristic and which can prevent tilted ions from penetrating through a grain boundary to a channel region when ions are implanted at an angle so as to form impurity layers while a gate electrode is used as a mask. A gate electrode comprises a two-layer structure of a lower film and an upper film formed on a gate insulation film on the surface of a semiconductor substrate. The thickness of the lower film is made greater than the range of ions in the thickness wise direction in the film when the ions are implanted to the sidewalls of the lower film.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: May 4, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Akihiko Harada, Motoshige Igarashi
  • Patent number: 6730548
    Abstract: A method of fabricating a thin film transistor for liquid crystal display is provided. A polysilicon island and a gate insulating layer covered on the polysilicon island are formed on a substrate. A metal layer is formed on the gate insulating layer. A pair of trenches exposing predetermined regions of the polysilicon island are formed in the metal layer and the gate insulating layer. P-type impurities are doped into the uncovered polysilicon regions of the polysilicon island. A gate electrode is formed by removing parts of the metal layer and the gate insulating layer. N-type impurities are doped into the exposed portions of the polysilicon island. Thereby LDD regions, and a source and a drain regions are formed at the regions doped with both n-type and p-type impurities and at the regions doped with only n-type impurities respectively.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 4, 2004
    Assignee: Au Optronics Corp.
    Inventor: Chien-Sheng Yang
  • Publication number: 20040079992
    Abstract: A method of fabricating a transistor comprises forming a gate structure outwardly of a semiconductor substrate, wherein the gate structure comprises a gate, a gate insulator and sidewalls and forming source region and a drain region in the substrate using the gate structure as a mask, wherein a channel is defined in the substrate between the source region and the drain region. A bottomwall/sidewall junction capacitance reduction region extending within and between the source region and the drain region is formed, wherein the bottomwall/sidewall junction capacitance reduction region extends at least partially through the bottomwall junction or the sidewall junction.
    Type: Application
    Filed: October 22, 2003
    Publication date: April 29, 2004
    Inventors: Manoj Mehrotra, Kaiping Liu
  • Patent number: 6727568
    Abstract: The present invention includes a semiconductor device having a shallow trench isolation and a method of fabricating the same. The semiconductor device includes a gate electrode being arranged to cross over the active region. An oxide pattern is interposed between the active region and the edge of the gate electrode. The oxide pattern defines a channel region under the gate electrode. A lightly doped diffusion layer is formed in the active region downward and outward from the oxide pattern, and a heavy doped diffusion layer is formed in a predetermined region of the active region and surrounded by the lightly doped diffusion layer. In the method of fabricating the semiconductor substrate, a trench isolation layer is formed at a predetermined region of a semiconductor substrate to define an active region. A pair of preliminary lightly doped diffusion layers are formed in a line to cross over the active region. Then, oxide patterns are formed to cover at least the preliminary lightly doped diffusion layers.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: April 27, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Myoung-Soo Kim
  • Patent number: 6727534
    Abstract: High-speed MOS transistors are provided by forming a conductive layer embedded in transistor gate sidewall spacers. The embedded conductive layer is electrically insulated from the gate electrode and the source/drain regions of the transistor. The embedded conductive layer is positioned over the source/drain extensions and causes charge to accumulate in the source/drain extensions lowering the series resistance of the source/drain regions.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: April 27, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James F. Buller, Qi Xiang, Derick J. Wristers
  • Patent number: 6724041
    Abstract: A high voltage insulated gate field-effect transistor includes an insulated gate field-effect device structure having a source and a drain, the drain being formed with an extended well region having one or more buried layers of opposite conduction type sandwiched therein. The one or more buried layers create an associated plurality of parallel JFET conduction channels in the extended portion of the well region. The parallel JFET conduction channels provide the HVFET with a low on-state resistance.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: April 20, 2004
    Assignee: Power Integrations, Inc.
    Inventors: Vladimir Rumennik, Donald R. Disney, Janardhanan S. Ajit
  • Patent number: 6720618
    Abstract: A power MOSFET device comprising a low resistance substrate of the first conductivity type, a high resistance epitaxial layer of the first conductivity type formed on the low resistance substrate, a base layer of the second conductivity type formed in a surface region of the high resistance epitaxial layer, a source region of the first conductivity type formed in a surface region of the base layer, a gate insulating film formed on the surface of the base layer so as to contact the source region, a gate electrode formed on the gate insulating film, and an LDD layer of the first conductivity type formed on the surface of the high resistance epitaxial layer oppositely relative to the source region and the gate electrode, wherein the LDD layer and the low resistance substrate are connected to each other by the high resistance epitaxial layer.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: April 13, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusuke Kawaguchi, Norio Yasuhara, Syotaro Ono, Shinichi Hodama, Akio Nakagawa
  • Patent number: 6717211
    Abstract: An electrical device including a shallow junction with a variable concentration profile gradation of dopants. The junction is suitable for forming source and drain regions in MOS transistors, especially where a contact or interconnect is intended to engage the source and drain regions. The variable concentration profile gradation of dopants helps to maintain proper threshold voltage levels and reduces reverse bias current leakage. The electrical device includes a semiconductor substrate having a top surface, a gate region overlapping a portion of the semiconductor substrate, and a source/drain region disposed within the semiconductor substrate. The source/drain region includes an inner portion and an outer portion, wherein the inner portion extends from the top surface of the semiconductor substrate to a bottom periphery and does not underlap the gate region, and the outer portion extends from the bottom periphery of the inner portion and underlaps the gate region.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Randhir Thakur
  • Patent number: 6713825
    Abstract: A thin film transistor and its fabrication method. The transistor includes a buffer layer on a substrate, and a poly-crystalline semiconductor layer on the buffer layer. The poly-crystalline semiconductor layer includes a channel layer, offset regions along sides of the channel layer, sequential doping regions along sides of the offset regions, and source and drain regions. The doping concentration is sequentially changed in the sequential doping region. A sloped gate insulation layer is on the poly-crystalline semiconductor layer. A gate electrode having a main gate electrode and auxiliary gate electrodes is on the sloped insulation layer. An interlayer is over the gate electrode and source and drain electrodes are formed in contact with the source and drain regions and on the interlayer. The poly-crystalline semiconductor layer is formed by ion doping a poly-crystalline semiconductor layer through the gate insulation layer while using the gate electrode as a mask.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: March 30, 2004
    Assignee: LG. Philips LCD Co., Ltd.
    Inventor: Han-Wook Hwang
  • Patent number: 6710407
    Abstract: A p-channel type field effect transistor incorporated in a semiconductor device has a gate electrode on a gate insulating layer, and the gate electrode is constituted by an amorphous silicon layer on the gate insulating layer, a silicon-germanium layer on the amorphous silicon layer, a polysilicon layer on the silicon germanium layer, a barrier layer of silicon oxide on the polysilicon layer residue of a cap silicon layer on the barrier layer and a cobalt silicide layer on the residue; while heat is being applied, boron, which has been ion implanted into the polysilicon layer and active region on both sides of the gate electrode, is activated with the assistance of germanium, and the barrier layer blocks the boundary between the cap silicon layer and the cobalt layer from the germanium so that the cobalt silicide forms a continuous layer without any coagulation.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: March 23, 2004
    Assignee: NEC Electronics Corporation
    Inventor: Ichiro Yamamoto
  • Publication number: 20040051137
    Abstract: A semiconductor device has a depletion type MIS transistor, a transistor forming a masked ROM, and a submicron CMOS integrated on a single or common semiconductor substrate, while minimizing the steps of manufacturing the depletion type MIS transistor. During implantation of ions for changing an enhancement type transistor into a depletion type transistor, impurity ions can be implanted to change the transistor forming the masked ROM into resistance, so that the depletion type transistor, the transistor constituting the mark ROM, and a submicron CMOS can be integrated on a single or common semiconductor substrate.
    Type: Application
    Filed: August 19, 2003
    Publication date: March 18, 2004
    Applicant: Fuji Electric Co., Ltd.
    Inventor: Akio Kitamura
  • Patent number: 6707114
    Abstract: A method of processing a semiconductor wafer and an associated semiconductor wafer arrangement which inhibits “punch through” and increases the yield of functional semiconductor wafers during the fabrication thereof is disclosed.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: March 16, 2004
    Assignee: LSI Logic Corporation
    Inventors: Charles E. May, Hemanshu Bhatt
  • Publication number: 20040048425
    Abstract: A semiconductor memory device comprising: an SOI substrate having a thin silicon layer on top of a buried insulator; and an SRAM comprising four NFETs and two PFETs located in the thin silicon layer, each the NFET and PFET having a body region between a source region and a drain region, wherein the bodies of two of the NFETs are electrically connected to ground. Additionally, the bodies of the two PFETs are electrically connected to VDD.
    Type: Application
    Filed: August 14, 2003
    Publication date: March 11, 2004
    Inventors: Fariborz Assaderaghi, Andres Bryant, Peter E. Cottrell, Robert J. Gauthier, Randy W. Mann, Edward J. Nowak, Jed H. Rankin
  • Patent number: 6703659
    Abstract: A new method of fabricating and programming and erasing a Flash EEPROM memory cell is achieved. A semiconductor substrate is provided. A tunneling oxide layer is formed overlying said semiconductor substrate. A first polysilicon layer is deposited overlying the tunneling oxide layer. An interpoly oxide layer is deposited overlying the first polysilicon layer. A second polysilicon layer is deposited overlying the interpoly oxide layer. The second polysilicon layer, the interpoly oxide layer, the first polysilicon layer, and the tunneling oxide layer are patterned to form control gates and floating gates for planned Flash EEPROM memory cells. Ions are implanted to form drain junctions for planned Flash EEPROM memory cells in the semiconductor substrate where the drain junctions are shallow and abrupt. Ions are implanted to form angled pocket junctions adjacent to the drain junctions.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: March 9, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Tze Ho Semon Chan, Yung-Tao Lin
  • Patent number: 6696729
    Abstract: An aspect of the present invention includes: a gate insulating layer formed on an n-type silicon semiconductor region; a gate electrode formed on the gate insulating layer; a channel region formed immediately below the gate electrode in the semiconductor region; p-type source/drain regions formed at both sides of the channel region in the semiconductor region; p-type diffusion layer regions formed between the channel region and the source/drain regions in the semiconductor region and having a lower impurity concentration than the source/drain regions; first impurity regions formed near surface portions of the diffusion layer regions; and second impurity regions formed in part of the p-type diffusion layer regions and near surface portions of the source/drain regions, the second impurity regions being deeper than the first impurity regions, the first and second impurity regions containing one element selected from germanium, silicon, gallium, and indium as impurity.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kanna Adachi
  • Patent number: 6696727
    Abstract: A transistor is protected when a high voltage is applied to a drain, without an increase in the capacitance of the drain. A semiconductor device has a gate electrode on a silicon semiconductor substrate on a gate oxide film, and a pair of N+-type diffusion regions at a surface of a silicon semiconductor substrate on either side of the gate electrode. An N-type diffusion region in the N+-type diffusion region of the drain protrudes to a position deeper in the substrate than the N+-type diffusion region.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: February 24, 2004
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ryoden Semiconductor System Engineering Corporation
    Inventor: Yoshio Takahara
  • Patent number: 6683349
    Abstract: A semiconductor device includes a gate electrode 16 on a P type well through a gate oxide film 9, a heavily-doped N+ type source layer 12 formed to be adjacent to the one end of the gate electrode 16, an N+ type drain layer 12 formed apart from the other end of the gate electrode 16, a P type body layer 14 below the gate electrode 16, and a lightly-doped drain layer 10 formed in an area extending from below the gate electrode 16 to the heavily-doped N+ type drain layer 12 so that it is shallow at least below the gate electrode 16 and deep in the vicinity of the heavily-doped N-type drain layer 12.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 27, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Toshimitsu Taniguchi, Takashi Arai, Masashige Aoyama
  • Patent number: 6683352
    Abstract: A metal oxide semiconductor field effect transistor structure is disclosed. A p-shape gate, disposed over a semiconductor substrate. A gate dielectric layer is disposed in between the p-shape gate and the semiconductor substrate. A drain region is disposed within the semiconductor substrate, wherein the drain region is surrounded by the p-shape gate. A source region is disposed within the semiconductor substrate, wherein the source region surrounds the p-shape gate. A silicide structure is disposed on the source/drain regions and the p-shape gate.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: January 27, 2004
    Assignee: Macronix International Co., Ltd.
    Inventors: Tsung-Hsuan Hsieh, Yao-Wen Chang, Tao-Cheng Lu
  • Patent number: 6683342
    Abstract: A memory structure and the method for fabricating the same are disclosed in this present invention. A first gate structure and a second gate structure are provided onto a substrate. After an implanting process, the first gate structure will become the periphery device of an embedded memory structure, and the second gate structure will become the memory device of the embedded memory structure. A first spacer and a second spacer are fabricated on the sidewalls of the first gate structure and the second gate structure. After the formation of the contacts between the second gate structures, the second spacer on the sidewall of the second gate structure will be removed. Therefore, there is the dual spacer, including the first spacer and the second spacer, on the sidewall of the first gate structure. In the other hand, the single spacer, only the first spacer included, is left on the sidewall of the second gate structure.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: January 27, 2004
    Assignee: United Microelectronics Corp.
    Inventor: Yung-Chang Lin
  • Patent number: 6677646
    Abstract: A high-performance recessed channel CMOS device including an SOI layer having a recessed channel region and adjoining extension implant regions and optional halo implant regions; and at least one gate region present atop the SOI layer and a method for fabricating the same are provided. The adjoining extension and optional halo implant regions have an abrupt lateral profile and are located beneath said gate region.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 13, 2004
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Omer H. Dokumaci, Thomas S. Kanarsky, Victor Ku