Gate Electrode Consists Of Refractory Or Platinum Group Metal Or Silicide Patents (Class 257/388)
  • Patent number: 7514360
    Abstract: This invention relates to a semiconductor device making use of a highly thermal robust metal electrode as gate material. In particular, the development of Hafnium Nitride as a metal gate electrode (or a part of the metal gate stack) is taught and its manufacturing steps of fabrication with different embodiments are shown.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: April 7, 2009
    Inventors: Hong Yu Yu, Ming-Fu Li, Dim-Lee Kwong, Lakshmi Kanta Bera
  • Patent number: 7511350
    Abstract: The invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a gate structure located over a substrate, the gate structure including a gate dielectric layer and gate electrode layer. The semiconductor device may further include source/drain regions located in/over the substrate and adjacent the gate structure, and a nickel alloy silicide located in the source/drain regions, the nickel alloy silicide having an amount of indium located therein.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: March 31, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Peijun J. Chen, Duofeng Yue, Amitabh Jain, Sue Crank, Thomas D. Bonifield, Homi Mogul
  • Patent number: 7501333
    Abstract: A fully silicided gate with a selectable work function includes; a gate dielectric over the substrate; and a first metal silicide layer over the gate dielectric, and a second metal silicide layer wherein the first metal silicide has a different phase then the second metal silicide layer. The metal silicide layers comprises at least one alloy element. The concentration of the alloy element on the interface between the gate dielectric and the metal silicide layers influence the work function of the gate.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: March 10, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Jung Lin, Cheng-Tung Lin, Chih-Wei Chang, Shau-Lin Shue
  • Patent number: 7498641
    Abstract: A method of forming fully silicide gates having uniform gate silicide thickness is presented. A gate dielectric is formed over a substrate. A silicon-containing layer is formed over the gate dielectric. A dielectric layer is formed over the silicon-containing layer. A top layer is formed over the dielectric layer. The gate dielectric, the silicon-containing layer, the dielectric layer, and the top layer are patterned into a gate stack. A spacer is formed along an edge of the gate stack. The top layer and the dielectric layer are removed. A metal layer is deposited on the silicon-containing layer and silicided.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: March 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Yen-Ping Wang, Chenming Hu
  • Patent number: 7495299
    Abstract: The following steps are carried out: forming a gate electrode on a semiconductor substrate with a gate insulating film interposed therebetween, forming a dummy gate electrode on the semiconductor substrate with a dummy gate insulating film interposed therebetween and forming another dummy gate electrode on the semiconductor substrate with an insulating film for isolation interposed therebetween; forming a metal film on the semiconductor while exposing the gate electrode and covering the dummy gate electrodes; and subjecting the semiconductor substrate to heat treatment and thus siliciding at least an upper part of the gate electrode. Since the gate electrode is silicided and the dummy gate electrodes are non-silicided, this restrains a short circuit from being caused between the gate electrode and adjacent one of the dummy gate electrodes.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: February 24, 2009
    Assignee: Panasonic Corporation
    Inventors: Kazuhiko Aida, Junji Hirase, Hisashi Ogawa, Chiaki Kudo
  • Patent number: 7488637
    Abstract: A CMOS image sensor and a method for forming the same are provided. According to the method, a gate insulating layer and a doped polysilicon layer which are sequentially stacked on a substrate are patterned to form a transfer gate and a reset gate set apart from each other. A floating diffusion layer between the transfer gate and the reset gate, a light receiving element at a side of the transfer gate away from and opposite to the floating diffusion layer and a source/drain region at a side of the reset gate away from and opposite to the floating diffusion layer are formed. An insulation layer and a mold layer are sequentially formed on an entire surface of the substrate, and the mold layer is planarized until the insulation layer is exposed. The exposed insulation layer is removed to further expose an upper surface of the gates. A selective silicidation process is carried out using a metal gate layer to form a metal gate silicide on the exposed gate.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-Chae Kim
  • Patent number: 7485934
    Abstract: A semiconductor structure includes a semiconductor substrate having a first device area and a second device area. A gate layer is formed across the first device area and the second device area on the semiconductor substrate, wherein a first portion of the gate layer running across the first device area is doped with impurities of a type different from that of a second portion of the gate layer running across the second device area. A cap layer is formed on the gate layer for protecting the same covered thereunder from forming a silicide structure, having at least one opening at a junction of the first and second portions of the gate layer. A silicide layer is formed on the gate layer that is exposed by the opening for reducing resistance at the junction between the first and second portions.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 3, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 7482206
    Abstract: A semiconductor device includes a substrate, a gate electrode on the substrate and source and drain electrodes disposed at respective sides of the gate electrode. The device further includes a nano-line passing through the gate electrode and extending into the source and drain electrodes and having semiconductor characteristics. The nano-line may include a nano-wire and/or a nano-tube. A gate insulating layer may be interposed between the nano-line and the gate electrode. The source and drain electrodes may be disposed adjacent respective opposite sidewalls of the gate electrode, and the gate insulating layer may be further interposed between the source and drain electrodes and the gate electrode. Fabrication methods for such devices are also described.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: January 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jae Baik, In-Seok Yeo, Sang-Sig Kim, Ki-Hyun Kim, Dong-Young Jeong
  • Patent number: 7473975
    Abstract: A method for forming a semiconductor device structure, comprising the steps of independently forming source/drain surface metal silicide layers and a fully silicided metal gate in a polysilicon gate stack. Specifically, one or more sets of spacer structures are provided along sidewalls of the polysilicon gate stack after formation of the source/drain surface metal silicide layers and before formation of the silicided metal gate, in order to prevent formation of additional metal silicide structures in the source/drain regions during the gate salicidation process. The resulting semiconductor device structure includes a fully silicide metal gate that either comprises a different metal silicide material from that in the source/drain surface metal silicide layers, or has a thickness that is larger than that of the source/drain surface metal silicide layers. The source/drain regions of the semiconductor device structure are devoid of other metal silicide structures besides the surface metal silicide layers.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Glenn A. Biery, Ghavam Shahidi, Michelle L. Steen
  • Patent number: 7465996
    Abstract: A semiconductor device includes: a semiconductor substrate divided into a first region and a second region; a first MIS transistor formed in the first region of the semiconductor substrate and including a stack of a first gate insulating film and a fully-silicided first gate electrode; and a second MIS transistor formed in the second region of the semiconductor substrate and including a stack of a second gate insulating film and a fully-silicided second gate electrode. The second gate electrode has a gate length larger than that of the first gate electrode. A middle portion in the gate length direction of the second gate electrode has a thickness smaller than the thickness of the first gate electrode.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: December 16, 2008
    Assignee: Panasonic Corporation
    Inventors: Yoshihiro Satou, Chiaki Kudou
  • Patent number: 7459734
    Abstract: A method for manufacturing a transistor includes providing a transistor assembly having a semiconductor layer with a first surface, a dielectric layer disposed on the first surface, a gate electrode disposed on the dielectric layer, an insulation layer adjacent at least part of the gate electrode, and a nitride spacer layer adjacent at least part of the insulation layer. The method also includes depositing, on part of the first surface, a material that will react with the semiconductor layer to form silicide and removing the unreacted material. The method further includes etching the nitride spacer layer, depositing a pre-metal spacer layer adjacent at least part of the nitride spacer layer and at least part of the first surface, etch removing a portion of the pre-metal spacer layer to expose part of the silicided portion of the first surface, and forming a contact with the silicided portion of the first surface.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 2, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Keith A. Joyner, Mark S. Rodder
  • Patent number: 7439596
    Abstract: The present invention discloses a transistor for a semiconductor device capable of preventing the generation of a depletion capacitance in a gate pattern due to the diffusion of impurity ions. The present invention also discloses a method of fabricating the transistor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: October 21, 2008
    Assignee: Samsung Electronics Co, Ltd.
    Inventors: Jae-Yoon Yoo, Hwa-Sung Rhee, Tetsuji Ueno, Ho Lee, Seung-Hwan Lee, Hyun-Suk Kim, Moon-Han Park
  • Patent number: 7432570
    Abstract: A semiconductor device includes a substrate, a p-channel MIS transistor formed on an n-type well on the substrate, having a first gate dielectric and a first gate electrode formed thereon and formed of a Ta—C alloy wherein a crystal orientation ratio of a TaC (111) face in a film thickness direction [TaC (111) face/{TaC (111) face+TaC (200) face}] is 80% or more, and an n-channel MIS transistor formed on a p-type well on the substrate, having a second gate dielectric and a second gate electrode formed thereon and formed of a Ta—C alloy wherein a crystal orientation ratio of a TaC (111) face in a film thickness direction [TaC (111) face/{TaC (111) face+TaC (200) face}] is 60% or less.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: October 7, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Reika Ichihara, Yoshinori Tsuchiya, Yuuichi Kamimuta, Akira Nishiyama
  • Patent number: 7432559
    Abstract: A semiconductor structure includes a first silicon-containing layer comprising an element selected from the group consisting essentially of carbon and germanium wherein the silicon-containing layer has a first atomic percentage of the element to the element and silicon, a second silicon-containing layer comprising the element over the first silicon-containing layer, and a silicide layer on the second silicon-containing layer. The element in the second silicon-containing layer has a second atomic percentage of the element to the element and silicon, wherein the second atomic percentage is substantially lower than the first atomic percentage.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: October 7, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jerry Lai, Chii-Ming Wu, Chih-Wei Chang, Shau-Lin Shue
  • Patent number: 7429770
    Abstract: A technique capable of reducing threshold voltage and reducing high-temperature heat treatment after forming a gate electrode is provided. An n-type MIS transistor or a p-type MIS transistor is formed on an active region isolated by an element isolation region of a semiconductor substrate. In the n-type MIS transistor, a gate electrode is formed through a gate insulating film, and the gate electrode is composed of a hafnium silicide film. On the other hand, in the p-type MIS transistor, a gate electrode is formed through a gate insulating film, and the gate electrode is composed of a platinum silicide film. Also, the gate electrodes are formed after the activation annealing (heat treatment) for activating impurities implanted into a source region and a drain region.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: September 30, 2008
    Assignees: Renesas Technology Corp., Tokyo Electron Limited, Oky Electric Industry Co., Ltd.
    Inventors: Masaru Kadoshima, Koji Akiyama, Morifumi Ohno
  • Publication number: 20080230848
    Abstract: A structure including a dual silicide region and a related method are disclosed. The structure may include a doped silicon, and a dual silicide region in the doped silicon, the dual silicide region including a first silicide region including a mid band gap metal, and a second silicide region including a near band gap metal, wherein the second silicide region is immediately adjacent to the doped silicon. The method may include forming a first silicide portion in a doped silicon by depositing a first metal over the doped silicon, annealing and removing unreacted first metal; ion implanting a second metal into the doped silicon; and annealing to form a second silicide portion from the second metal, wherein the first metal is different than the second metal.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Inventors: Chih-Chao Yang, Haining S. Yang, Keith Kwong Hon Wong
  • Patent number: 7419905
    Abstract: A method of fabricating a gate electrode for a semiconductor comprising the steps of: providing a substrate; providing on the substrate a layer of a first material of thickness tp, the first material being selected from the group consisting of Si, Si1-x—Gex alloy, Ge and mixtures thereof and a layer of metal of thickness tm; and annealing the layers, such that substantially all of the first material and the metal are consumed during reaction with one another.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 2, 2008
    Assignee: Agency for Science, Technology and Research
    Inventors: Dominique Mangelinck, Dongzhi Chi, Syamal Kumar Lahiri
  • Patent number: 7405450
    Abstract: Semiconductor devices that include a semiconductor substrate and a gate line are provided. The gate line is on the semiconductor substrate and includes a gate insulation pattern and a gate electrode which are stacked on the substrate in the order named. A spacer is on a sidewall of the gate line. A conductive line pattern is on the gate line. The conductive line pattern is parallel with the gate line and is electrically connected to the gate electrode.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: July 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-Ho Lyu, Soon-moon Jung, Sung-bong Kim, Hoon Lim, Won-Seok Cho
  • Patent number: 7402875
    Abstract: Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer, source/drain extensions a distance beneath the metal gate, and lateral undercuts in the sides of the metal gate.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Suman Datta, Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Gilbert Dewey, Mark L. Doczy, Robert S. Chau
  • Patent number: 7391089
    Abstract: A semiconductor device which includes a field effect transistor having a gate electrode on the upper side of a semiconductor substrate, with a gate insulation film therebetween, wherein at least the gate insulation film side of the gate electrode includes a film containing hafnium and silicon.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: June 24, 2008
    Assignee: Sony Corporation
    Inventors: Shinpei Yamaguchi, Kaori Tai, Tomoyuki Hirano
  • Patent number: 7391086
    Abstract: Conductive contacts and methods for fabricating conductive contacts for electrochemical mechanical planarization are provided. A conductive contact in accordance with an exemplary embodiment of the invention includes, but is not limited to, a first conductive surface formed of a flexible material, a conductive element that is disposed remote from the first conductive surface and that is configured for electrical coupling to an external circuit, and an intermediate portion that electrically couples the first conductive surface and the conductive element.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 24, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: John Drewery, Francisco Juarez, Henner Meinhold
  • Patent number: 7387956
    Abstract: The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: June 17, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J Chambers, Mark R Visokay
  • Patent number: 7355255
    Abstract: The present invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a substrate (110), as well as a nickel silicide region (170) located over the substrate (110), the nickel silicide region (170) having an amount of indium located therein.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: April 8, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Peijun J. Chen, Duofeng Yue, Amitabh Jain, Sue E. Crank, Thomas D. Bonifield, Homi C. Mogul
  • Patent number: 7348629
    Abstract: MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Bruce B. Doris, Meikei Ieong, Jing Wang
  • Patent number: 7321154
    Abstract: The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: January 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J Chambers, Mark R Visokay
  • Patent number: 7314789
    Abstract: A semiconductor structure and method that is capable of generating a local mechanical gate stress for channel mobility modification are provided. The semiconductor structure includes at least one NFET and at least one PFET on a surface of a semiconductor substrate. The at least one NFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer, a Si-containing second gate electrode layer and a compressive metal, and the at least one PFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer and a tensile metal or a silicide.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Bruce B. Doris, Thomas S. Kanarsky, Xiao H. Liu, Huilong Zhu
  • Patent number: 7307871
    Abstract: A high resistor SRAM memory cell to reduce soft error rate includes a first inverter having an output as a first memory node, and a second inverter having an output as a second memory node. The second memory node is coupled to an input of the first inverter through a first resistor. The first memory node is coupled to an input of the second inverter through a second resistor. A pair of access transistors are respectively coupled to a pair of bit lines, a split word line and one of the memory nodes. The resistors are prepared by coating a layer of silicide material on a selective portion of the gate structure of the transistors included in the first inverter, and connecting a portion of the gate structure that is substantially void of the silicide material to the drain of the transistors included in the second inverter.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 11, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon-Jhy Liaw
  • Patent number: 7294878
    Abstract: A semiconductor memory device includes a semiconductor substrate, an isolation insulation film filled in a plurality of trenches formed in the semiconductor substrate to define a plurality of element formation regions, a floating gate provided on each of the element formation regions through a first gate insulation film, a control gate provided on the floating gate through a second gate insulation film, and source/drain regions provided in the semiconductor substrate, wherein a mutual diffusion layer is provided at least at an interface between the second gate insulation film and the control gate.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 13, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Tanaka, Yoshio Ozawa, Hirokazu Ishida, Katsuaki Natori, Seiji Inumiya
  • Patent number: 7230304
    Abstract: An electric contact member which is excellent in voltage-proof performance and melt-resistant performance and excellent in mass productivity, and a method of manufacturing thereof, and a vacuum interrupter, a vacuum circuit breaker and a load-break switch for a road side transformer using thereof. The contact member is composed of a base member made of high conductive metal, and a contact layer made of refractory metal and high conductive metal, and the contact layer is formed of a plurality of thermal sprayed layers.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: June 12, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Shigeru Kikuchi, Masato Kobayashi, Kenji Tsuchiya, Noboru Baba, Takashi Sato
  • Patent number: 7230286
    Abstract: A vertical FET structure with nanowire forming the FET channels is disclosed. The nanowires are formed over a conductive silicide layer. The nanowires are gated by a surrounding gate. Top and bottom insulator plugs function as gate spacers and reduce the gate-source and gate-drain capacitance.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: June 12, 2007
    Assignee: International Business Machines Corporation
    Inventors: Guy Moshe Cohen, Paul M. Solomon
  • Patent number: 7208805
    Abstract: The invention includes a semiconductor processing method. A first material comprising silicon and nitrogen is formed. A second material is formed over the first material, and the second material comprises silicon and less nitrogen, by atom percent, than the first material. An imagable material is formed on the second material, and patterned. A pattern is then transferred from the patterned imagable material to the first and second materials. The invention also includes a structure comprising a first layer of silicon nitride over a substrate, and a second layer on the first layer. The second layer comprises silicon and is free of nitrogen. The structure further comprises a third layer consisting essentially of imagable material on the second layer.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: April 24, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, John T. Moore
  • Patent number: 7183596
    Abstract: An integrated circuit having composite gate structures and a method of forming the same are provided. The integrated circuit includes a first MOS device, a second MOS device and a third MOS device. The gate stack of the first MOS device includes a high-k gate dielectric and a first metal gate on the high-k gate dielectric. The gate stack of the second MOS device includes a second metal gate on a high-k gate dielectric. The first metal gate and the second metal gate have different work functions. The gate stack of the third MOS device includes a silicon gate over a gate dielectric. The silicon gate is preferably formed over the gate stacks of the first MOS device and the second MOS device.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: February 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Lu Wu, Kuang-Hsin Chen, Liang-Kai Han
  • Patent number: 7176537
    Abstract: A semiconductor device having a metal/metal silicide gate and a Schottky source/drain and a method of forming the same are provided. The semiconductor device includes a gate dielectric overlying a semiconductor substrate, a metal or metal silicide gate electrode having a work function of less than about 4.3 eV or greater than about 4.9 eV overlying the gate dielectric, a spacer having a thickness of less than about 100 ? on a side of the gate electrode, and a Schottky source/drain having a work function of less than about 4.3 eV or greater than about 4.9 eV wherein the Schottky source/drain region overlaps the gate electrode. The Schottky source/drain region preferably has a thickness of less than about 300 ?.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: February 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Chin Lee, Chung-Hu Ke, Min-Hwa Chi
  • Patent number: 7173312
    Abstract: A semiconductor structure and method that is capable of generating a local mechanical gate stress for channel mobility modification are provided. The semiconductor structure includes at least one NFET and at least one PFET on a surface of a semiconductor substrate. The at least one NFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer, a Si-containing second gate electrode layer and a compressive metal, and the at least one PFET has a gate stack structure comprising a gate dielectric, a first gate electrode layer, a barrier layer and a tensile metal or a silicide.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Bruce B. Doris, Thomas S. Kanarsky, Xiao H. Liu, Huilong Zhu
  • Patent number: 7170139
    Abstract: A semiconductor processing method of forming a conductive gate or gate line over a substrate includes, a) forming a conductive gate over a gate dielectric layer on a substrate, the gate having sidewalls and an interface with the gate dielectric layer; b) electrically insulating the gate sidewalls; and c) after electrically insulating the gate sidewalls, exposing the substrate to oxidizing conditions effective to oxidize at least a portion of the gate interface with the gate dielectric layer. According to one aspect of the invention, the step of exposing the substrate to oxidizing conditions is conducted after provision of a first insulating material and subsequent anisotropic etch thereof to insulate the gate sidewalls. According to another aspect of the invention, the step of exposing the substrate to oxidizing conditions is conducted after provision of first and second insulating materials and subsequent anisotropic etch thereof to insulate the gate sidewalls.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: January 30, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Pai-Hung Pan
  • Patent number: 7161211
    Abstract: Aluminum-containing films having an oxygen content within the films. The aluminum-containing film is formed by introducing hydrogen gas along with argon gas into a sputter deposition vacuum chamber during the sputter deposition of aluminum or aluminum alloys onto a semiconductor substrate. The aluminum-containing film so formed is hillock-free and has low resistivity, relatively low roughness compared to pure aluminum, good mechanical strength, and low residual stress.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: January 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kanwal K. Raina, David H. Wells
  • Patent number: 7148548
    Abstract: A semiconductor device is described that comprises a gate dielectric and a metal gate electrode that comprises an aluminide.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: December 12, 2006
    Assignee: Intel Corporation
    Inventors: Mark L. Doczy, Jack Kavalieros, Matthew V. Metz, Justin K. Brask, Suman Datta, Robert S. Chau
  • Patent number: 7145207
    Abstract: A gate structure of a semiconductor memory device capable of preventing a poly void generation by forming a hard mask and maintaining a hysteresis area within a certain value. The gate structure of the semiconductor memory device includes: a gate insulation layer formed on a semiconductor substrate; a gate electrode formed on the gate insulation layer, wherein the gate electrode is formed by stacking a polysilicon layer and a metal layer; and a hard mask formed on the gate electrode, wherein a hysteresis area between the hard mask and the gate electrode materials is a equal to or less than approximately 2×1012 ° C.-dyne/cm2.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 5, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hong-Seon Yang, Se-Aug Jang, Yong-Soo Kim, Kwan-Yong Lim, Heung-Jae Cho, Jae-Geun Oh
  • Patent number: 7122470
    Abstract: A semiconductor device having a gate electrode free from increasing of resistance of the gate electrode, from decreasing of capacitance of the insulation film due to depletion, and from penetrating of impurity. The semiconductor device includes a silicon layer, a gate insulating film formed on the silicon layer, a metal boron compound layer formed on the gate insulating film, and a gate electrode formed on the metal boron compound layer and containing at least silicon.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: October 17, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Akira Nishiyama
  • Patent number: 7122472
    Abstract: A method of forming a dual self-aligned fully silicided gate in a CMOS device requiring only one lithography level, wherein the method comprises forming a first type semiconductor device having a first well region in a semiconductor substrate, first source/drain silicide areas in the first well region, and a first type gate isolated from the first source/drain silicide areas; forming a second type semiconductor device having a second well region in the semiconductor substrate, second source/drain silicide areas in the second well region, and a second type gate isolated from the second source/drain silicide areas; selectively forming a first metal layer over the second type semiconductor device; performing a first fully silicided (FUSI) gate formation on only the second type gate; depositing a second metal layer over the first and second type semiconductor devices; and performing a second FUSI gate formation on only the first type gate.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: October 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Cyril Cabral, Jr., Chester T. Dziobkowski, Christian Lavoie, Clement H. Wann
  • Patent number: 7098516
    Abstract: The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: August 29, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Luigi Colombo, James J. Chambers, Mark R. Visokay
  • Patent number: 7098514
    Abstract: Provided are a highly integrated semiconductor device with a silicide layer, which can secure a contact margin, and a method of manufacturing the highly integrated semiconductor device. The highly integrated semiconductor device includes a gate electrode formed on a semiconductor substrate. A source region and a drain region are formed in predetermined upper portions of the semiconductor substrate on two sides of the gate electrode such that each of the source region and the drain region includes a lightly doped drain (LDD) region and a heavily doped region. A suicide layer is formed on the gate electrode, the source region, and the drain region. The silicide layer has a sufficient thickness to function as an ohmic contact and is formed on the LDD region and the heavily doped region of each of the source region and the drain region.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: August 29, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung-hwan Oh, Young-gun Ko
  • Patent number: 7078747
    Abstract: A semiconductor device has a dual-gate electrode structure. The gate electrode has a layered structure including a doped polysilicon film, WSi2 film, WN film and a W film. The WSi2 film formed on the polysilicon film in the P-channel area is formed of a number of WSi2 particles disposed apart from one another, preventing a bilateral diffusion of impurities doped in the polysilicon film.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: July 18, 2006
    Assignee: Elpida Memory, Inc.
    Inventor: Tetsuya Taguwa
  • Patent number: 7075158
    Abstract: A semiconductor device can be manufactured which has a low resistance, and device characteristics of which do not vary. The semiconductor device includes a silicon layer, a gate dielectric film formed on the silicon layer, a gate electrode formed on the gate dielectric film and including a nitrided metal silicide layer which is partially crystallized, and source and drain regions formed in a surface region of the silicon layer at both sides of the gate electrode.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: July 11, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Akira Nishiyama, Masamichi Suzuki, Yuuichi Kamimuta, Tsunehiro Ino
  • Patent number: 7060575
    Abstract: A method of forming self-aligned contact holes exposing source/drain regions in a semiconductor substrate using only etch mask layers is provided. In the method, sacrificial spacers are formed of a material having an excellent etching selectivity to the etch mask layers at sidewalls of gate electrodes in a cell area. Also, an interlevel dielectric layer is formed of a material having an excellent etching selectivity to the etch mask layers. The sacrificial spacers are removed when forming the self-aligned contact holes. Dielectric spacers are formed of a material having a low dielectric constant, without considering its etching selectivity to the interlevel dielectric layer. Thus, a reduction in the operational speed of a semiconductor device having transistors can be prevented.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: June 13, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-jun Jin, Byeong-yun Nam, Young-pil Kim
  • Patent number: 7045422
    Abstract: A method for fabricating a semiconductor gate structure including depositing at least one sacrificial layer on a semiconductor substrate; patterning the at least one sacrificial layer to form at least one cutout in the at least one sacrificial layer for uncovering the semiconductor substrate; forming a sidewall spacer over the sidewalls of the at least one sacrificial layer in the at least one cutout; forming a gate dielectric on the semiconductor substrate in the cutout; providing a gate electrode in the at least one cutout in the at lest one sacrificial layer; and removing the at least one sacrificial layer for the uncovering the gate electrode surrounded by the sidewall spacer. A semiconductor device is also provided.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 16, 2006
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Enders, Helmut Schneider, Peter Voigt
  • Patent number: 7026689
    Abstract: A gate structure includes a gate dielectric layer disposed on a semiconductor substrate. A metal gate conductor is disposed on the gate dielectric layer. A cap layer is disposed on the metal gate conductor. At least one spacer covers sidewalls of the metal gate conductor and the cap layer, such that the cap layer and the spacer encloses the metal gate conductor layer therein. At least one self-aligned contact structure formed next to the metal gate conductor on the semiconductor substrate. As such, the cap layer and the spacer separate the self-aligned contact structure from directly contacting the metal gate conductor.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: April 11, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventor: Jhon-Jhy Liaw
  • Patent number: 7023059
    Abstract: A method of forming an integrated circuit with a semiconductor substrate is provided. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A silicide is formed on the source/drain regions and on the gate. Trenches are formed in the semiconductor substrate around the gate. An interlayer dielectric is deposited above the semiconductor substrate, and contacts are then formed to the silicide.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: April 4, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Darin A. Chan, Simon Siu-Sing Chan, Jeffrey P. Patton, Jacques J. Bertrand
  • Patent number: 6998686
    Abstract: Described is a CMOS transistor structure with a multi-layered gate electrode structure and a method of fabrication. The gate electrode structure has a three-layered metallic gate electrode and a polysilicon layer. The first metallic layer acts as a barrier to prevent the second metallic layer from reacting with an underlying dielectric. The second metallic layer acts to set the work function of the gate electrode structure. The third metallic layer acts as a barrier to prevent the second metallic layer from reacting with the polysilicon layer. The method of fabricating the gate electrode structure includes forming the three metallic layers thick enough that each layer provides the barrier and work-function setting functions mentioned above, but also thin enough that a subsequent wet-etch can be performed without excessive undercutting of the metallic layers.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: February 14, 2006
    Assignee: Intel Corporation
    Inventors: Robert Chau, Mark Doczy, Brian Doyle, Jack Kavalieros
  • Patent number: 6982467
    Abstract: A semiconductor device can be manufactured which has a low resistance, and device characteristics of which do not vary. The semiconductor device includes a silicon layer, a gate dielectric film formed on the silicon layer, a gate electrode formed on the gate dielectric film and including a nitrided metal silicide layer which is partially crystallized, and source and drain regions formed in a surface region of the silicon layer at both sides of the gate electrode.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: January 3, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Akira Nishiyama, Masamichi Suzuki, Yuuichi Kamimuta, Tsunehiro Ino