With Means To Concentrate Stress Patents (Class 257/418)
  • Patent number: 8558643
    Abstract: The invention relates to a micromechanical device comprising a semiconductor element capable of deflecting or resonating and comprising at least two regions having different material properties and drive or sense means functionally coupled to said semiconductor element. According to the invention, at least one of said regions comprises one or more n-type doping agents, and the relative volumes, doping concentrations, doping agents and/or crystal orientations of the regions being configured so that the temperature sensitivities of the generalized stiffness are opposite in sign at least at one temperature for the regions, and the overall temperature drift of the generalized stiffness of the semiconductor element is 50 ppm or less on a temperature range of 100° C. The device can be a resonator. Also a method of designing the device is disclosed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: October 15, 2013
    Assignee: Teknologian Tutkimuskeskus VTT
    Inventors: Mika Prunnila, Antti Jaakkola, Tuomas Pensala
  • Patent number: 8541854
    Abstract: The beam bending of a MEMS device is minimized by reducing interfacial strength between a sacrificial layer and a MEMS structure.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: September 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Nils D. Hoivik, Christopher Jahnes, Minhua Lu, Hongqing Zhang
  • Patent number: 8530979
    Abstract: Provided is a semiconductor package which includes: a semiconductor substrate; a functional element that is disposed on one surface of the semiconductor substrate; a protection substrate that is disposed in an opposite side of that surface of the semiconductor substrate with a predetermined gap from a surface of the semiconductor substrate; and a junction member that is disposed to surround the functional element and bonds the semiconductor substrate and the protection substrate together, wherein the functional element has a shape different from a shape of a plane surrounded by the junction member in that surface of the semiconductor substrate, or is disposed in a region deviated from a central region of the plane surrounded by the junction member in that surface of the semiconductor substrate.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: September 10, 2013
    Assignee: Fujikura Ltd.
    Inventors: Shingo Ogura, Yuki Suto
  • Patent number: 8530986
    Abstract: A manufacturing method of an electronic device package includes: forming concave portions that later form the cavities in one surface of a cover substrate; forming a first metal film on the cover substrate on a surface opposite to the surface in which the concave portions are formed; forming a second metal film on the cover substrate on the surface in which the concave portions are formed; bonding a base substrate and the cover substrate together via the second metal film. It thus becomes possible to provide an electronic device package in which the base substrate and the cover substrate are boned together via the metal film in a stable manner by minimizing warping of the substrate even when the substrate is made thinner.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 10, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Yoshifumi Yoshida
  • Patent number: 8519494
    Abstract: A method for manufacturing a micromechanical diaphragm structure having access from the rear of the substrate includes: n-doping at least one contiguous lattice-type area of a p-doped silicon substrate surface; porously etching a substrate area beneath the n-doped lattice structure; producing a cavity in this substrate area beneath the n-doped lattice structure; growing a first monocrystalline silicon epitaxial layer on the n-doped lattice structure; at least one opening in the n-doped lattice structure being dimensioned in such a way that it is not closed by the growing first epitaxial layer but instead forms an access opening to the cavity; an oxide layer being created on the cavity wall; a rear access to the cavity being created, the oxide layer on the cavity wall acting as an etch stop layer; and the oxide layer being removed in the area of the cavity.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: August 27, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Kramer, Marcus Ahles, Armin Grundmann, Kathrin Knese, Hubert Benzel, Gregor Schuermann, Simon Armbruster
  • Patent number: 8519491
    Abstract: The present invention discloses a MEMS sensing device which comprises a substrate, a MEMS device region, a film, an adhesive layer, a cover, at least one opening, and a plurality of leads. The substrate has a first surface and a second surface opposite the first surface. The MEMS device region is on the first surface, and includes a chamber. The film is overlaid on the MEMS device region to seal the chamber as a sealed space. The cover is mounted on the MEMS device region and adhered by the adhesive layer. The opening is on the cover or the adhesive layer, allowing the pressure of the air outside the device to pressure the film. The leads are electrically connected to the MEMS device region, and extend to the second surface.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 27, 2013
    Assignee: Pixart Imaging Incorporation, R.O.C.
    Inventors: Chuan-Wei Wang, Ming-Han Tsai
  • Publication number: 20130193535
    Abstract: The micro-electromechanical device has a substrate. Integrated into the substrate is a micromechanical component that has a bending element which can be bent reversibly and which has a first end connected to the substrate and extends from the first end over a free space. The bending element has at least one web having two side edges, the course of which is defined by depressions introduced into the bending element and adjacent to the side edges. In order to form a homogenization region located within the web, in which mechanical stresses occurring during bending of the bending element are substantially equal, the mutual spacing of the side edges of the web decreases, as viewed from the first end of the bending element. The device further comprises at least one microelectronic component that is sensitive to mechanical stresses and embedded in the web in the homogenization region of the latter.
    Type: Application
    Filed: March 15, 2011
    Publication date: August 1, 2013
    Applicants: SILICON MICROSTRUCTURES, INC., ELMOS SEMICONDUCTOR AG
    Inventors: Bernd Burchard, Michael Doelle, Zhou Ningning
  • Patent number: 8466523
    Abstract: A MEMS differential pressure sensing element is provided by two separate silicon dies attached to opposite sides of a silicon or glass spacer. The spacer is hollow. If the spacer is silicon, the dies are preferably attached to the hollow spacer using silicon-to-silicon bonding provided in part by silicon oxide layers. If the spacer is glass, the dies can be attached to the hollow spacer using anodic bonding. Conductive vias extend through the layers and provide electrical connections between Wheatstone bridge circuits formed from piezoresistors in the silicon dies.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 18, 2013
    Assignee: Continental Automotive Systems, Inc.
    Inventor: Jen-Huang Albert Chiou
  • Patent number: 8461656
    Abstract: A device structure is made using a first conductive layer over a first wafer. An isolated conductive region is formed in the first conductive layer surrounded by a first opening in the conductive layer. A second wafer has a first insulating layer and a conductive substrate, wherein the conductive substrate has a first major surface adjacent to the first insulating layer. The insulating layer is attached to the isolated conductive region. The conductive substrate is thinned to form a second conductive layer. A second opening is formed through the second conductive layer and the first insulating layer to the isolated conductive region. The second opening is filled with a conductive plug wherein the conductive plug contacts the isolated conductive region. The second conductive region is etched to form a movable finger over the isolated conductive region. A portion of the insulating layer under the movable finger is removed.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 11, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Woo Tae Park, Lisa H. Karlin, Lianjun Liu, Heinz Loreck, Hemant D. Desai
  • Publication number: 20130134531
    Abstract: A fully embedded micromechanical device and a system on chip is manufactured on an SOI-substrate. The micromechanical device comprises a moveable component having a laterally extending upper and lower surface and vertical side surfaces. The upper surface is adjacent to an upper gap which laterally extends over at least a part of the upper surface and results from the removal of a shallow trench insulation material. The lower surface is adjacent to a lower gap which laterally extends over at least a part of the lower surface and results from the removal of the buried silicon oxide layer. The side surfaces of the movable component are adjacent to side gaps which surround at least a part of the vertical side surfaces of the moveable component and result from the removal of a deep trench insulation material.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Alfred HAEUSLER
  • Patent number: 8445977
    Abstract: Vibration beams are provided on a substrate in parallel with the substrate and in parallel with each other, and provided in vacuum chambers formed by a shell and the substrate. Each of vibration beams has a sectional shape with a longer sectional thickness in a direction perpendicular to a surface of the substrate than a sectional thickness in a direction parallel to the surface of the substrate. A first electrode plate is provided in parallel with the surface of the substrate and connected to one end of each of the vibration beams. A second electrode plate is provided in parallel with the surface of the substrate and between the vibration beams. Third and fourth electrode plates are provided on opposite sides of the vibration beams. Asperities are provided in opposed side wall portion surfaces of the vibration beams and the second, third and fourth electrode plates.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: May 21, 2013
    Assignee: Yokogawa Electric Corporation
    Inventor: Takashi Yoshida
  • Patent number: 8445307
    Abstract: Monolithic IC/MEMS processes are disclosed in which high-stress silicon nitride is used as a mechanical material while amorphous silicon serves as a sacrificial layer. Electronic circuits and micro-electromechanical devices are built on separate areas of a single wafer. The sequence of IC and MEMS process steps is designed to prevent alteration of partially completed circuits and devices by subsequent high process temperatures.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 21, 2013
    Assignee: Alces Technology, Inc.
    Inventors: Richard Yeh, David M Bloom
  • Publication number: 20130099333
    Abstract: A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: TEXAS INSTRUMENTS INCORPORATED
  • Patent number: 8422702
    Abstract: A micromini condenser microphone having a flexure hinge-shaped upper diaphragm and a back plate, and a method of manufacturing the same are provided.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: April 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hye Jin Kim, Sung Q Lee, Kang Ho Park, Jong Dae Kim
  • Patent number: 8395227
    Abstract: A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: March 12, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Toru Watanabe, Akira Sato, Shogo Inaba, Takeshi Mori
  • Patent number: 8383442
    Abstract: Methods of anchoring components of a Micro-Electro-Mechanical Systems (MEMS) device to a substrate. An exemplary embodiment has a trace anchor bonded to a substrate, a device anchor bonded to the substrate, and an anchor flexure configured to flexibly couple the trace anchor and the device anchor to substantially prevent transmission of a stress induced in the trace anchor from being transmitted to the device anchor.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: February 26, 2013
    Assignee: Honeywell International Inc.
    Inventors: Michael Foster, Mark Williams, Mark Eskridge
  • Patent number: 8384169
    Abstract: The present invention provides a DC high voltage converter having an oscillator driver, main switch array and topological enhanced capacitors. The switch array utilizes MEM cantilevers and topological capacitors for charge storages for the generation of a high voltage output from a low voltage input.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 26, 2013
    Assignee: University of South Florida
    Inventors: Lawrence Langebrake, Shinzo Onishi, Scott Samson, Raj Popuri
  • Patent number: 8373240
    Abstract: A sensor device and method. One embodiment provides a first semiconductor chip having a sensing region. A porous structure element is attached to the first semiconductor chip. A first region of the porous structure element faces the sensing region of the first semiconductor chip. An encapsulation material partially encapsulates the first semiconductor chip and the porous structure element.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: February 12, 2013
    Assignee: Infineon Technologies AG
    Inventors: Klaus Elian, Georg Meyer-Berg, Horst Theuss
  • Patent number: 8363859
    Abstract: A microelectromechanical system microphone package structure includes a base plate and a plurality of chips is provided. The plurality of chips are disposed on the base plate, wherein an active area of each of the chips is disposed with a microelectromechanical system microphone structure, each of the active areas comprises a normal line, and the normal lines of the chips are unparallel and nonorthogonal to each other.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: January 29, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Li-Che Chen
  • Patent number: 8362578
    Abstract: An integrated circuit structure includes a triple-axis accelerometer, which further includes a proof-mass formed of a semiconductor material; a first spring formed of the semiconductor material and connected to the proof-mass, wherein the first spring is configured to allow the proof-mass to move in a first direction in a plane; and a second spring formed of the semiconductor material and connected to the proof-mass. The second spring is configured to allow the proof-mass to move in a second direction in the plane and perpendicular to the first direction. The triple-axis accelerometer further includes a conductive capacitor plate including a portion directly over, and spaced apart from, the proof-mass, wherein the conductive capacitor plate and the proof-mass form a capacitor; an anchor electrode contacting a semiconductor region; and a transition region connecting the anchor electrode and the conductive capacitor plate, wherein the transition region is slanted.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Hau Wu, Chun-Ren Cheng, Shang-Ying Tsai, Jiou-Kang Lee, Jung-Huei Peng
  • Patent number: 8350345
    Abstract: Some embodiments provide force input control devices for sensing vector forces comprising: a sensor die comprising: a rigid island, an elastic element coupled to the rigid island, die frame coupled to a periphery of the elastic element, one or more stress sensitive components on the elastic element, and signal processing IC, where the sensor die is sensitive to a magnitude and a direction of a force applied to the rigid island within the sensor die, where the sensor die is coupled electrically and mechanically to a substrate, a spring element coupling an external button, where the force is applied, to the rigid island element, wherein the spring element has a flat geometry and located in a plane parallel to a plane of the substrate, where the spring element is configured to translate a deflection of the button into an allowable force applied to the rigid island.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: January 8, 2013
    Inventor: Vladimir Vaganov
  • Patent number: 8338898
    Abstract: An MEMS microphone is bonded onto the surface of an IC component containing at least one integrated circuit suitable for the conditioning and processing of the electrical signal supplied by the MEMS microphone. The entire component is simple to produce and has a compact and space-saving construction. Production is accomplished in a simple and reliable manner.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: December 25, 2012
    Assignee: Austriamicrosystems AG
    Inventors: Franz Schrank, Martin Schrems
  • Patent number: 8338825
    Abstract: Disclosed is a substrate-mediated assembly for graphene structures. According to an embodiment, long-range ordered, multilayer BN(111) films can be formed by atomic layer deposition (ALD) onto a substrate. The subject BN(111) films can then be used to order carbon atoms into a graphene sheet during a carbon deposition process.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 25, 2012
    Assignee: University of North Texas
    Inventor: Jeffry A. Kelber
  • Patent number: 8334159
    Abstract: A micro-electro-mechanical system (MEMS) pressure sensor includes a silicon spacer defining an opening, a silicon membrane layer mounted above the spacer, a silicon sensor layer mounted above the silicon membrane layer, and a capacitance sensing circuit. The silicon membrane layer forms a diaphragm opposite of the spacer opening, and a stationary perimeter around the diaphragm and opposite the spacer. The silicon sensor layer includes an electrode located above the diaphragm of the silicon membrane layer. The capacitance sensing circuit is coupled to the electrode and the silicon membrane layer. The electrode and the silicon membrane layer move in response to a pressure applied to the diaphragm. The movement of the silicon membrane layer causes it to deform, thereby changing the capacitance between the electrode and the silicon membrane layer by an amount proportional to the change in the pressure.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 18, 2012
    Assignee: Advanced NuMicro Systems, Inc.
    Inventor: Yee-Chung Fu
  • Patent number: 8324007
    Abstract: A method manufactures an electronic device comprising a MEMS device overmolded in a protective casing. The MEMS device includes an active surface wherein a portion of the MEMS device is integrated, and is sensitive, through a membrane, to chemical/physical variations of a fluid. Prior to the molding step, at least one resin layer is formed on at least one region overlying the active surface in correspondence with the membrane. After, at least one portion of at least one resin layer is removed from at least one region, so that in the region an opening is formed, through which the MEMS device is activated from the outside of the protective casing.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: December 4, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Federico Giovanni Ziglioli, Mark Andrew Shaw
  • Patent number: 8299551
    Abstract: A semiconductor pressure sensor comprises: a substrate having a through-hole; a polysilicon film provided on the substrate and having a diaphragm above the through-hole; an insulating film provided on the polysilicon film; first, second, third, and forth polysilicon gauge resistances provided on the insulating film and having a piezoresistor effect; and polysilicon wirings connecting the first, second, third, and forth polysilicon gauge resistances in a bridge shape, wherein each of the first and second polysilicon gauge resistances is disposed on a central portion of the diaphragm and has a plurality of resistors connected in parallel, a structure of the first polysilicon gauge resistance is same as a structure of the second polysilicon gauge resistance, and a direction of the first polysilicon gauge resistance is same as a direction of the second polysilicon gauge resistance.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 30, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kimitoshi Sato
  • Publication number: 20120235257
    Abstract: Vibration beams are provided on a substrate in parallel with the substrate and in parallel with each other, and provided in vacuum chambers formed by a shell and the substrate. Each of vibration beams has a sectional shape with a longer sectional thickness in a direction perpendicular to a surface of the substrate than a sectional thickness in a direction parallel to the surface of the substrate. A first electrode plate is provided in parallel with the surface of the substrate and connected to one end of each of the vibration beams. A second electrode plate is provided in parallel with the surface of the substrate and between the vibration beams. Third and fourth electrode plates are provided on opposite sides of the vibration beams. Asperities are provided in opposed side wall portion surfaces of the vibration beams and the second, third and fourth electrode plates.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 20, 2012
    Applicant: YOKOGAWA ELECTRIC CORPORATION
    Inventor: Takashi YOSHIDA
  • Patent number: 8269291
    Abstract: A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: September 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: Leena Paivikki Buchwalter, Kevin Kok Chan, Timothy Joseph Dalton, Christopher Vincent Jahnes, Jennifer Louise Lund, Kevin Shawn Petraraca, James Louis Speidell, James Francis Ziegler
  • Patent number: 8264051
    Abstract: A semiconductor device includes: a sensor element having a plate shape with a surface and including a sensor structure disposed in a surface portion of the sensor element; and a plate-shaped cap element bonded to the surface of the sensor element. The cap element has a wiring pattern portion facing the sensor element. The wiring pattern portion connects an outer periphery of the surface of the sensor element and the sensor structure so that the sensor structure is electrically coupled with an external element via the outer periphery. The sensor element does not have a complicated multi-layered structure, so that the sensor element is simplified. Further, the dimensions of the device are reduced.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: September 11, 2012
    Assignee: DENSO CORPORATION
    Inventors: Tetsuo Fujii, Kazuhiko Sugiura
  • Patent number: 8227879
    Abstract: Systems and methods for mounting inertial sensors on a board. On a wafer containing one or more sensor packages having a substrate layer, a sensor layer and an insulator layer located between the sensor layer and the substrate layer, a V-groove is anisotropically etched into one of the substrate layer. The substrate layer is in the 100 crystal plane orientation. The sensor package is then separated from the wafer. Then, a surface of the substrate layer formed by the etching is attached to a board. In one example, three sensor packages are mounted to the board so that their sense axis are perpendicular to each other.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 24, 2012
    Assignee: Honeywell International Inc.
    Inventor: Mark Eskridge
  • Patent number: 8207586
    Abstract: A MEMS sensor includes a first substrate; a second substrate; a movable electrode portion and a fixed electrode portion which are arranged between the first substrate and the second substrate, wherein: conductive supporting portions of the movable electrode portion and the fixed electrode portion are, respectively, fixedly secured to a surface of the first substrate via a first insulating layer; a second insulating layer, a lead layer buried into the second insulating layer, and connection electrode portions that are electrically connected to the lead layer to be individually connected to the conductive supporting portions are provided on a surface of the second substrate; a metallic connection layer is formed on the surface of one of the respective conductive supporting portions; one of the respective connection electrode portions and the metallic connection layer are bonded together by eutectic bonding or diffusion bonding; and, at least each of the connection electrode portions has a thickness of about 4 ?
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 26, 2012
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kiyoshi Sato, Kiyoshi Kobayashi, Yoshitaka Uto, Katsuya Kikuiri, Kazuyoshi Takahashi, Jun Suzuki, Hideki Gochou, Toru Takahashi, Hisanobu Ohkawa
  • Publication number: 20120133006
    Abstract: In one embodiment, a semiconductor structure includes a beam positioned within a sealed cavity, the beam including: an upper insulator layer including one or more layers; and a lower insulator layer including one or more layers, wherein a composite stress of the upper insulator layer is different than a composite stress of the lower insulator layer, such that the beam bends.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph P. Hasselbach, Karen L. Lestage, Anthony K. Stamper
  • Patent number: 8188556
    Abstract: A semiconductor sensor has a first semiconductor layer as a base, an insulating layer formed on the first semiconductor layer, and a second semiconductor layer formed on the insulating layer. A recess is formed from a bottom surface of the first semiconductor layer up to a top surface of the insulating layer. The second semiconductor layer is covered with the insulating layer in an outer circumference of a top surface of the recess. A sensitive region of the second semiconductor layer is exposed in a region except the outer circumference of the top surface of the recess.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 29, 2012
    Assignee: OMRON Corporation
    Inventors: Yoshitaka Adachi, Katsuyuki Inoue
  • Publication number: 20120126351
    Abstract: A MEMS device is provided, which includes a silicon substrate with a face surface that has a pattern of recesses which define functional elements of the MEMS device, leaving sharp-edged, highly doped ridges, and a cover with a mating surface coupled to the face surface. The cover includes patterns of metal films that engage the ridges to form surface-to-surface electrical connections as well as hermetic surface-to-surface sealing and/or bonding between the silicon ridges of the face surface and the metal film on the mating surface, wherein the metal film on the mating surface comes into atomic contact with the silicon ridges.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 24, 2012
    Inventor: Leslie Bruce Wilner
  • Patent number: 8174085
    Abstract: A method of manufacturing an MEMS sensor according to the present invention includes the steps of: forming a first sacrificial layer on one surface of a substrate; forming a lower electrode on the first sacrificial layer; forming a second sacrificial layer made of a metallic material on the first sacrificial layer to cover the lower electrode; forming an upper electrode made of a metallic material on the second sacrificial layer; forming a protective film made of a nonmetallic material on the substrate to collectively cover the first sacrificial layer, the second sacrificial layer and the upper electrode; and removing at least the second sacrificial layer by forming a through-hole in the protective film and supplying an etchant to the inner side of the protective film through the through-hole.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: May 8, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 8173471
    Abstract: A method for fabricating MEMS device includes providing a substrate having a first side and a second side. Then, a structural dielectric layer is formed over the substrate at the first side, wherein a structural conductive layer is embedded in the structural dielectric layer. A multi-stage patterning process is performed on the substrate from the second side, wherein a plurality of regions of the substrate with different levels is formed and a portion of the structural dielectric layer is exposed. An isotropic etching process is performed from the second side of the substrate or from the both side of the substrate to etch the structural dielectric layer, wherein a remaining portion of the structural dielectric layer comprises the structural conductive layer and a dielectric portion enclosed by the structural conductive layer.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: May 8, 2012
    Assignee: Solid State System Co., Ltd.
    Inventors: Tsung-Min Hsieh, Chien-Hsing Lee
  • Patent number: 8163584
    Abstract: The beam bending of a MEMS device is minimized by reducing interfacial strength between a sacrificial layer and a MEMS structure.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Minhua Lu, Nils D. Hoivik, Christopher Jahnes, John M. Cotte, Hongqing Zhang
  • Publication number: 20120091547
    Abstract: A resonator using the MEMS technology is provided which improves the accuracy of a shape of electrodes so as avoid a short circuit that would otherwise be caused between input and output electrodes to thereby increase the reliability thereof. A resonator includes a substrate 101, an insulation layer 102 formed selectively on the substrate 101 as a sacrificial surface, a beam 103 formed on the substrate 101 via a space, a first support portion 104A formed on the insulation layer 102 of the same material as that of the beam 103, and electrodes formed with a space defined between the beam 103 and themselves for signals to be inputted thereinto and outputted therefrom. A sectional area of the beam 103 and a sectional area of the first support portion 104A are substantially equal in a section which is perpendicular to a longitudinal direction of the beam 103.
    Type: Application
    Filed: June 30, 2010
    Publication date: April 19, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Tomohide Kamiyama, Tomohiro Iwasaki, Takehiko Yamakawa, Kunihiko Nakamura, Keiji Onishi
  • Patent number: 8154094
    Abstract: A micromechanical component having a substrate, having a cavity and having a cap that bounds the cavity. The cap has an access opening to the cavity. The cap has a diaphragm for closing the access opening.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 10, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Volker Schmitz, Axel Grosse
  • Publication number: 20120068278
    Abstract: The present invention generally relates to MEMS devices and methods for their manufacture. The cantilever of the MEMS device may have a waffle-type microstructure. The waffle-type microstructure utilizes the support beams to impart stiffness to the microstructure while permitting the support beam to flex. The waffle-type microstructure permits design of rigid structures in combination with flexible supports. Additionally, compound springs may be used to create very stiff springs to improve hot-switch performance of MEMS devices. To permit the MEMS devices to utilize higher RF voltages, a pull up electrode may be positioned above the cantilever to help pull the cantilever away from the contact electrode.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 22, 2012
    Inventors: RICHARD L. KNIPE, Robertus Petrus van Kampen, Anartz Unamuno, Roberto Gaddi
  • Publication number: 20120068277
    Abstract: Embodiments related to semiconductor manufacturing and semiconductor devices with semiconductor structure are described and depicted.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Inventors: Thoralf KAUTZSCH, Boris BINDER, Frank HOFFMANN, Uwe RUDOLPH
  • Patent number: 8138560
    Abstract: Without sacrificial layer etching, a microstructure and a micromachine are manufactured. A separation layer 102 is formed over a substrate 101, and a layer 103 to be a movable electrode is formed over the separation layer 102. At an interface of the separation layer 102, the layer 103 to be a movable electrode is separated from the substrate. A layer 106 to be a fixed electrode is formed over another substrate 105. The layer 103 to be a movable electrode is fixed to the substrate 105 with the spacer layer 103 which is partially provided interposed therebetween, so that the layer 103 to be a movable electrode and a layer 106 to be a fixed electrode face each other.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Patent number: 8138791
    Abstract: Integrated circuits with stressed transistors are provided. Stressing transistors may increase transistor threshold voltage without the need to increase channel doping. Stressing transistors may reduce total leakage currents. It may be desirable to compressively stress N-channel metal-oxide-semiconductor (NMOS) transistors and tensilely stress P-channel metal-oxide-semiconductor (PMOS) transistors to reduce leakage currents. Techniques that can be used to alter the amount of stressed experienced by transistors may include forming a stress-inducing layer, forming a stress liner, forming diffusion active regions using silicon germanium, silicon carbon, or standard silicon, implementing transistors in single-finger instead of multi-finger configurations, and implanting particles. Any combination of these techniques may be used to provide appropriate amounts of stress to increase the performance or decrease the total leakage current of a transistor.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: March 20, 2012
    Assignee: Altera Corporation
    Inventors: Albert Ratnakumar, Jun Liu, Jeffrey Xiaoqi Tung, Qi Xiang
  • Patent number: 8138556
    Abstract: A pre-released structure device comprising: at least one first stacking, comprising at least one first layer based on at least one first material, arranged against a second stacking comprising at least one second layer based on at least one second material, at least one closed cavity, formed in the first and/or the second stacking, and arranged between a portion of the first stacking forming the pre-released structure and the second stacking, at least one spacer arranged in the cavity and linking the portion of the first stacking to the second stacking.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 20, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Stéphane Caplet
  • Patent number: 8120125
    Abstract: Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 21, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Teruo Sasagawa, SuryaPrakash Ganti, Mark W. Miles, Clarence Chui, Manish Kothari, Ming-Hau Tung
  • Publication number: 20120038963
    Abstract: A protrusion formation hole is provided so as to pierce a support substrate. A polysilicon film as an electrical conducting material is embedded in the protrusion formation hole through an oxide silicon film. The polysilicon film partially bulges out of the protrusion formation hole toward a movable section to form a protruding section. In other words, the polysilicon film bulges out of the protrusion formation hole toward the movable section to form the protruding section. Thereby, a movable section included in MEMS can be prevented from sticking to other members.
    Type: Application
    Filed: July 7, 2011
    Publication date: February 16, 2012
    Inventors: Chisaki TAKUBO, Heewon Jeong
  • Patent number: 8115266
    Abstract: A microelectromechanical system (MEMS) device includes a semiconductor substrate, a MEMS including a fixed electrode and a movable electrode formed on the semiconductor substrate through an insulating layer, and a well formed in the semiconductor substrate below the fixed electrode. The well is one of an n-type well and a p-type well. The p-type well applies a positive voltage to the fixed electrode while the n-type well applies a negative voltage to the fixed electrode.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 14, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Toru Watanabe, Akira Sato, Shogo Inaba, Takeshi Mori
  • Publication number: 20120033832
    Abstract: The invention relates to a method for manufacturing a micromachined microphone and an accelerometer from a wafer 1 having a first layer 2, the method comprising the steps of dividing the first layer 2 into a microphone layer 5 and into an accelerometer layer 6, covering a front side of the microphone layer 5 and a front side of the accelerometer layer 6 with a continuous second layer 7, covering the second layer 7 with a third layer 8, forming a plurality of trenches 9 in the third layer 8, removing a part 10 of the wafer 1 below a back side of the microphone layer 5, forming at least two wafer trenches 11 in the wafer 1 below a back side of the accelerometer layer 6, and removing a part 12, 13 of the second layer 7 through the plurality of trenches 9 formed in the third layer 8. The micromachined microphone and the accelerometer according to the invention is advantageous over prior art as it allows for body noise cancellation in order to minimize structure borne sound.
    Type: Application
    Filed: February 3, 2010
    Publication date: February 9, 2012
    Applicant: NXP B.V.
    Inventors: Twan van Lippen, Geert Langereis, Martijn Goossens
  • Patent number: 8106471
    Abstract: A semiconductor dynamic quantity sensor includes a sensor part and a cap connected to the sensor part. Dynamic quantity is detected based on a capacitance of a capacitor defined between a movable electrode and a fixed electrode of the sensor part. A float portion of the sensor part is separated from a support board of the sensor part to define a predetermined interval. At least one of the cap and the support board has a displacing portion displacing the float portion in a direction perpendicular to the support board so as to change the predetermined interval. The movable electrode has a displacement in accordance with the displaced float portion.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: January 31, 2012
    Assignee: DENSO CORPORATION
    Inventors: Hisanori Yokura, Tetsuo Fujii
  • Publication number: 20120018821
    Abstract: A force sensor package includes the following main parts: a MEMS force sensor, an interface circuit converting a change of capacitance into an analog or digital sensor output signal, and a substrate on which the MEMS force sensor and the IC are attached. The interface circuit is a die in order to minimize the size of the force sensor. The MEMS force sensor and the interface circuit are attached to the substrate by an adhesive, e.g. glue. Electrical contacts are then realized by wire-bonding. Alternatively, the two parts may also be attached to the substrate by a flip-chip process using solder. A protective cover may be placed over the assembly.
    Type: Application
    Filed: January 4, 2010
    Publication date: January 26, 2012
    Applicant: FEMTO TOOLS GMBH
    Inventor: Felix Beyeler