With Particular Contact Geometry (e.g., Ring Or Grid, Or Bonding Pad Arrangement) Patents (Class 257/459)
  • Patent number: 8749025
    Abstract: A semiconductor chip is specified that has a contact layer that is not optimum for many common applications. For example, the contact layer is too thin to tolerate an operating current intended for the semiconductor chip without considerable degradation. Also specified is an optoelectronic component in which the semiconductor chip can be integrated so that the suboptimal quality of the contact layer is compensated for. In the component the semiconductor chip is applied to a carrier body so that the contact layer is arranged on a side of the semiconductor body that is remote from the carrier body. The semiconductor chip and the carrier body are at least partly covered with an electrically isolating layer, and an electrical conductor applied to the isolating layer extends laterally away from the semiconductor body and contacts at least a partial surface of the contact layer. In addition, an advantageous process for producing the component is specified.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: June 10, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Elmar Baur, Walter Wegleiter
  • Patent number: 8742530
    Abstract: A conduction element includes a substrate which has a first wave surface and a second wave surface, and a laminate film which is formed on the first wave surface and where two or more layers are laminated, where the laminate film forms a conduction pattern, and the first wave surface and the second wave surface satisfy a relationship below. 0?(Am1/?m1)<(Am2/?m2)?1.8 (Here, Am1: average width of vibration in the first wave surface, Am2: average width of vibration in the second wave surface, ?m1: average wavelength of the first wave surface, ?m2: average wavelength of the second wave surface).
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventors: Shunichi Kajiya, Kazuya Hayashibe
  • Patent number: 8742563
    Abstract: A component and a method for producing a component are disclosed. The component comprises an integrated circuit, a housing body, a wiring device overlapping the integrated circuit and the housing body, and one or more external contact devices in communication with the wiring device.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Harry Hedler, Markus Brunnbauer
  • Patent number: 8742526
    Abstract: A photoelectric conversion device including a substrate, a photoelectric conversion element including a first electrode, a second electrode and an organic compound layer and a sealing member that are disposed in this order. When a cross section of the photoelectric conversion device in a thickness direction is observed with the sealing member being placed at an upper side, a bonding member seals the organic compound layer at an outside thereof. An output electrode on the sealing member has a protrusion. A side conductive portion is electrically connected with the protrusion in an up-and-down direction. A substrate conductive member electrically connected with the first electrode and the second electrode extends to an outside of the bonding member. An electrical connecting member electrically connects the side conductive portion to the substrate conductive member at a further outside of the bonding member.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 3, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hiroyuki Iwabuchi, Chishio Hosokawa, Ryo Naraoka
  • Patent number: 8741738
    Abstract: The disclosure relates to integrated circuit fabrication, and more particularly to a semiconductor apparatus with a metallic alloy. An exemplary structure for an apparatus comprises a first silicon substrate; a second silicon substrate; and a contact connecting each of the first and second substrates, wherein the contact comprises a Ge layer adjacent to the first silicon substrate, a Cu layer adjacent to the second silicon substrate, and a metallic alloy between the Ge layer and Cu layer.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi Hsun Chiu, Ting-Ying Chien, Ching-Hou Su, Chyi-Tsong Ni
  • Patent number: 8736009
    Abstract: The image sensor includes a substrate, an insulating structure formed on a first surface of the substrate and including a first metal wiring layer exposed by a contact hole penetrating the substrate, a conductive spacer formed on sidewalls of the contact hole and electrically connected to the first metal wiring layer, and a pad formed on a second surface of the substrate and electrically connected to the first metal wiring layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung Jun Park, Yong Woo Lee, Chang Rok Moon
  • Patent number: 8736008
    Abstract: Photodiode arrays and methods of fabrication are provided. One photodiode array includes a silicon wafer having a first surface and an opposite second surface and a plurality of conductive vias through the silicon wafer. The photodiode array further includes a patterned doped epitaxial layer on the first surface, wherein the patterned doped epitaxial layer and the substrate form a plurality of diode junctions. A patterned etching defines an array of the diode junctions.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 27, 2014
    Assignee: General Electric Company
    Inventors: Abdelaziz Ikhlef, Wen Li
  • Patent number: 8735888
    Abstract: An embodiment of the invention relates to a TFT-LCD array substrate comprising a substrate, a gate line and a data line formed on the substrate, a pixel electrode and a thin film transistor formed in a pixel region defined by the gate line and the data line, wherein the thin film transistor comprises a gate electrode, a source electrode, and a transparent drain electrode, and the transparent drain electrode is electrically connected with the pixel electrode.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: May 27, 2014
    Assignee: Beijing Boe Optoelectronics Technology Co., Ltd.
    Inventors: Wei Li, Jeong Hun Rhee
  • Publication number: 20140138666
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between about 2.5 to 7 microns; a first terminal coupled to the light emitting region on a first side, the first terminal having a height between about 1 to 6 microns; and a second terminal coupled to the light emitting region on a second side opposite the first side, the second terminal having a height between about 1 to 6 microns.
    Type: Application
    Filed: January 25, 2014
    Publication date: May 22, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw
  • Patent number: 8729656
    Abstract: A germanium semiconductor radiation detector contact made of yttrium metal. A thin (˜1000 ?) deposited layer of yttrium metal forms a thin hole-barrier and/or electron-barrier contact on both p- and n-type germanium semiconductor radiation detectors. Yttrium contacts provide a sufficiently high hole barrier to prevent measurable contact leakage current below ˜120 K. The yttrium contacts can be conveniently segmented into multiple electrically independent electrodes having inter-electrode resistances greater than 10 G?. Germanium semiconductor radiation detector diodes fabricated with yttrium contacts provide good gamma-ray spectroscopy data.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 20, 2014
    Inventors: Ethan Hull, Richard Pehl, Bruce Suttle, James Lathrop
  • Patent number: 8729712
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: May 20, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Dyson H. Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Publication number: 20140131828
    Abstract: An insulating layer is layered above a substrate, and a plurality of pixel electrodes are formed above the insulating layer in a matrix with intervals therebetween. A photoelectric conversion layer and an opposing electrode are formed in respective order above the pixel electrodes. A dummy layer is formed above the insulating layer in a region that in plan-view is more peripheral than a pixel region in which the pixel electrodes are formed. The dummy layer is formed from the same material as the pixel electrodes. The dummy layer is composed of a plurality of dummy layer portions that are each equal to each of the pixel electrodes in terms of size in plan-view. The dummy layer functions as a support layer for planarization during polishing by chemical mechanical polishing.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Shunsuke ISONO, Tetsuya UEDA
  • Patent number: 8716871
    Abstract: A semiconductor device that includes a first metal layer component formed over a substrate. The semiconductor device includes a via formed over the first metal layer component. The via has a recessed shape. The semiconductor device includes a second metal layer component formed over the via. The semiconductor device includes a first dielectric layer component formed over the substrate. The first dielectric layer component is located adjacent to, and partially over, the first metal layer component. The first dielectric layer component contains fluorine. The semiconductor device includes a second dielectric layer component formed over the first dielectric layer component. The first dielectric layer component and the second dielectric layer component are each located adjacent to the via. The second dielectric layer component is free of fluorine.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Uway Tseng, Shu-Hui Su
  • Patent number: 8710448
    Abstract: A radiation detector module (22) particularly well suited for use in computed tomography (CT) applications includes a scintillator (200), a photodetector array (202), and signal processing electronics (205). The photodetector array (202) includes a semiconductor substrate (208) having a plurality of photodetectors and metalization (210) fabricated on non-illuminated side of the substrate (208). The metalization routes electrical signals between the photodetectors and the signal processing electronics (205) and between the signal processing electronics (205) and an electrical connector (209).
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 29, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Randall P. Luhta, Marc A. Chappo, Brian E. Harwood, Rodney A. Mattson, Chris J. Vrettos
  • Patent number: 8710612
    Abstract: A semiconductor device includes a device substrate having a front side and a back side corresponding to a front side and a back side of the semiconductor device, a metal feature formed on the front side of the device substrate, a bonding pad disposed on the back side of the semiconductor device and in electrical communication with the metal feature, and a shield structure disposed on the back side of the device substrate in which the shield structure and the bonding pad have different thicknesses relative to each other.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Wen-De Wang, Jeng-Shyan Lin, Cheng-Ying Ho
  • Patent number: 8704238
    Abstract: A three-dimensional integrated circuit device includes a first substrate having a first crystal orientation comprising at least one or more PMOS devices thereon and a first dielectric layer overlying the one or more PMOS devices. The three-dimensional integrated circuit device also includes a second substrate having a second crystal orientation comprising at least one or more NMOS devices thereon; and a second dielectric layer overlying the one or more NMOS devices. An interface region couples the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: April 22, 2014
    Assignee: mCube Inc.
    Inventor: Xiao (Charles) Yang
  • Patent number: 8698263
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 15, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 8698270
    Abstract: A semiconductor light receiving device includes: a substrate having a rectangular shape with first through fourth corners, a multilayer structure formed on the substrate, a light receiving part having a mesa structure positioned at a first corner side from a center part of the rectangular shape of the substrate, a first electrode pad provided on the semiconductor substrate, and a second electrode pad provided on the semiconductor substrate so as to be close to a second corner diagonally opposite to the first corner, a first minimum distance between the second electrode pad and an edge of the substrate being longer than a second minimum distance between the first electrode pad and the edge of the substrate.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Ryuji Yamabi
  • Patent number: 8698267
    Abstract: An electrode includes a substantially planar metallic thin film layer with a patterned structure including a plurality of parallel lines or a plurality of crossed lines, the metallic thin film layer configured to transmit an incident light through the metallic thin film layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 15, 2014
    Assignee: South China Normal University
    Inventors: Yang Wang, Krzysztof Kempa, Zhifeng Ren
  • Publication number: 20140091421
    Abstract: A solid-state image pickup element is provided with a semiconductor substrate having a photosensitive region, a plurality of first electrode pads arrayed on a principal face of the semiconductor substrate, a plurality of second electrode pads arrayed in a direction along a direction in which the plurality of first electrode pads are arrayed, on the principal face of the semiconductor substrate, and a plurality of interconnections connecting the plurality of first electrode pads and the plurality of second electrode pads in one-to-one correspondence. The plurality of interconnections connect the first and second electrode pads so that each interconnection connects the first electrode pad and the second electrode pad in a positional relation of line symmetry with respect to a center line perpendicular to the array directions of the plurality of first and second electrode pads.
    Type: Application
    Filed: June 19, 2012
    Publication date: April 3, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomohiro Ikeya, Toshiyuki Fukui, Hisanori Suzuki, Masaharu Muramatsu
  • Patent number: 8686526
    Abstract: The invention is directed to providing a semiconductor device receiving a blue-violet laser, of which the reliability and yield are enhanced. A device element converting a blue-violet laser into an electric signal is formed on a front surface of a semiconductor substrate. An optically transparent substrate is attached to the front surface of the semiconductor substrate with an adhesive layer being interposed therebetween. The adhesive layer contains transparent silicone. Since the front surface of the device element is covered by the optically transparent substrate, foreign substances are prevented from adhering to the front surface of the device element. Furthermore, the adhesive layer is covered by the optically transparent substrate. This prevents the adhesive layer from being exposed to outside air, thereby preventing the degradation of the adhesive layer 6 due to a blue-violet laser.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Katsuhiko Kitagawa, Hiroyuki Shinogi, Shinzo Ishibe, Hiroshi Yamada
  • Publication number: 20140070353
    Abstract: A semiconductor package includes a semiconductor substrate which includes a first connection terminal electrically connected to a wiring for signal transfer. The semiconductor package may include a semiconductor support substrate which may be bonded to the semiconductor substrate such that a second connection terminal and the first connection terminal are connected to face each other, and has a through via exposing the second connection terminal.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 13, 2014
    Applicant: Dongbu HiTek Co., Ltd.
    Inventor: Sunghyok KIM
  • Publication number: 20140061703
    Abstract: An optoelectronic semiconductor chip includes a carrier including a carrier element having a mounting side; one electrically conductive n-type wiring layer arranged at the mounting side; a structured, electrically conductive contact layer having a p-side and n-side contact region and arranged at a side of the n-type wiring layer facing away from the carrier element; at least one insulation region electrically insulating the p-side contact region from the n-side contact region; at least one electrically insulating spacer layer arranged at a side of the n-type wiring layer facing away from the carrier element in a vertical direction between the p-side contact region and the n-type wiring layer, wherein the n-side contact region and the n-type wiring layer electrically conductively connect to one another, and the p-side contact region and the spacer layer border the n-side contact region in a lateral direction; an optoelectronic structure connected to the carrier.
    Type: Application
    Filed: March 28, 2012
    Publication date: March 6, 2014
    Applicant: OSRAM OPTO SEMICONDUCTORS GmbH
    Inventor: Norwin Von Malm
  • Publication number: 20140061842
    Abstract: A method includes forming an opening extending from a back surface of a semiconductor substrate to a metal pad on a front side of the semiconductor substrate, and forming a first conductive layer including a first portion overlapping active image sensors in the semiconductor substrate, a second portion overlapping black reference image sensors in the semiconductor substrate, and a third portion in the opening to contact the metal pad. A second conductive layer is formed over and contacting the first conductive layer. A first patterning step is performed to remove the first and the second portions of the second conductive layer, wherein the first conductive layer is used as an etch stop layer. A second patterning step is performed to remove a portion of the first portion of the first conductive layer. The second and the third portions of the first conductive layer remain after the second patterning step.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shyh-Fann Ting, Jiech-Fun Lu, Ming-I Wang, Yeur-Luen Tu, Ching-Chun Wang
  • Publication number: 20140054663
    Abstract: At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise.
    Type: Application
    Filed: October 30, 2013
    Publication date: February 27, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Toru Koizumi, Akira Okita, Tetsuya Itano, Sakae Hashimoto, Ryuichi Mishima
  • Publication number: 20140054740
    Abstract: A method of manufacturing a semiconductor device includes forming at least one sacrificial layer on a substrate during a complementary metal-oxide-semiconductor (CMOS) process. An absorber layer is deposited on top of the at least one sacrificial layer. A portion of the at least one sacrificial layer beneath the absorber layer is removed to form a gap over which a portion of the absorber layer is suspended. The sacrificial layer can be an oxide of the CMOS process with the oxide being removed to form the gap using a selective hydrofluoric acid vapor dry etch release process. The sacrificial layer can also be a polymer layer with the polymer layer being removed to form the gap using an O2 plasma etching process.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Gary Yama, Ando Feyh, Ashwin Samarao, Fabian Purkl, Gary O'Brien
  • Publication number: 20140054739
    Abstract: There is provided a semiconductor device including a substrate made from a semiconductor material, and layers that are made from plural kinds of materials and formed over the substrate. An opening portion that is formed to penetrate at least a layer formed as an insulating film among the layers formed over the substrate and expose a surface of an electrode pad is filled with aluminum or an aluminum alloy.
    Type: Application
    Filed: July 19, 2013
    Publication date: February 27, 2014
    Inventor: Takatoshi Kameshima
  • Publication number: 20140035089
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Application
    Filed: October 14, 2013
    Publication date: February 6, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Dyson H. Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Patent number: 8637950
    Abstract: A semiconductor device has first wiring layers and a plurality of dummy wiring layers that are provided on the same level as the first wiring layers. The semiconductor device defines a row direction, and first virtual linear lines extending in a direction traversing the row direction. The row direction and the first virtual linear lines define an angle of 2-40 degrees, and the dummy wiring layers are disposed in a manner to be located on the first virtual linear lines. The semiconductor device also defines a column direction perpendicular to the row direction, and second virtual linear lines extending in a direction traversing the column direction. The column direction and the second virtual linear lines define an angle of 2-40 degrees, and the dummy wiring layers are disposed in a manner to be located on the second virtual linear lines.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 28, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Katsumi Mori, Kei Kawahara, Yoshikazu Kasuya
  • Publication number: 20140008674
    Abstract: A mounting substrate includes: a wiring substrate; and a plurality of optical elements mounted on a mounting surface of the wiring substrate, and each having a first electrode and a second electrode. The wiring substrate includes a support substrate, a plurality of first wires, and a plurality of second wires. The first wires and the second wires are provided within a layer between the support substrate and the mounting surface. The first wires are electrically connected with the first electrodes. The second wires are electrically connected with the second electrodes, and each have cross-sectional area larger than cross-sectional area of each of the first wires.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 9, 2014
    Applicant: SONY CORPORATION
    Inventors: Toshihiko Watanabe, Yoichi Ohshige, Masato Doi, Akiyoshi Aoyagi
  • Publication number: 20140008750
    Abstract: Described are embodiments of apparatuses and systems including photonic devices having a conductive shunt layer, and methods for making such apparatuses and systems. A photonic device may include a device substrate, a photo-active region disposed on a first region of the device substrate, an isolation region in the device substrate, a contact disposed on a second region of the substrate such that the isolation region is located between the contact and the photo-active region, and a conductive material overlying the isolation region to shunt the first region with the second region. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 9, 2014
    Inventors: Avi Feshali, Tao Sherry Yin, Ansheng Liu
  • Patent number: 8624346
    Abstract: A semiconductor structure less affected by stress and a method for forming the same are provided. The semiconductor structure includes a semiconductor chip. Stress-sensitive circuits are substantially excluded out of an exclusion zone to reduce the effects of the stress to the stress-sensitive circuits. The stress-sensitive circuits include analog circuits. The exclusion zone preferably includes corner regions of the semiconductor chip, wherein the corner regions preferably have a diagonal length of less than about one percent of the diagonal length of the semiconductor chip. The stress-sensitive analog circuits preferably include devices having channel lengths less than about five times the minimum channel length.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: January 7, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yuan Su, Chung-Yi Lin
  • Patent number: 8614508
    Abstract: A method of manufacture of an integrated circuit system includes: providing a substrate having a test pad with element pads; forming a conductive layer over the test pad, the conductive layer having element layers directly on the element pads; and mounting an integrated circuit over the substrate.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 24, 2013
    Assignee: STATS ChipPac Ltd.
    Inventors: Bao Xusheng, Rui Huang
  • Publication number: 20130322476
    Abstract: Controlled-impedance out-of-substrate package structures employing electrical devices and related assemblies, components, and methods are disclosed. An out-of-substrate package structure may be used to electrically couple an electrical device to an electrical substrate, for example a printed circuit board. The out-of-substrate package structure may be electrically coupled to the electrical substrate. Ground paths of the out-of-substrate package structure may be arranged proximate to the electrical device and arranged symmetric with respect to at least one geometric plane intersecting the electrical device. In this regard, electric field lines generated by current flowing into the electrical device tend to terminate at the return or ground paths allowing for impedance to be more easily controlled. Accordingly, the out-of-substrate package structure may be impedance matched in a better way with respect to power provided from the electrical substrate enabling faster electrical device speeds.
    Type: Application
    Filed: March 8, 2013
    Publication date: December 5, 2013
    Inventors: Thomas Edmond Flaherty IV, Gary Richard Trott, Jeevan Kumar Vemagiri
  • Patent number: 8592854
    Abstract: The invention relates to a substantially transparent electronic device comprising a first contact surface provided with a first pattern of electrically conductive lines and a second contact surface provided with a second pattern of electrically conductive lines, the first contact surface extending parallel to the second contact surface, wherein the first pattern is rotationally displaced with respect to the second pattern by an angle between 15 and 165 degrees. The electrically conductive lines of the said first pattern and the said second pattern are substantially not transparent for visible light and are preferably used as shunting lines. The invention further relates to a method of manufacturing such device.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 26, 2013
    Assignee: Nederlandse Organisatie Voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Peter G. M. Kruijt, Eric Rubingh, Andrea Maione, Joanne Sarah Wilson
  • Patent number: 8592936
    Abstract: A photoelectric conversion device includes: a first substrate of which end portions are cut off so as to slope or with a groove shape; a photodiode and an amplifier circuit over the first substrate; a first electrode electrically connected to the photodiode and provided over one end portion of the first substrate; a second electrode electrically connected to the amplifier circuit and provided over an another end portion of the first substrate; and a second substrate having third and fourth electrodes thereon. The first and second electrodes are attached to the third and fourth electrodes, respectively, with a conductive material provided not only at the surfaces of the first, second, third, and fourth electrodes facing each other but also at the side surfaces of the first and second electrodes to increase the adhesiveness between a photoelectric conversion device and a member on which the photoelectric conversion device is mounted.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: November 26, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoto Kusumoto, Kazuo Nishi, Yuusuke Sugawara
  • Patent number: 8586857
    Abstract: A combined diode, lead assembly incorporating two expansion joints. The combined diode, lead assembly incorporating two expansion joints includes a diode having a first diode terminal and a second diode terminal, a first conductor and a second conductor. The first conductor includes a first terminal that is electrically coupled to the diode at the first diode terminal and a second terminal that is configured as a first expansion joint, which is configured to electrically couple to a first interconnecting-conductor and is configured to reduce a stress applied to the diode by the first conductor. The second conductor includes a first terminal that is electrically coupled to the diode at the second diode terminal and a second terminal that is configured as a second expansion joint, which is configured to electrically couple to a second interconnecting-conductor and is configured to reduce a stress applied to the diode by the second conductor.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: November 19, 2013
    Assignee: Miasole
    Inventors: Shawn Everson, Steven T. Croft, Whitfield G. Halstead, Jason S. Corneille
  • Patent number: 8581358
    Abstract: A photoelectric conversion device is provided which is capable of improving the light condensation efficiency without substantially decreasing the sensitivity. The photoelectric conversion device has a first pattern provided above an element isolation region formed between adjacent two photoelectric conversion elements, a second pattern provided above the element isolation region and above the first pattern, and microlenses provided above the photoelectric conversion elements with the first and the second patterns provided therebetween. The photoelectric conversion device further has convex-shaped interlayer lenses in optical paths between the photoelectric conversion elements and the microlenses, the peak of each convex shape projecting in the direction from the electro-optical element to the microlens.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Publication number: 20130285186
    Abstract: A semiconductor device comprising a first semiconductor section including a first wiring layer at one side thereof, a second semiconductor section including a second wiring layer at one side thereof, the first and second semiconductor sections being secured together with the respective first and second wiring layer sides of the first and second semiconductor sections facing each other, a conductive material extending through the first semiconductor section to the second wiring layer of the second semiconductor section and by means of which the first and second wiring layers are in electrical communication.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventors: Kazuichiro Itonaga, Machiko Horiike
  • Patent number: 8569856
    Abstract: Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 29, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Hsin-Chih Tai, Keh-Chiang Ku, Vincent Venezia, Duli Mao, Wei Zheng, Howard E. Rhodes
  • Publication number: 20130256824
    Abstract: There is provided a solid-state imaging device including a sensor substrate having a sensor-side semiconductor layer including a pixel region in which a photoelectric conversion section is provided and a sensor-side wiring layer provided on an opposite surface side from a light receiving surface of the sensor-side semiconductor layer, a circuit substrate having a circuit-side semiconductor layer and a circuit-side wiring layer and provided on a side of the sensor-side wiring layer of the sensor substrate, a connection unit region in which a connection section is provided, the connection section having a first through electrode, a second through electrode, and a connection electrode connecting the first through electrode and the second through electrode, and an insulating layer having a step portion which has the connection electrode embedded therein and has a film thickness that gradually decreases from the connection unit region to the pixel region.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 3, 2013
    Applicant: Sony Corporation
    Inventors: KYOHEI MIZUTA, OSAMU OKA, KAORU KOIKE, NOBUTOSHI FUJII, HIDEKI KOBAYASHI, HIROTAKA YOSHIOKA
  • Publication number: 20130249033
    Abstract: An image sensor includes a substrate having a front side and a back side, an insulating structure containing circuits on the front side of the substrate, contact holes extending through the substrate to the circuits, respectively, and a plurality of pads disposed on the backside of the substrate, electrically connected to the circuits along conductive paths extending through the contact holes, and located directly over the circuits, respectively. The image sensor is fabricated by a process in which a conductive layer is formed on the back side of the substrate and patterned to form the pads directly over the circuits.
    Type: Application
    Filed: November 8, 2012
    Publication date: September 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: JIN-HO KIM, YOUNG-HOON PARK
  • Publication number: 20130249042
    Abstract: A structure of stacking chips and a method for manufacturing the structure of stacking chips are provided. A wafer with optical chips and a glass substrate with signal processing chips are stacked with each other, and then subjected to ball mounting and die sawing to form the stacked packaging structure. The optical chips and the signal processing chips form the electrical connection on the surface of the glass substrate via the through holes thereof.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 26, 2013
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventors: Geng-Shin SHEN, Ya Chi CHEN, I-Hsin MAO
  • Publication number: 20130228821
    Abstract: The present invention relates generally to dendritic metal structures and devices including them. The present invention also relates particularly to methods for making dendritic metal structures without the use of solid electrolyte materials. In one aspect, a method for constructing a dendritic metal structure includes providing a substrate having a surface and a cathode disposed on the surface; providing an anode comprising a metal; and disposing a liquid on the surface of the substrate, such that the liquid is in electrical contact with the anode and the cathode; and then applying a bias voltage across the cathode and the anode sufficient to grow the dendritic metal structure extending from the cathode. The methods described herein can be used to grow dedritic metal electrodes, which can be useful in devices such as LEDs, touchscreens, solar cells and photodetectors.
    Type: Application
    Filed: November 11, 2011
    Publication date: September 5, 2013
    Inventors: Michael N. Kozicki, Minghan Ren
  • Publication number: 20130214375
    Abstract: An apparatus includes an image sensor with a frontside and a backside. The image sensor includes an active circuit region and bonding pads. The active circuit region has a first shape that is substantially rectangular. The substantially rectangular first shape has first chamfered corners. A perimeter of the frontside of the image sensor has a second shape that is substantially rectangular. The second substantially rectangular shape has second chamfered corners. The bonding pads are disposed on the frontside of the image sensor. The bonding pads are disposed between the first chamfered corners and the second chamfered corners. The first shape is disposed inside the second shape.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Tiejun Dai, Kuei Chen Liang
  • Publication number: 20130214376
    Abstract: The present invention relates to an apparatus combining bypass diode and wire. According to the present invention, the bypass diode can connect with the wire directly. It is not necessary to reserve an extra region on the substrate of the solar cell as the wire soldering area. Thereby, the required area of the ceramic substrate is reduced, and hence lowering the manufacturing cost of the solar cell substantially.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: YUEH-MU LEE, ZUN-HAO SHIH, HWEN-FEN HONG
  • Patent number: 8508043
    Abstract: A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: August 13, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan
  • Patent number: 8502389
    Abstract: An integrated circuit structure includes an interconnect structure that includes a plurality of metal layers, wherein the interconnect structure is under a semiconductor substrate. A metal pad is formed in one of the plurality of metal layers. A dielectric pad extends from a bottom surface of the semiconductor substrate up into the semiconductor substrate. An opening extends from a top surface of the semiconductor substrate down to penetrate through the semiconductor substrate and the dielectric pad. An edge of the semiconductor substrate in the opening is vertically aligned to an edge of the dielectric pad in the opening. The opening stops on a top surface of the metal pad. A dielectric spacer is disposed in the opening, wherein the dielectric spacer is formed on the edge of the semiconductor substrate and the edge of the dielectric pad.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 6, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Wen-De Wang, Shih Pei Chou
  • Patent number: 8502208
    Abstract: An organic light-emitting device cutting off ambient light while keeping emission intensity includes a pair of first and second electrodes opposed to each other; and a plurality of organic semiconductor layers layered and disposed between the first and second electrodes, wherein the organic semiconductor layers include an organic light-emitting layer, the organic semiconductor device further comprising a light-scattering layer layered and disposed between the organic light-emitting layer and at least one of the first and second electrodes. The light-scattering layer includes: organic materials having carrier injection and transport characteristics of transporting electrons and/or holes; and plural particles dispersed among the organic materials so that light emitted from the organic light-emitting layer is passed therethrough.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: August 6, 2013
    Assignee: Pioneer Corporation
    Inventor: Takahito Oyamada
  • Publication number: 20130181317
    Abstract: A semiconductor unit includes: a first device substrate including a first semiconductor substrate and a first wiring layer, in which the first wiring layer is provided on one surface side of the first semiconductor substrate; a second device substrate including a second semiconductor substrate and a second wiring layer, in which the second device substrate is bonded to the first device substrate, and the second wiring layer is provided on one surface side of the second semiconductor substrate; a through-electrode penetrating the first device substrate and a part or all of the second device substrate, and electrically connecting the first wiring layer and the second wiring layer to each other; and an insulating layer provided in opposition to the through-electrode, and penetrating one of the first semiconductor substrate and the second semiconductor substrate.
    Type: Application
    Filed: December 13, 2012
    Publication date: July 18, 2013
    Applicant: Sony Corporation
    Inventor: Sony Corporation