Including Dielectric Isolation Means Patents (Class 257/506)
  • Patent number: 9437471
    Abstract: A method of manufacturing shallow trench isolations is provided in the present invention, which includes the steps of providing a substrate, performing a zero etch to form preliminary trenches in the substrate, performing a STI etch to the preliminary trenches to form final trenches, where the final trenches are deeper and steeper than the preliminary trenches, and filling up the final trenches with insulating material to form shallow trench isolations.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: September 6, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Liang-An Huang
  • Patent number: 9425266
    Abstract: In one embodiment, a floating diode structure includes a p-type semiconductor substrate. An n-type doped region is disposed between the semiconductor substrate and a p-type doped region of the first conductivity type adjacent the first doped region. An n-type cathode region is disposed within the p-type doped region and a p-type anode region is disposed within the cathode region. An anode electrode is connected to the anode region and a cathode electrode is connected to the cathode region. In one embodiment, the cathode electrode is further connected to the p-type doped region. The n-type doped region is configured as a floating region that facilitates the diode operating in both a forward and reverse bias mode and both below ground and above ground with respect to the p-type semiconductor substrate.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: August 23, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Johan Camiel Julia Janssens, Jaroslav Pjencak
  • Patent number: 9406578
    Abstract: A semiconductor package includes a semiconductor chip, a first and a second depression, a first and second redistribution layer and a packaging layer. The semiconductor chip has an electronic component and a conductive pad that are electrically connected and disposed on an upper surface of the semiconductor chip. The first depression and first redistribution layer extend from the upper surface toward the lower surface of the semiconductor chip. The first redistribution layer and the conductive pad are electrically connected. The second depression and the second redistribution layer extends from the lower surface toward the upper surface and is in connection with the first depression through a connection portion. The second redistribution layer is electrically connected to the first redistribution layer through the connection portion. The packaging layer is disposed on the lower surface.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: August 2, 2016
    Assignee: XINTEC INC.
    Inventors: Ying-Nan Wen, Chien-Hung Liu, Ho-Yin Yiu
  • Patent number: 9396929
    Abstract: Provided are: forming a thin film made of a specific element alone on a substrate by performing a specific number of times a cycle of: supplying a first source to the substrate, the first source containing the specific element and a halogen-group; and supplying a second source to the substrate, the second source containing the specific element and an amino-group, and having amino-group-containing ligands whose number is two or less in its composition formula and not more than the number of halogen-group-containing ligands in the composition formula of the first source.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: July 19, 2016
    Assignees: HITACHI KOKUSAI ELECTRIC INC., L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Yoshiro Hirose, Norikazu Mizuno, Kazutaka Yanagita, Katsuko Higashino
  • Patent number: 9391011
    Abstract: Semiconductor structures are fabricated that include a semiconductor material bonded to a substrate with a layer of dielectric material between the semiconductor material and the substrate. At least one fluidic microchannel extends in a lateral direction through the layer of dielectric material between the semiconductor material and the substrate. The at least one fluidic microchannel includes at least one laterally extending section having a transverse cross-sectional shape entirely surrounded by the layer of dielectric material.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: July 12, 2016
    Assignee: Soitec
    Inventor: Mariam Sadaka
  • Patent number: 9378999
    Abstract: A method for manufacturing SOI wafer of forming an oxide film on a bond wafer of a semiconductor single crystal substrate, forming an ion implanted layer into the bond wafer by implanting ions of at least one kind of gas in hydrogen and rare gases through the oxide film, bonding together an ion implanted front surface of the bond wafer and base wafer front surface via the oxide film, thereafter delaminating the bond wafer along the ion implanted layer, and thereby fabricating an SOI wafer. The oxide film is formed on the bond wafer such that on a back surface it is made thicker than the oxide film on a bonded face. The method for manufacturing SOI wafer capable of suppressing scratches and SOI film thickness abnormality caused by warped shapes of the SOI and bond wafers after delamination where it has been delaminated by an ion implantation delamination method.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: June 28, 2016
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Hiroji Aga, Toru Ishizuka
  • Patent number: 9373717
    Abstract: Stress-inducing structures, methods, and materials are disclosed. In one embodiment, an isolation region includes an insulating material in a lower portion of a trench formed in a workpiece and a stress-inducing material disposed in a top portion of the trench over the insulating material.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: June 21, 2016
    Assignee: Infineon Technologies AG
    Inventors: Alois Gutmann, Roland Hampp, Scott Jansen
  • Patent number: 9368386
    Abstract: The threshold voltage of parasitic transistors formed at corners of shallow trench isolation regions is increased and mobility decreased by employing a high-K dielectric material. Embodiments include STI regions comprising a liner of a high-K dielectric material extending proximate trench corners. Embodiments also include STI regions having a recess formed in the trench, wherein the recess contains a high-K dielectric material, in the form of a layer or spacer, extending proximate trench corners.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: June 14, 2016
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng Tan, Ying Keung Leung, Elgin Quek
  • Patent number: 9349641
    Abstract: A semiconductor wafer is provided including a plurality of dies, each of the plurality of dies including a plurality of semiconductor devices, a plurality of die seals, each of the plurality of die seals being formed at a perimeter of one of the plurality of dies, and a plurality of electrically conductive links, each of the plurality of conductive links connecting one of the plurality of die seals with another one of the plurality of die seals.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: May 24, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Thomas Werner, Oliver Aubel, Frank Feustel
  • Patent number: 9349631
    Abstract: Methods for defining an isolation region of a semiconductor structure are provided. The method includes, for instance: providing a semiconductor structure with a recess therein; disposing an insulator layer conformally within the recess in the semiconductor structure to partially fill the recess; modifying at least one material property of the insulator layer to obtain a densified insulator layer within the recess, where the modifying reduces a thickness of the densified insulator layer compared to that of the insulator layer; and depositing at least one additional insulator layer within the recess over the densified insulator layer, where the densified insulator layer within the recess defines, at least in part, an isolation region of the semiconductor structure.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: May 24, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventor: Errol Todd Ryan
  • Patent number: 9330962
    Abstract: A metal layer is deposited over a material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation or nitridation. A hard mask portion is formed over the metal layer. A plasma impermeable spacer is formed on at least one first sidewall of the hard mask portion, while at least one second sidewall of the hard mask portion is physically exposed. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. A sequence of a surface pull back of the hard mask portion, cavity etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a hole pattern having a spacing that is not limited by lithographic minimum dimensions.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: May 3, 2016
    Assignee: International Business Machines Corporation
    Inventors: Chiahsun Tseng, David V. Horak, Chun-chen Yeh, Yunpeng Yin
  • Patent number: 9287197
    Abstract: A device and methods for forming a device are disclosed. A substrate is provided and a TSV is formed in the substrate through a top surface of the substrate. The TSV and top surface of the substrate is lined with an insulation stack having a first insulation layer, a polish stop layer and a second insulation layer. A conductive layer is formed on the substrate. The TSV is filled with conductive material of the conductive layer. The substrate is planarized to remove excess conductive material of the conductive layer. The planarizing stops on the polish stop layer to form a planar top surface.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 15, 2016
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Benfu Lin, Hong Yu, Lup San Leong, Alex See, Wei Lu
  • Patent number: 9281122
    Abstract: An electrode structure of a laminated metallization film capacitor includes at least two laminated metallization films. Each metallization film is further disposed with a plurality of metal-uncoated curved gap strips with a certain width on the plane of section of the laminated metallization film capacitor core to separate two adjacent metal coating units partially or totally. A center of the curved gas strip is concaved with a notch. Both sides of the notch form like misaligned shoulders. A projection forms opposite to the open of the notch; in two adjacent curve gap strips. An extreme point of the projection of one curve gap strip is disposed inside the notch of the other one in any event.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: March 8, 2016
    Assignee: XIAMEN FARATRONIC CO., LTD.
    Inventors: Jian Zhu, Jintao Lin, Guobin Chen
  • Patent number: 9269730
    Abstract: An image sensor such as a backside illumination image sensor may be provided with analog circuitry, digital circuitry, and an image pixel array on a semiconductor substrate. Trench isolation structures may separate the analog circuitry from the digital circuitry on the substrate. The trench isolation structures may be formed from dielectric-filled trenches in the substrate that isolate the portion of the substrate having the analog circuitry from the portion of the substrate having the digital circuitry. The trench isolation structures may prevent digital circuit operations such as switching operations from negatively affecting the performance of the analog circuitry. Additional trench isolation structures may be interposed between portions of the substrate on which bond pads are formed and other portions of the substrate to prevent capacitive coupling between the bond pad structures and the substrate, thereby enhancing the high frequency operations of the image sensor.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 23, 2016
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter Rupert Barabash Barr, Aaron Kenneth Belsher, Giovanni DeAmicis
  • Patent number: 9236508
    Abstract: Disclosed herein is a solid-state image pickup element, including: a photoelectric conversion region; a transistor; an isolation region of a first conductivity type configured to isolate the photoelectric conversion region and the transistor from each other; a well region of the first conductivity type having the photoelectric conversion region, the transistor, and the isolation region of the first conductivity type formed therein; a contact portion configured to supply an electric potential used to fix the well region to a given electric potential; and an impurity region of the first conductivity type formed so as to extend in a depth direction from a surface of the isolation region of the first conductivity type in the isolation region of the first conductivity type between the contact portion and the photoelectric conversion region, and having a sufficiently higher impurity concentration than that of the isolation region of the first conductivity type.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: January 12, 2016
    Assignee: SONY CORPORATION
    Inventor: Shinya Yamakawa
  • Patent number: 9236287
    Abstract: Photonic SOI devices are formed by lateral epitaxy of a deposited non-crystalline semiconductor layer over a localized buried oxide created by a trench isolation process or by thermal oxidation. Specifically, and after forming a trench into a semiconductor substrate, the trench can be filled with an oxide by a deposition process or a thermal oxidation can be performed to form a localized buried oxide within the semiconductor substrate. In some embodiments, the oxide can be recessed to expose sidewall surfaces of the semiconductor substrate. Next, a non-crystalline semiconductor layer is formed and then a solid state crystallization is preformed which forms a localized semiconductor-on-insulator layer. During the solid state crystallization process portions of the non-crystalline semiconductor layer that are adjacent exposed sidewall surfaces of the substrate are crystallized.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDIES INC.
    Inventors: Solomon Assefa, William M. Green, Marwan H. Khater, Yurii A. Vlasov
  • Patent number: 9221957
    Abstract: Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 29, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Chang-Yong Nam, Jovan Kamcev, Charles T. Black, Robert Grubbs
  • Patent number: 9224633
    Abstract: According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: December 29, 2015
    Assignee: Infineon Technologies AG
    Inventors: Rudolf Berger, Hermann Gruber, Wolfgang Lehnert, Guenther Ruhl, Raimund Foerg, Anton Mauder, Hans-Joachim Schulze, Karsten Kellermann, Michael Sommer, Christian Rottmair, Roland Rupp
  • Patent number: 9184050
    Abstract: A semiconductor device having an epitaxial layer a method of manufacture thereof is provided. The semiconductor device has a substrate with a trench formed therein and a recess formed below the trench. The recess has sidewalls with a (111) crystal orientation. The depth of the trench is such that the depth is greater than or equal to one-half a length of sidewalls of the recess. An epitaxial layer is formed in the recess and the trench. The depth of the trench is sufficient to cause dislocations formed between the interface of the semiconductor substrate and the epitaxial layer to terminate along sidewalls of the trench.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: November 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu
  • Patent number: 9184124
    Abstract: A surface mount packaging structure that yields improved thermo-mechanical reliability and more robust second-level package interconnections is disclosed. The surface mount packaging structure includes a sub-module having a dielectric layer, semiconductor devices attached to the dielectric layer, a first level metal interconnect structure electrically coupled to the semiconductor devices, and a second level I/O connection electrically coupled to the first level interconnect and formed on the dielectric layer on a side opposite the semiconductor devices, with the second level I/O connection configured to connect the sub-module to an external circuit. The semiconductor devices of the sub-module are attached to the first surface of a multi-layer substrate structure, with a dielectric material positioned between the dielectric layer and the multi-layer substrate structure to fill in gaps in the surface-mount structure and provide additional structural integrity thereto.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: November 10, 2015
    Assignee: General Electric Company
    Inventors: Shakti Singh Chauhan, Arun Virupaksha Gowda, Paul Alan McConnelee
  • Patent number: 9177986
    Abstract: A system and method for isolating semiconductor devices is provided. An embodiment comprises an isolation region that is laterally removed from source/drain regions of semiconductor devices and has a dielectric material extending over the isolation implant between the source/drain regions. The isolation region may be formed by forming an opening through a layer over the substrate, depositing a dielectric material along the sidewalls of the opening, implanting ions into the substrate after the deposition, and filling the opening with another dielectric material.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: November 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-I Hsu, Min-Feng Kao, Jen-Cheng Liu, Dun-Nian Yaung, Tzu-Hsuan Hsu, Wen-De Wang
  • Patent number: 9136429
    Abstract: Multilayer construction is disclosed. The multilayer construction includes a II-VI semiconductor layer and a Si3N4 layer disposed directly on the II-VI semiconductor layer.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: September 15, 2015
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jun-Ying Zhang, Michael A. Haase, Todd A. Ballen, Terry L. Smith
  • Patent number: 9117897
    Abstract: A high withstand voltage transistor is formed in a high withstand voltage region, and a low withstand voltage transistor is formed in a low withstand voltage region in a method of manufacturing a semiconductor device. The method includes forming a thermal oxide film and a silicon nitride film over the surface of a silicon substrate; forming an opening to the thermal oxide film and the silicon nitride film in each of the high withstand voltage region and the low withstand voltage region; etching the silicon substrate to form trenches; burying a buried oxide film in each of the trenches; removing the thermal oxide film and the silicon nitride film; and forming a thick gate oxide film and a thin oxide film. The depth of a tapered portion of the trench in the low withstand voltage region is shallower than that in the high withstand voltage region.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: August 25, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Tadahiro Miwatashi
  • Patent number: 9117669
    Abstract: A structure comprises an N+ region formed over a first fin of a substrate, a P+ region formed over a second fin of the substrate, wherein the P+ region and the N+ region form a diode, a shallow trench isolation region formed between the P+ region and the N+ region and a first epitaxial growth block region formed over the shallow trench isolation region and between the N+ region and the P+ region, wherein a forward bias current of the diode flows through a path underneath the shallow trench isolation region.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 25, 2015
    Assignee: Taiwan Semiconductor Manufacturing, Ltd.
    Inventors: Wun-Jie Lin, Bo-Ting Chen, Jen-Chou Tseng, Ming-Hsiang Song
  • Patent number: 9105684
    Abstract: An isolation structure of a semiconductor, a semiconductor device having the same, and a method for fabricating the isolation structure are provided. An isolation structure of a semiconductor device may include a trench formed in a substrate, an oxide layer formed on a bottom surface and an inner sidewall of the trench, a filler formed on the oxide layer to fill a part of inside of the trench, and a fourth oxide layer filling an upper portion of the filler of the trench to a height above an upper surface of the trench, an undercut structure being formed on a boundary area between the inner sidewall and the oxide layer.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 11, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Hyung-suk Choi, Hyun-tae Jung, Eung-ryul Park, Da-soon Lee
  • Patent number: 9105711
    Abstract: A semiconductor structure is formed with a NFET device and a PFET device. The NFET device is formed by masking the PFET device regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. The PFET device is similarly formed by masking the NFET regions of a substrate, forming a screen layer through epitaxial growth and in-situ doping, and forming an undoped channel layer on the screen layer through epitaxial growth. An isolation region is formed between the NFET and the PFET device areas to remove any facets occurring during the separate epitaxial growth phases. By forming the screen layer through in-situ doped epitaxial growth, a reduction in junction leakage is achieved versus forming the screen layer using ion implantation.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: August 11, 2015
    Assignee: MIE Fujitsu Semiconductor Limited
    Inventors: Lingquan Wang, Teymur Bakhishev, Dalong Zhao, Pushkar Ranade, Sameer Pradhan, Thomas Hoffmann, Lucian Shifren, Lance Scudder
  • Patent number: 9099321
    Abstract: A substrate having thereon an epitaxial layer is provided. A hard mask having a first opening is formed on the epitaxial layer. A first trench is etched into the epitaxial layer through the first opening. The hard mask is trimmed to widen the first opening to a second opening. An upper corner portion of the first trench is revealed. A dopant layer is filled into the first trench. The dopants are driven into the epitaxial layer to form a doped region within the first trench. The doped region includes a first region adjacent to the surface of the first trench and a second region farther from the surface. The entire dopant layer is then etched and the epitaxial layer within the first region is also etched away to form a second trench.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: August 4, 2015
    Assignee: Anpec Electronics Corporation
    Inventor: Yung-Fa Lin
  • Patent number: 9093566
    Abstract: Disclosed are a FinFET diode of high efficiency, designed to resolve the degradation problem with a conventional FinFET diode arising from reduced active area, and a method of fabrication. The FinFET diode has a doped substrate, two spaced-apart groups of substantially parallel, equally-spaced, elongated semiconductor fin structures, dielectric layers formed between the two groups and among the fin structures for insulation, a plurality of substantially equal-spaced and parallel elongated gate structures perpendicularly traversing both groups of the fin structures, and two groups of semiconductor strips respectively formed lengthwise upon the two groups of the fin structures. The two groups of semiconductor strips are doped to have opposite conductivity types, p-type and n-type. The FinFET diode further has metal contacts formed upon the semiconductor strips. In an embodiment, the semiconductor strips may be integrally formed with the fin structures by epitaxial growth and in-situ doped.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: July 28, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Shih Fan, Sun-Jay Chang, Chia-Hsin Hu, Min-Chang Liang, Shien-Yang Wu, Wen-Hsing Hsieh, Ching-Fang Huang
  • Patent number: 9076760
    Abstract: A junction field-effect transistor (JFET) includes a substrate having a first-type semiconductor surface including a topside surface, and a top gate of a second-type formed in the semiconductor surface. A first-type drain and a first-type source are formed on opposing sides of the top gate. A first deep trench isolation region has an inner first trench wall and an outer first trench wall surrounding the top gate, the drain and the source, and extends vertically to a deep trench depth from the topside surface. A second-type sinker formed in semiconductor surface extends laterally outside the outer first trench wall. The sinker extends vertically from the topside surface to a second-type deep portion which is both below the deep trench depth and laterally inside the inner first trench wall to provide a bottom gate.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: July 7, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Pinghai Hao, Sameer Pendharkar
  • Patent number: 9059008
    Abstract: A trench-isolated RESURF diode structure (100) is provided which includes a substrate (150) in which is formed anode (130, 132) and cathode (131) contact regions separated from one another by a shallow trench isolation region (114, 115), along with a buried cathode extension region (104) formed under a RESURF anode extension region (106, 107) such that the cathode extension region (104) extends beyond the cathode contact (131) to be sandwiched between upper and lower regions (103, 106, 107) of opposite conductivity type.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 16, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 9054003
    Abstract: Provided are image sensors and methods of fabricating the same. The image sensor has a transfer gate, which may be configured to include a buried portion having a flat bottom surface and a rounded lower corner. This structure of the buried portion enables to transfer electric charges stored in the photoelectric conversion part effectively.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 9, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jungchak Ahn, Kyungho Lee, Heegeun Jeong, Sangjun Choi, Jongeun Park
  • Publication number: 20150145099
    Abstract: A semiconductor device includes a semiconductor substrate, trench isolations, a sacrificial layer, a first resist protect oxide (RPO) layer, a second RPO layer and a silicide layer. The semiconductor substrate has first portions and second portions which are alternately disposed, and each of the second portions includes a first resist region with a first resistance, a second resist region with a second resistance and a silicide region. The second resistance is greater than the first resistance. The trench isolations are in the first portions. The sacrificial layer is on the first resist region. The first RPO layer is on the sacrificial layer. The first RPO layer together with the sacrificial layer have a first thickness. The second RPO layer is on the second resist region, in which the second RPO layer has a second thickness smaller than the first thickness. The silicide layer is on the silicide region.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Taiwan Semiconductor Manufacturing CO., LTD.
    Inventors: Yu-Jen Chen, Ping-Pang Hsieh, Hsin-Chi Chen
  • Patent number: 9041147
    Abstract: According to a semiconductor substrate (40), a space (A) between a plurality of Si thin film (16), which are provide apart from one another on the insulating substrate (30), is (I) larger than a difference between elongation of part of the insulating substrate which part corresponds to the space (A) and elongation of each of Si wafers (10) when a change is made from room temperature to 600° C. and (II) smaller than 5 mm. This causes an increase in a region of each of a plurality of semiconductor thin films which region has a uniform thickness, and therefore prevents transferred semiconductor layers and the insulating substrate from being fractured or chipped.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: May 26, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masahiro Mitani
  • Patent number: 9041146
    Abstract: An embodiment integrates memory, such as spin-torque transfer magnetoresistive random access memory (STT-MRAM) within a logic chip. The STT-MRAM includes a magnetic tunnel junction (MTJ) with an upper MTJ layer, lower MTJ layer, and tunnel barrier directly contacting the upper MTJ layer and the lower MTJ layer; wherein the upper MTJ layer includes an upper MTJ layer sidewall and the lower MTJ layer includes a lower MTJ sidewall horizontally offset from the upper MTJ layer. Another embodiment includes a memory area, comprising a MTJ, and a logic area located on a substrate; wherein a horizontal plane intersects the MTJ, a first Inter-Layer Dielectric (ILD) material adjacent the MTJ, and a second ILD material included in the logic area, the first and second ILD materials being unequal to one another. In an embodiment the first and second ILDs directly contact one another. Other embodiments are described herein.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Intel Corporation
    Inventors: Kevin J. Lee, Tahir Ghani, Joseph M. Steigerwald, John H. Epple, Yih Wang
  • Patent number: 9041145
    Abstract: The performances of a semiconductor device are improved. Between a memory gate electrode and a p type well, and between a control gate electrode and the memory gate electrode of a split gate type nonvolatile memory, an insulation film having a charge accumulation layer therein is formed. The insulation film includes a lamination film of a silicon oxide film, a silicon nitride film formed thereover, another silicon oxide film formed thereover, and an insulation film formed thereover, and thinner than the upper silicon oxide film. The insulation film is in contact with the memory gate electrode including polysilicon. The insulation film is formed of a metal compound containing at least one of Hf, Zr, Al, Ta, and La, and hence can cause Fermi pinning, and has a high dielectric constant.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 26, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiyuki Kawashima
  • Publication number: 20150137254
    Abstract: Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventors: F. Daniel Gealy, Vishwanath Bhat, Cancheepuram V. Srividya, M. Noel Rocklein
  • Publication number: 20150137309
    Abstract: Methods of fabricating isolation regions of semiconductor devices and structures thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and at least one trench formed in the workpiece. The at least one trench includes sidewalls, a bottom surface, a lower portion, and an upper portion. A first liner is disposed over the sidewalls and the bottom surface of the at least one trench. A second liner is disposed over the first liner in the lower portion of the at least one trench. A first insulating material is disposed over the second liner in the lower portion of the at least one trench. A second insulating material is disposed over the first insulating material in the upper portion of the at least one trench. The first liner, the second liner, the first insulating material, and the second insulating material comprise an isolation region of the semiconductor device.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 21, 2015
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Armin Tilke, Marcus Culmsee, Chris Stapelmann, Bee Kim Hong, Roland Hampp
  • Publication number: 20150137308
    Abstract: A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicants: International Business Machines Corporation, Renesas Electronics Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Steven John Bentley, Kangguo Cheng, Bruce B. Doris, Jody Fronheiser, Ajey Poovannummoottil Jacob, Ali Khakifirooz, Toshiharu Nagumo
  • Patent number: 9035418
    Abstract: A shallow trench isolation (STI) structure includes a top surface formed completely of silicon nitride. The top surface of the STI structure is coplanar with a top substrate surface or extends above the top substrate surface. The STI structures include further dielectric materials beneath the silicon nitride and an oxide liner and any portions that extend above the substrate surface are formed of silicon nitride.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: May 19, 2015
    Assignee: WAFERTECH, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Patent number: 9035462
    Abstract: An interconnect structure is provided that includes at least one patterned and cured low-k dielectric material located on a surface of a patterned inorganic antireflective coating that is located atop a substrate. The inorganic antireflective coating comprises atoms of M, C and H wherein M is at least one of Si, Ge, B, Sn, Fe, Ta, Ti, Ni, Hf and La. The at least one cured and patterned low-k dielectric material and the patterned inorganic antireflective coating have conductively filled regions embedded therein and the at least one cured and patterned low-k dielectric material has at least one airgap located adjacent, but not directly in contact with the conductively filled regions.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 19, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Qinghuang Lin
  • Patent number: 9034732
    Abstract: Embodiments of the present invention provide for the provisioning of efficient support to semiconductor-on-insulator (SOI) structures. Embodiments of the present invention may additionally provide for SOI structures with improved heat dissipation performance while preserving the beneficial electrical device characteristics that accompany SOI architectures. In one embodiment, an integrated circuit is disclosed. The integrated circuit comprises a silicon-on-insulator die from a silicon-on-insulator wafer. The silicon on insulator die comprises an active layer, an insulator layer, a substrate, and a strengthening layer. The substrate consists of an excavated substrate region, and a support region, the support region is in contact with the insulator layer. The support region and the strengthening layer are configured to act in combination to provide a majority of a required stabilizing force to the silicon-on-insulator die when it is singulated from the silicon-on-insulator wafer.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: May 19, 2015
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Stuart B. Molin, Paul A. Nygaard, Michael A. Stuber
  • Patent number: 9034724
    Abstract: A method of forming a substrate with isolation areas suitable for integration of electronic and photonic devices is provided. A common reticle and photolithographic technique is used to fabricate a mask defining openings for etching first and second trench isolation areas in a substrate, with the openings for the second trench isolation areas being wider than the openings for the first trench isolation areas. The first and second trench isolation areas are etched in the substrate through the mask. The second trench isolation areas are further etched to the deeper than the first trench isolation areas. The trench isolation areas are filled with oxide material. Electrical devices can be formed on the substrate and electrically isolated by the first trench isolation areas and photonic devices can be formed over the second trench isolation areas and be optically isolated from the substrate.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: May 19, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Roy Meade, Gurtej Sandhu
  • Patent number: 9034726
    Abstract: A semiconductor structure is located in a recess of a substrate. The semiconductor structure includes a liner, a silicon rich layer and a filling material. The liner is located on the surface of the recess. The silicon rich layer is located on the liner. The filling material is located on the silicon rich layer and fills the recess. Furthermore, a semiconductor process forming said semiconductor structure is also provided.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: May 19, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Chien Liu, Chia-Lung Chang, Jei-Ming Chen, Jui-Min Lee, Yuh-Min Lin
  • Publication number: 20150130015
    Abstract: Disclosed is a semiconductor device having a radio frequency switch. Also disclosed are an antenna switch module and a method of manufacturing the semiconductor device. The semiconductor device includes a metal wiring insulating film bonded to a silicon substrate. In the semiconductor device, a crystal defect layer extends into the silicon substrate from a surface of the silicon substrate. Crystal defects are throughout the crystal defect layer. The semiconductor device and an integrated circuit are in the antenna switch module. The integrated circuit in the antenna switch module is mounted with the radio-frequency switch device and the silicon substrate. The method of manufacturing the semiconductor device includes a step of forming crystal defects throughout a silicon substrate. Radiation or a diffusion is used to form the crystal defects. After the step of forming the crystal defects, the method includes a step of implanting ions into a surface of the silicon substrate to form a crystal defect layer.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 14, 2015
    Inventors: Yoshikazu Motoyama, Hiroki Tsunemi, Hideo Yamagata
  • Patent number: 9029246
    Abstract: An embodiment is a method. A first III-V compound semiconductor is epitaxially grown in a trench on a substrate, and the epitaxial growth is performed in a chamber. The first III-V compound semiconductor has a first surface comprising a facet. After the epitaxial growth, the first surface of the first III-V compound semiconductor is etched to form an altered surface of the first III-V compound semiconductor. Etching the first surface is performed in the chamber in situ. A second III-V compound semiconductor is epitaxially grown on the altered surface of the first III-V compound semiconductor. The epitaxial growth of the first III-V compound semiconductor may be performed in a MOCVD chamber, and the etch may use an HCl gas. Structures resulting from methods are also disclosed.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Ku Chen, Hung-Ta Lin, Pang-Yen Tsai, Huicheng Chang
  • Publication number: 20150123131
    Abstract: In one embodiment, a semiconductor device includes a first contact pad disposed at a top side of a workpiece, a second contact pad disposed at the top side of the workpiece. An isolation region is disposed between the first contact pad and the second contact pad. A metal strip is disposed at least partially within the isolation region. The metal strip is not coupled to an external potential node.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Applicant: Infineon Technologies AG
    Inventors: Thomas Krotscheck Ostermann, Andrew Christopher Graeme Wood, Peter Maier Brandl
  • Publication number: 20150123241
    Abstract: An integrated heat sink array is introduced in SOI power devices having multiple unit cells, which can be used to reduce the temperature rise in obtaining more uniform temperature peaks for all the unit cells across the device area, so that the hot spot which is prone to breakdown can be avoided, thus the safe operating area of the device can be improved. Also the array sacrifice less area of the device, therefore results in low Rdson.
    Type: Application
    Filed: September 29, 2014
    Publication date: May 7, 2015
    Inventors: Liang Yan, Roel Daamen, Anco Heringa, Erwin Hijzen
  • Publication number: 20150123240
    Abstract: A semiconductor device has a substrate including a semiconductor material of a first conductivity type. A first layer including a semiconductor material of a second conductivity type is formed in the substrate with a boundary between the first layer and the semiconductor material of the first conductivity type as a p-n junction. A vertical trench is formed through the first layer by anisotropic etch and extends at least to the boundary. The vertical trench has a rounded or polygonal shape with a depth less than 40 micrometers. An insulating material is deposited in the vertical trench. An insulating layer is formed over a sidewall of the vertical trench. The shallow vertical trench filled with insulating material increases breakdown voltage and reduces manufacturing time and complexity. The semiconductor device can be a discrete diode, transistor, rectifier, transient voltage suppressor, silicon controlled rectifier, and triode.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventor: Addison R. Crockett
  • Publication number: 20150123239
    Abstract: One or more methods of forming shallow trench isolation (STI) and resulting semiconductor arraignments are provided. A method of forming STI includes forming a nitride liner in a first opening and second opening and recessing the nitride liner in the first opening and second opening while forming an oxide structure in the first opening and second opening, thus forming a first STI region in the first opening and a second STI region in the second opening. A semiconductor arraignment includes a first STI region in an active area and a second STI region in an isolation area, where a first recessed nitride layer height in the first STI region is different than a second recessed nitride layer height in the second STI region.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 7, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming-Hui Chen, Chuan-Ping Hou, Chih-Ho Tai
  • Patent number: 9024408
    Abstract: A method of manufacturing double-sided semiconductor die by performing a first plurality of processes to a first side of a wafer and performing a second plurality of processes to a second side of the wafer, thereby forming at least a first semiconductor device on the first side of the wafer and at least a second semiconductor device on the second side of the wafer. The wafer may be cut to form a plurality of die having at least one semiconductor device on each side.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: May 5, 2015
    Assignee: STMicroelectronics, Inc.
    Inventor: Ming Fang