Conductive Filling In Dielectric-lined Groove (e.g., Polysilicon Backfill) Patents (Class 257/520)
  • Publication number: 20120175730
    Abstract: An integrated circuit and a production method is disclosed. One embodiment forms reverse-current complexes in a semiconductor well, so that the charge carriers, forming a damaging reverse current, cannot flow into the substrate.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 12, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Matthias Stecher
  • Patent number: 8211766
    Abstract: A trench-typed power MOS transistor comprises a trench-typed gate area, which includes a gate conductor and an isolation layer. A thin sidewall region of the isolation layer is formed between the gate conductor and a well region. A thick sidewall region of the isolation layer is formed between the gate conductor and a double diffusion region. A thick bottom region of the isolation layer is formed between the gate conductor and a deep well region.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 3, 2012
    Assignee: PTEK Technology Co., Ltd.
    Inventors: Ming Tang, Shih-Ping Chiao
  • Patent number: 8188567
    Abstract: A semiconductor and method for manufacturing a semiconductor device. In one embodiment the method includes providing a semiconductor substrate with a first substrate surface and at least one trench having at least one trench surface. The trench extends from the first substrate surface into the semiconductor substrate. The trench has a first trench section and a second trench section. The trench surface is exposed in an upper portion of the first and second trench sections and covered with a first insulating layer in a lower portion. A second insulating layer is formed at least on the exposed trench surface in the upper portion. A conductive layer is formed on the second insulating layer at least in the upper portion, wherein the second insulating layer electrically insulates the conductive layer from the semiconductor substrate. The conductive layer is removed in the first trench section without removing the conductive layer in the second trench section.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Infineon Technologies Austria AG
    Inventor: Oliver Blank
  • Patent number: 8159025
    Abstract: A trench-typed power MOS transistor comprises a trench-typed gate area, which includes a gate conductor and an isolation layer. A thin sidewall region of the isolation layer is formed between the gate conductor and a well region. A thick sidewall region of the isolation layer is formed between the gate conductor and a double diffusion region. A thick bottom region of the isolation layer is formed between the gate conductor and a deep well region.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: April 17, 2012
    Assignee: PTEK Technology Co., Ltd.
    Inventors: Ming Tang, Shih-Ping Chiao
  • Patent number: 8138575
    Abstract: An integrated circuit and a production method is disclosed. One embodiment forms reverse-current complexes in a semiconductor well, so that the charge carriers, forming a damaging reverse current, cannot flow into the substrate.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: March 20, 2012
    Assignee: Infineon Technologies AG
    Inventor: Matthias Stecher
  • Patent number: 8124468
    Abstract: An electronic device including an integrated circuit can include a buried conductive region and a semiconductor layer overlying the buried conductive region, and a vertical conductive structure extending through the semiconductor layer and electrically connected to the buried conductive region. The integrated circuit can further include a doped structure having an opposite conductivity type as compared to the buried conductive region, lying closer to an opposing surface than to a primary surface of the semiconductor layer, and being electrically connected to the buried conductive region. The integrated circuit can also include a well region that includes a portion of the semiconductor layer, wherein the portion overlies the doped structure and has a lower dopant concentration as compared to the doped structure. In other embodiment, the doped structure can be spaced apart from the buried conductive region.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 28, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna
  • Patent number: 8115271
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei, Mong-Song Liang
  • Patent number: 8115273
    Abstract: A integrated semiconductor device has a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type over the first layer, a third semiconductor layer of a second conductivity type over the second layer, an isolation trench extending through the entire depth of the second and third layers into the first layer, and a first region of the second conductivity type located next to the isolation trench and extending from an interface between the second and third layers, along an interface between the second layer and the isolation trench. This first region can help reduce a concentration of field lines where the isolation trench meets the interface of the second and third layers, and hence provide a better reverse breakdown characteristic.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter Moens, Filip Bauwens, Joris Baele
  • Patent number: 8093677
    Abstract: A semiconductor device and manufacturing method is disclosed. One embodiment provides a common substrate of a first conductivity type and at least two wells of a second conductivity type. A buried high resistivity region and at least an insulating structure is provided insulating the first well from the second well. The insulating structure extends through the buried high resistivity region and includes a conductive plug in Ohmic contact with the first semiconductor region. A method for forming an integrated semiconductor device is also provided.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Matthias Stecher, Hans-Joachim Schulze, Thomas Neidhart
  • Publication number: 20110309469
    Abstract: High Efficiency Diode (HED) rectifiers with improved performance including reduced reverse leakage current, reliable solderability properties, and higher manufacturing yields are fabricated by minimizing topography variation at various stages of fabrication. Variations in the topography are minimized by using a CMP process to planarize the HED rectifier after the field oxide, polysilicon and/or solderable top metal are formed.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Inventor: Thomas E. Grebs
  • Publication number: 20110309470
    Abstract: High Efficiency Diode (HED) rectifiers with improved performance including reduced reverse leakage current, reliable solderability properties, and higher manufacturing yields are fabricated by minimizing topography variation at various stages of fabrication. Variations in the topography are minimized by using a CMP process to planarize the HED rectifier after the field oxide, polysilicon and/or solderable top metal are formed.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 22, 2011
    Inventor: Thomas E. Grebs
  • Patent number: 8035190
    Abstract: A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N-well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N-well, a P+ diffusion region in contact with the N-well, and shallow trench isolation structures between the N+ and P+ diffusion regions.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: October 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
  • Publication number: 20110233721
    Abstract: A semiconductor component includes a semiconductor body, in which are formed: a substrate of a first conduction type, a buried semiconductor layer of a second conduction type arranged on the substrate, and a functional unit semiconductor layer of a third conduction type arranged on the buried semiconductor layer, in which at least two semiconductor functional units arranged laterally alongside one another are provided. The buried semiconductor layer is part of at least one semiconductor functional unit, the semiconductor functional units being electrically insulated from one another by an isolation structure which permeates the functional unit semiconductor layer, the buried semiconductor layer, and the substrate. The isolation structure includes at least one trench and an electrically conductive contact to the substrate, the contact to the substrate being electrically insulated from the functional unit semiconductor layer and the buried layer by the at least one trench.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Andreas Meiser, Walter Hartner, Hermann Gruber, Dietrich Bonart, Thomas Gross
  • Publication number: 20110227191
    Abstract: A silicon-on-insulator device with a with buried depletion shield layer.
    Type: Application
    Filed: March 19, 2010
    Publication date: September 22, 2011
    Inventor: Donald R. Disney
  • Patent number: 8018006
    Abstract: A semiconductor device includes a lower substrate, a thin semiconductor layer and an insulating layer formed between the lower substrate and the semiconductor layer. An active transistor area is formed with a base formed along a surface of the semiconductor layer, an emitter region formed in the base, a buried collector in the thin semiconductor layer to contact the insulating layer, a collector contacting the buried collector, and emitter, collector and base contacts. The active transistor area is configured to operate at an emitter current at least in the order of mA (milli-ampere). An isolation trench extends through the semiconductor layer to the insulating layer and surrounds the active transistor area with a distance in the order of ?m (micron) from the active transistor area and with a space area of more than 50 ?m2 between the active transistor area and the isolation trench.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: September 13, 2011
    Assignees: Hitachi ULSI Systems Co., Ltd., Hitachi, Ltd.
    Inventors: Mitsuru Arai, Shinichiro Wada, Hideaki Nonami
  • Patent number: 8008729
    Abstract: An integrated circuit includes a contact structure with a buried first and a protruding second portion. The buried first portion is arranged in a cavity formed in a semiconductor structure and is in direct contact with the semiconductor structure. The protruding second portion is arranged above the main surface of the semiconductor structure and in direct contact with a conductive structure that is spaced apart from or separated from the main surface of the semiconductor structure. An insulator structure is arranged below and in direct contact with the contact structure.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: August 30, 2011
    Assignee: Qimonda AG
    Inventors: Werner Graf, Clemens Fitz
  • Patent number: 7982284
    Abstract: A semiconductor component includes a semiconductor body, in which are formed: a substrate of a first conduction type, a buried semiconductor layer of a second conduction type arranged on the substrate, and a functional unit semiconductor layer of a third conduction type arranged on the buried semiconductor layer, in which at least two semiconductor functional units arranged laterally alongside one another are provided. The buried semiconductor layer is part of at least one semiconductor functional unit, the semiconductor functional units being electrically insulated from one another by an isolation structure which permeates the functional unit semiconductor layer, the buried semiconductor layer, and the substrate. The isolation structure includes at least one trench and an electrically conductive contact to the substrate, the contact to the substrate being electrically insulated from the functional unit semiconductor layer and the buried layer by the at least one trench.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Walter Hartner, Hermann Gruber, Dietrich Bonart, Thomas Gross
  • Patent number: 7977202
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; and forming a first and a second MOS device. The first MOS device includes a first active region in the semiconductor substrate; and a first gate over the first active region. The second MOS device includes a second active region in the semiconductor substrate; and a second gate over the second active region. The method further include forming a dielectric region between the first and the second active regions, wherein the dielectric region has an inherent stress; and implanting the dielectric region to form a stress-released region in the dielectric region, wherein source and drain regions of the first and the second MOS devices are not implanted during the step of implanting.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Chuang, Kong-Beng Thei, Mong-Song Liang
  • Patent number: 7964467
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a high-leakage dielectric formed between a gate electrode and an outer portion of an active region of a FET. Also provided is a structure having a high-leakage dielectric formed between the gate electrode and the active region of the FET and a method of manufacturing such structure.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7952162
    Abstract: A semiconductor device of one embodiment of the present invention includes a substrate; isolation layers, each of which is formed in a trench formed on the substrate and has an insulating film and a conductive layer; a semiconductor layer of a first conductivity type for storing signal charges, formed between the isolation layers and isolated from the conductive layers by the insulating films; a semiconductor layer of a second conductivity type, formed under the semiconductor layer of the first conductivity type; and a transistor having a gate insulator film formed on the semiconductor layer of the first conductivity type and a gate electrode formed on the gate insulator film.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: May 31, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Hamamoto
  • Patent number: 7948028
    Abstract: A transistor device employed in a support circuit of a DRAM includes a semiconductor substrate having thereon a gate trench, a recessed gate embedded in the gate trench, a source doping region disposed at one side of the recessed gate, a drain doping region disposed at the other side of the recessed gate, and a gate dielectric layer between the recessed gate and the semiconductor substrate. The gate dielectric layer has at least two thicknesses that render the high-voltage transistor device asymmetric. The thicker gate dielectric layer is between the recessed gate and the drain doping region, while the thinner gate dielectric layer is between the recessed gate and the source doping region.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 24, 2011
    Assignee: Nanya Technology Corp.
    Inventor: Shing-Hwa Renn
  • Patent number: 7935991
    Abstract: A semiconductor component includes a semiconductor substrate having at least one conductive interconnect on the backside thereof bonded to an inner surface of a substrate contact. A stacked semiconductor component includes multiple semiconductor components in a stacked array having bonded connections between conductive interconnects on adjacent components. An image sensor semiconductor component includes a semiconductor substrate having light detecting elements on the circuit side, and conductive interconnects on the backside.
    Type: Grant
    Filed: May 3, 2008
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, William M. Hiatt, David R. Hembree
  • Publication number: 20110089527
    Abstract: A semiconductor and method for manufacturing a semiconductor device. In one embodiment the method includes providing a semiconductor substrate with a first substrate surface and at least one trench having at least one trench surface. The trench extends from the first substrate surface into the semiconductor substrate. The trench has a first trench section and a second trench section. The trench surface is exposed in an upper portion of the first and second trench sections and covered with a first insulating layer in a lower portion. A second insulating layer is formed at least on the exposed trench surface in the upper portion. A conductive layer is formed on the second insulating layer at least in the upper portion, wherein the second insulating layer electrically insulates the conductive layer from the semiconductor substrate. The conductive layer is removed in the first trench section without removing the conductive layer in the second trench section.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Oliver Blank
  • Patent number: 7928008
    Abstract: A fabricating method of a polysilicon layer is disclosed which can be applied for fabricating a semiconductor device such as a SRAM and so on. The method for fabricating the semiconductor device includes the steps of: forming a transistor included in the semiconductor device on a semi conductor substrate forming an insulating layer on the transistor; forming contact holes, through which a region of the transistor is exposed, by selectively removing the insulating layer forming a silicon layer in the contact holes forming a metal layer on the insulating layer and the silicon layer; forming a metal suicide layer through heat treatment of the silicon layer and the metal layer; removing the metal layer; forming an amorphous silicon layer on the insulating layer and the metal suicide layer; and forming a polysilicon layer through heat treatment of the amorphous silicon layer.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: April 19, 2011
    Assignee: Terasemicon Corporation
    Inventors: Taek-Yong Jang, Byung-Il Lee, Young-Ho Lee, Seok-Pil Jang
  • Patent number: 7888722
    Abstract: A trench structure and a memory cell using the trench structure. The trench structure includes: a substrate; a trench having contiguous upper, middle and lower regions, the trench extending from a top surface of said substrate into said substrate; the upper region of the trench having a vertical sidewall profile; and the middle region of the trench having a tapered sidewall profile.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xi Li
  • Patent number: 7883987
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and a trench formed within the workpiece. The trench has an upper portion and a lower portion, the upper portion having a first width and the lower portion having a second width, the second width being greater than the first width. A first material is disposed in the lower portion of the trench at least partially in regions where the second width of the lower portion is greater than the first width of the upper portion. A second material is disposed in the upper portion of the trench and at least in the lower portion of the trench beneath the upper portion.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: February 8, 2011
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Frank Huebinger, Hermann Wendt
  • Patent number: 7868381
    Abstract: In a trench-gated MIS device contact is made to the gate within the trench, thereby eliminating the need to have the gate material, typically polysilicon, extend outside of the trench. This avoids the problem of stress at the upper corners of the trench. Contact between the gate metal and the polysilicon is normally made in a gate metal region that is outside the active region of the device. Various configurations for making the contact between the gate metal and the polysilicon are described, including embodiments wherein the trench is widened in the area of contact. Since the polysilicon is etched back below the top surface of the silicon throughout the device, there is normally no need for a polysilicon mask, thereby saving fabrication costs.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: January 11, 2011
    Assignee: Vishay-Siliconix
    Inventors: Anup Bhalla, Domon Pitzer, Jacek Korec, Xiaorong Shi, Sik Lui
  • Publication number: 20100308432
    Abstract: Disclosed is a semiconductor structure for producing a handle wafer contact in trench insulated SOI discs which may be used as a deep contact (7, 6, 30?) to the handle wafer (1) of a thick SOI disc as well as for a trench insulation (40). Therein, the same method steps are used for both structures which are used as deep contact to the handle wafer of the thick SOI disc as well as trench insulation.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 9, 2010
    Applicant: X-Fab Semiconductor Foundries AG
    Inventor: Ralf Lerner
  • Patent number: 7816758
    Abstract: An integrated circuit is disclosed that includes a first layer made of active semiconductor material and extending along a first side of a buried layer, and trench structures, which cut through the layer made of active semiconductor material and have dielectric wall regions, whereby the dielectric wall regions isolate electrically subregions of the layer, made of active semiconductor material in the lateral direction, and whereby the trench structures, furthermore, have first inner regions, which are filled with electrically conductive material and contact the buried layer in an electrically conductive manner. The integrated circuit is notable in that the first wall regions of the trench structures completely cut through the buried layer and the second wall regions of the trench structures extend into the buried layer, without cutting it completely. Furthermore, a method for manufacturing such an integrated circuit is disclosed.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: October 19, 2010
    Assignee: Atmel Automotive GmbH
    Inventor: Volker Dudek
  • Patent number: 7795137
    Abstract: When a tungsten film (43) is embedded inside of a conductive groove (4A) formed in a wafer (W2) and a silicon oxide film (36) thereon and having a high aspect ratio, film formation and etch back of the tungsten film (43) are successively performed in a chamber of the same apparatus, therefore, a film thickness of the tungsten film (43) deposited in one film formation step is made to be thin. Whereby problems, such as exfoliation of the tungsten film (43), generation of micro-cracks, and occurrence of warpage and cracks of the wafer (W2), are avoided.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: September 14, 2010
    Assignees: Hitachi, Ltd., Honda Motor Co., Ltd.
    Inventors: Toshio Saito, Akira Otaguro, Manabu Otake, Yoshiya Takahira, Namio Katagiri, Nobuaki Miyakawa
  • Patent number: 7791163
    Abstract: In the process of manufacturing a semiconductor device, a first layer is formed on a substrate, and the first layer and the substrate are etched to form a trench. The inner wall of the trench is thermally oxidized. On the substrate, including inside the trench, is deposited a first conductive film having a thickness equal to or larger than one half of the width of the trench. The first conductive film on the first layer is removed by chemical mechanical polishing such that the first conductive film remains in only the trench. The height of the first conductive film in the trench is adjusted to be lower than a surface of the substrate by anisotropically etching the first conductive film. An insulating film is deposited on the substrate by chemical vapor deposition to cover an upper surface of the first conductive film in the trench. The insulating film is flattened by chemical mechanical polishing, and the first layer is removed.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: September 7, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Takashi Kuroi, Katsuyuki Horita, Masashi Kitazawa, Masato Ishibashi
  • Publication number: 20100200948
    Abstract: Disclosed herein is a fabrication method of a semiconductor device to order to increase an operation liability of the semiconductor device. A method for fabricating a semiconductor device comprises forming a recess in a semiconductor substrate, forming a word line in a lower part of the recess, oxidizing a top portion of the word line, and depositing an insulating material in a remained part of the recess.
    Type: Application
    Filed: June 26, 2009
    Publication date: August 12, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Se hyun KIM
  • Publication number: 20100201440
    Abstract: A doped semiconductor region having a same conductivity type as a bottom semiconductor layer is formed underneath a buried insulator layer in a bottom semiconductor layer of a semiconductor-on-insulator (SOI) substrate. At least one conductive via structure is formed, which extends from a interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to the doped semiconductor region. The shallow trench isolation structure laterally abuts at least one field effect transistor that functions as a radio frequency (RF) switch. During operation, the doped semiconductor region is biased at a voltage that keeps an induced charge layer within the bottom semiconductor layer in a depletion mode and avoids an accumulation mode. Elimination of electrical charges in an accumulation mode during half of each frequency cycle reduces harmonic generation and signal distortion in the RF switch.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Edward J. Nowak
  • Patent number: 7772671
    Abstract: A semiconductor device including a semiconductor substrate having on its surface a recess and at least one projection formed in the recess. The projection has a channel region and an element isolating insulating film is formed in the recess. A MIS type semiconductor element is formed on the semiconductor substrate and includes a gate electrode formed on the channel region of the projection via a gate insulating film. Source and drain regions are formed to pinch the channel region of the projection therebetween. A channel region of the MIS type semiconductor element is formed to reach the at least one projection located adjacent to the MIS type semiconductor element in its channel width direction via the recess. A top surface of the at least one projection is located higher than the top surface of the element isolating insulating film by 20 nm or more.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kyoichi Suguro, Kiyotaka Miyano, Ichiro Mizushima, Yoshitaka Tsunashima, Takayuki Hiraoka, Yasushi Akasaka, Tsunetoshi Arikado
  • Patent number: 7772673
    Abstract: According to one exemplary embodiment, a semiconductor die including at least one deep trench isolation region for isolating an electronic device (for example, a bipolar device) includes a trench situated in a substrate of the semiconductor die, where the trench has sides surrounding the electronic device, and where the trench has at least one trench chamfered corner formed between and connecting the sides of the trench. The at least one trench chamferred corner is formed between a chamfered corner of an outside wall of said trench and a corner of an inside wall of the trench. A trench corner width at the at least one trench chamfered corner is less than a trench side width along the sides of the trench.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 10, 2010
    Assignee: Newport Fab, LLC
    Inventors: Kevin Q. Yin, Amol Kalburge, David J. Howard, Arjun Kar-Roy, Dieter Dornisch
  • Publication number: 20100193901
    Abstract: A semiconductor device includes a substrate including a trench, a buried gate filling a part of the trench, an inter-layer dielectric layer formed on the buried gate to gap-fill the rest of the trench, and a protection layer covering substantially an entire surface of the substrate including the inter-layer dielectric layer.
    Type: Application
    Filed: June 29, 2009
    Publication date: August 5, 2010
    Inventors: Se-Aug Jang, Hong-Seon Yang, Ja-Chun Ku, Seung-Ryong Lee
  • Patent number: 7768096
    Abstract: A system for fabricating semiconductor components includes a semiconductor substrate, a thinning system for thinning the semiconductor substrate, an etching system for forming the substrate opening, and a bonding system for bonding the conductive interconnect to the substrate contact. The semiconductor component can be used to form module components, underfilled components, stacked components, and image sensor semiconductor components.
    Type: Grant
    Filed: May 3, 2008
    Date of Patent: August 3, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Alan G. Wood, William M. Hiatt, David R. Hembree
  • Publication number: 20100181641
    Abstract: A semiconductor and method for manufacturing a semiconductor device. In one embodiment the method includes providing a semiconductor substrate with a first substrate surface and at least one trench having at least one trench surface. The trench extends from the first substrate surface into the semiconductor substrate. The trench has a first trench section and a second trench section. The trench surface is exposed in an upper portion of the first and second trench sections and covered with a first insulating layer in a lower portion. A second insulating layer is formed at least on the exposed trench surface in the upper portion. A conductive layer is formed on the second insulating layer at least in the upper portion, wherein the second insulating layer electrically insulates the conductive layer from the semiconductor substrate. The conductive layer is removed in the first trench section without removing the conductive layer in the second trench section.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Oliver Blank
  • Publication number: 20100164057
    Abstract: A full fill trench structure comprising a microelectronic device substrate having a high aspect ratio trench therein and a full filled mass of silicon dioxide in the trench, wherein the silicon dioxide is of a substantially void-free character and has a substantially uniform density throughout its bulk mass. A corresponding method of manufacturing a semiconductor product is described, involving use of specific silicon precursor compositions for use in full filling a trench of a microelectronic device substrate, in which the silicon dioxide precursor composition is processed to conduct hydrolysis and condensation reactions for forming the substantially void-free and substantially uniform density silicon dioxide material in the trench. The fill process may be carried out with a precursor fill composition including silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component, e.g.
    Type: Application
    Filed: June 27, 2008
    Publication date: July 1, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: William Hunks, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Steven M. Bilodeau, Weimin Li
  • Publication number: 20100156526
    Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 7723818
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and a trench formed within the workpiece. The trench has an upper portion and a lower portion, the upper portion having a first width and the lower portion having a second width, the second width being greater than the first width. A first material is disposed in the lower portion of the trench at least partially in regions where the second width of the lower portion is greater than the first width of the upper portion. A second material is disposed in the upper portion of the trench and at least in the lower portion of the trench beneath the upper portion.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 25, 2010
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Frank Huebinger, Hermann Wendt
  • Patent number: 7719079
    Abstract: A chip carrier substrate includes a capacitor aperture and a laterally separated via aperture, each located within a substrate. The capacitor aperture is formed with a narrower linewidth and shallower depth than the via aperture incident to a microloading effect within a plasma etch method that is used for simultaneously etching the capacitor aperture and the via aperture within the substrate. Subsequently a capacitor is formed and located within the capacitor aperture and a via is formed and located within the via apertures. Various combinations of a first capacitor plate layer, a capacitor dielectric layer and a second capacitor plate layer may be contiguous with respect to the capacitor aperture and the via aperture.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: May 18, 2010
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Chirag S. Patel
  • Publication number: 20100117189
    Abstract: A far subcollector, or a buried doped semiconductor layer located at a depth that exceeds the range of conventional ion implantation, is formed by ion implantation of dopants into a region of an initial semiconductor substrate followed by an epitaxial growth of semiconductor material. A reachthrough region to the far subcollector is formed by outdiffusing a dopant from a doped material layer deposited in the at least one deep trench that adjoins the far subcollector. The reachthrough region may be formed surrounding the at least one deep trench or only on one side of the at least one deep trench. If the inside of the at least one trench is electrically connected to the reachthrough region, a metal contact may be formed on the doped fill material within the at least one trench. If not, a metal contact is formed on a secondary reachthrough region that contacts the reachthrough region.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 13, 2010
    Applicant: International Business Machines Corporation
    Inventors: Bradley A. Orner, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
  • Patent number: 7705416
    Abstract: A method of forming buried cavities in a wafer of monocrystalline semiconductor material with at least one cavity formed in a substrate of monocrystalline semiconductor material by timed TMAH etching silicon; covering the cavity with a material inhibiting epitaxial growth; and growing a monocrystalline epitaxial layer above the substrate and the cavities. Thereby, the cavity is completely surrounded by monocrystalline material. Starting from this wafer, it is possible to form a thin membrane. The original wafer must have a plurality of elongate cavities or channels, parallel and adjacent to one another. Trenches are then excavated in the epitaxial layer as far as the channels, and the dividers between the channels are removed by timed TMAH etching.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: April 27, 2010
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Barlocchi, Flavio Villa
  • Patent number: 7700979
    Abstract: A semiconductor device includes: a substrate; a first junction region and a second junction region formed separately from each other in the substrate; an etch barrier layer formed in the substrate underneath the first junction region; and a plurality of recess channels formed in the substrate between the first junction region and the second junction region.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 20, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang-Oak Shim
  • Patent number: 7687878
    Abstract: A MOSFET device includes a semiconductor substrate having an active region including storage node contact forming areas and a device isolation region and having a device isolation structure which is formed in the device isolation region to delimit the active region; screening layers formed in portions of the device isolation structure on both sides of the storage node contact forming areas of the active region; a gate line including a main gate which is located in the active region and a passing gate which is located on the device isolation structure; and junction areas formed in a surface of the active region on both sides of the main gate.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Eun Suk Lee
  • Patent number: 7679130
    Abstract: Deep trench isolation structures and methods of formation thereof are disclosed. Several methods of and structures for increasing the threshold voltage of a parasitic transistor formed proximate deep trench isolation structures are described, including implanting a channel stop region into the bottom surface of the deep trench isolation structures, partially filling a bottom portion of the deep trench isolation structures with an insulating material, and/or filling at least a portion of the deep trench isolation structures with a doped polysilicon material.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: March 16, 2010
    Assignee: Infineon Technologies AG
    Inventors: Armin Tilke, Danny Pak-Chum Shum, Laura Pescini, Ronald Kakoschke, Karl Robert Strenz, Martin Stiftinger
  • Patent number: 7674706
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: March 9, 2010
    Assignee: FEI Company
    Inventors: George Y. Gu, Neil J. Bassom, Thomas J. Gannon, Kun Liu
  • Publication number: 20100044802
    Abstract: Provided are a semiconductor device making it possible to form an element region having a dimension close to a designed dimension, restrain a phenomenon similar to gate-induced drain leakage, and further restrain compressive stress to be applied to the element region by oxidation of a conductive film; and a method for manufacturing the semiconductor device. Trenches are made in a main surface of a semiconductor substrate. By oxidizing the wall surface of each of the trenches, a first oxide film is formed on the wall surface. An embedded conductive film is formed to be embedded into the trench. The embedded conductive film is oxidized in an atmosphere containing an active oxidizing species, thereby forming a second oxide film. A third oxide film is formed on the second oxide film by CVD or coating method.
    Type: Application
    Filed: June 30, 2009
    Publication date: February 25, 2010
    Inventors: Masato Ishibashi, Katsuyuki Horita, Tomohiro Yamashita, Takaaki Tsunomura, Takashi Kuroi
  • Patent number: 7659597
    Abstract: An integrated circuit device includes a substrate including a trench therein and a conductive plug wire pattern in the trench. The conductive plug wire pattern includes a recessed portion that exposes portions of opposing sidewalls of the trench, and an integral plug portion that protrudes from a surface of the recessed portion to provide an electrical connection to at least one other conductive wire pattern on a different level of metallization. A surface of the plug portion may protrude to a substantially same level as a surface of the substrate adjacent to and outside the trench, and the surface of the recessed portion may be below the surface of the substrate outside the trench. Related fabrication methods are also discussed.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: February 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-Goo Kim, Yun-Gi Kim, Jae-Man Yoon, Hyeoung-Won Seo