Anti-fuse Patents (Class 257/530)
  • Patent number: 6815797
    Abstract: A silicide bridged anti-fuse and a method of forming the anti-fuse are disclosed. The silicide bridged anti-fuse can be formed with a tungsten plug metalization process that does not require any additional process steps. As a result, anti-fuses can be added to an electrical circuit as trim elements for no additional cost.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: November 9, 2004
    Assignee: National Semiconductor Corporation
    Inventors: Charles A. Dark, William M. Coppock, Jeffery L. Nilles, Andy Strachan
  • Patent number: 6815264
    Abstract: A method of producing an antifuse, comprises the steps of: depositing a layer of undoped or lightly doped polysilicon on a layer of silicon dioxide on a semiconductor wafer; doping one region of the polysilicon P+; doping another region of the polysilicon N+, leaving an undoped or lightly doped region between the P+ and N+ regions; and forming electrical connections to the P+ and N+ regions.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: November 9, 2004
    Assignee: Zarlink Semiconductor Limited
    Inventors: Paul Ronald Stribley, John N Ellis, Ian G Daniels
  • Publication number: 20040217441
    Abstract: A semiconductor device is provided which is formed of a wafer having on a surface thereof an area efficient arrangement of at least two antifuses in vertically stacked relation and sharing a common intermediate electrode therebetween. The arrangement includes at least one lower antifuse having a lower counter electrode and a lower fusible insulator portion defining a lower fuse element of an initial high electrical resistance state which interconnects the lower counter electrode with the common intermediate electrode, and at least one upper antifuse, which may be the same as or different from the lower antifuse, the upper antifuse having an upper counter electrode and an upper fusible insulator portion defining an upper fuse element of an initial high electrical resistance state which interconnects the upper counter electrode with the common intermediate electrode.
    Type: Application
    Filed: December 28, 2000
    Publication date: November 4, 2004
    Inventors: Gunther Lehmann, Axel Christoph Brintzinger, Gabriel Daniel
  • Patent number: 6812542
    Abstract: A semiconductor device comprises capacitor structures, each having a first lower electrode, a first insulating film formed on the first lower electrode and a first upper electrode formed on the first insulating film, and electric fuse elements, each having a second lower electrode, a second insulating film formed on the second lower electrode and having an impurity concentration higher than that of the first insulating film, and a second upper electrode formed on the second insulating film. The electric fuse elements have substantially the same structure as that of the capacitor structures, and they are formed on the same level as that of the capacitor structures. A writing voltage of the electric fuse element is determined by dielectric breakdown resistance of the second insulating film, which depends on the impurity concentration of the second insulating film.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: November 2, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yusuke Kohyama
  • Publication number: 20040212037
    Abstract: A one-time programming memory element, capable of being manufactured in a 0.13 &mgr;m or below CMOS technology, having a capacitor, or transistor configured as a capacitor, with an oxide layer capable of passing direct gate tunneling current. Also included is a write circuit, having first and second switches coupled to the capacitor, and a read circuit also coupled to the capacitor. The capacitor/transistor is one-time programmable as an anti-fuse by application of a program voltage across the oxide layer via the write circuit to cause direct gate tunneling current to rupture the oxide layer to form a conductive path having resistance of approximately hundreds of ohms or less.
    Type: Application
    Filed: May 20, 2004
    Publication date: October 28, 2004
    Applicant: Broadcom Corporation
    Inventors: Vincent Chen, Henry Chen, Liming Tsau, Jay Shiau, Surya Battacharya, Akira Ito
  • Patent number: 6809398
    Abstract: A metal-to-metal antifuse according to the present invention is compatible with a Cu dual damascene process and is formed over a lower Cu metal layer planarized with the top surface of a lower insulating layer. A lower barrier layer is disposed over the lower Cu metal layer. An antifuse material layer is disposed over the lower barrier layer. An upper barrier layer is disposed over the antifuse material layer. An upper insulating layer is disposed over the upper barrier layer. An upper Cu metal layer is planarized with the top surface of the upper insulating layer and extends therethrough to make electrical contact with the upper barrier layer.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: October 26, 2004
    Assignee: Actel Corporation
    Inventor: Daniel Wang
  • Patent number: 6807079
    Abstract: A device that includes a layer of material having particles dispersed therein, a first electrode on a first surface of the layer, and a second electrode on a second surface of the layer opposite the first surface. A state of the particles is changed when a prescribed voltage is applied across the first and second electrodes.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 19, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Ping Mei, Warren Jackson
  • Publication number: 20040188799
    Abstract: An MRAM device having a plurality of MRAM cells formed of a fixed magnetic layer, a second soft magnetic layer and a dielectric layer interposed between the fixed magnetic layer and the soft magnetic layer. The MRAM cells are all formed simultaneously and at least some of the MRAM cells are designed to function as antifuse devices whereby the application of a selected electrical potential can short the antifuse device to thereby affect the functionality of the MRAM device.
    Type: Application
    Filed: April 8, 2004
    Publication date: September 30, 2004
    Inventors: Mirmajid Seyyedy, Mark E. Tuttle, Glen E. Hush
  • Publication number: 20040188800
    Abstract: An antifuse including a bottom plate having a plurality of longitudinal members arranged substantially parallel to a first axis, a dielectric layer formed on the bottom plate, and a top plate having a plurality of longitudinal members arranged substantially parallel to a second axis, the top plate formed over the dielectric layer. Multiple edges formed at the interfaces between the top and bottom plates result in regions of localized charge concentration when a programming voltage is applied across the antifuse. As a result, the formation of the antifuse dielectric over the comers of the bottom plates enhance the electric field during programming of the antifuse. Reduced programming voltages can be used in programming the antifuse and the resulting conductive path between the top and bottom plates will likely form along the multiple edges.
    Type: Application
    Filed: April 13, 2004
    Publication date: September 30, 2004
    Inventor: Jigish D. Trivedi
  • Publication number: 20040188798
    Abstract: A multi-level memory array is described employing rail-stacks. The rail-stacks include a conductor and semiconductor layers. The rail-stacks are generally separated by an insulating layer used to form antifuses. In one embodiment, one-half the diode is located in one rail-stack and the other half in the other rail-stack.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 30, 2004
    Inventors: N. Johan Knall, Mark Johnson
  • Patent number: 6797979
    Abstract: The invention relate to a damascene chalcogenide memory cell structure. The damascene chalcogenide memory cell structure is fabricated under conditions that simplify previous process flows. The damascene chalcogenide memory cell structure also prevents volatilization of the chalcogenide memory material.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: September 28, 2004
    Assignee: Intel Corporation
    Inventors: Chien Chiang, Jong-Won Lee, Patrick Klersy
  • Patent number: 6794726
    Abstract: A semiconductor device having an increased intersection perimeter between edge regions of a first conductor and portions of a second conductor is disclosed. In one embodiment, the intersection perimeter is the region where the perimeter of a gate structure overlaps an active area. The intersection perimeter between the conductors directs the breakdown of the dielectric material, increasing the likelihood that the programming event will be successful. In at least one embodiment, the portion of a current path that travels through a highly doped area is increased while the portion that travels through a non-highly doped area is decreased. This decreases post-program resistance, leading to better response time for the device.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: September 21, 2004
    Assignee: International Business Machines Corporation
    Inventors: Carl J. Radens, William R. Tonti
  • Patent number: 6791157
    Abstract: An integrated circuit package includes at least one one-time programmable element, such as a fuse, having a first and a second end separated by a programmable link. The first end of the one-time programmable element is coupled to a power supply voltage node in the package. The second end of the programmable element may be coupled to an external package connection (e.g., a package pin) and/or to an internal package node that connects to an input terminal of the integrated circuit die when the integrated circuit die is mounted in the package. The information programmed by the fuses may relate to speed or voltage ratings for a microprocessor.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: September 14, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James John Casto, Qadeer Ahmad Qureshi, Hugh William Boothby
  • Patent number: 6787886
    Abstract: A semiconductor device includes a semiconductor substrate which has a major surface and a MOS transistor which has a gate and first and second diffusion regions and which is formed on the major surface. The semiconductor device also includes a laminated structure of a SOG layer, wherein the laminated structure is composed of a base layer and a surface layer formed on the base layer and is formed over the MOS transistor and wherein the surface layer is denser than the base layer.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: September 7, 2004
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Kazuhiko Asakawa, Wataru Shimizu
  • Publication number: 20040169254
    Abstract: The antifuse device comprises an insulating layer positioned in the trench, a conductive member positioned above the insulating layer, at least a portion of the conductive member being positioned within the trench, the conductive member adapted to have at least one programming voltage applied thereto, and at least one doped active region formed in the substrate adjacent the trench. The antifuse further comprises at least one conductive contact coupled to the conductive member, and at least one conductive contact coupled to the doped active region.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 2, 2004
    Applicant: Micron Technology, Inc.
    Inventor: Stephen R. Porter
  • Patent number: 6784517
    Abstract: A three-dimensional memory array includes a plurality of rail-stacks on each of several levels forming alternating levels of X-lines and Y-lines for the array. Memory cells are formed at the intersection of each X-line and Y-line. The memory cells of each memory plane are all oriented in the same direction relative to the substrate, forming a serial chain diode stack. In certain embodiments, row and column circuits for the array are arranged to interchange function depending upon the directionality of memory cells in the selected memory plane. High-voltage drivers for the X-lines and Y-lines are each capable of passing a write current in either direction depending on the direction of the selected memory cell. A preferred bias arrangement reverse biases only unselected memory cells within the selected memory plane, totaling approximately N2 memory cells, rather than approximately 3N2 memory cells as with prior arrays.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: August 31, 2004
    Assignee: Matrix Semiconductor, Inc.
    Inventors: Bendik Kleveland, N. Johann Knall
  • Publication number: 20040164376
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, in which an extended drain region of a second conductivity type and a source region of the second conductivity type are formed with an interval therebetween, wherein the extended drain region includes a plurality of buried layers, each formed by burying an impurity layer of the first conductivity type, the plurality of buried layers extending substantially parallel to a substrate surface and with an interval therebetween in a depth direction. A concentration of an impurity of the second conductivity type in the extended drain region at a depth of about 6 &mgr;m from the substrate surface is about 1×1015/cm3 or more and is about 30% or more of that at a depth of about 2 &mgr;m from the substrate surface.
    Type: Application
    Filed: February 24, 2004
    Publication date: August 26, 2004
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventor: Toshihiko Uno
  • Patent number: 6781145
    Abstract: An ovonic phase-change semiconductor memory device having a reduced area of contact between electrodes of chalcogenide memories, and methods of forming the same are disclosed. Such memory devices are formed by forming a tip protruding from a lower surface of a lower electrode element. An insulative material is applied over the lower electrode such that an upper surface of the tip is exposed. A chalcogenide material and an upper electrode are either formed atop the tip, or the tip is etched into the insulative material and the chalcogenide material and upper electrode are deposited within the recess. This allows the memory cells to be made smaller and allows the overall power requirements for the memory cell to be minimized.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: August 24, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Trung T. Doan, D. Mark Durcan, Brent D. Gilgen
  • Patent number: 6780711
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 24, 2004
    Assignee: Matrix Semiconductor, INC
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald
  • Publication number: 20040159907
    Abstract: An anti-fuse is manufactured by forming an isolation region including an insulating material layer buried in a surface of a device formation region on a surface of a semiconductor substrate, and by forming diffusion regions at both sides of the isolation region, then by contacting electrodes to the respective diffusion regions. The anti-fuse is initially in a non-conductive state, and is programmed to be in a permanently conductive state by a simple writing circuit.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 19, 2004
    Applicant: KAWASAKI MICROELECTRONICS, INC.
    Inventors: Isamu Kuno, Tomoharu Katagiri
  • Patent number: 6777773
    Abstract: A memory cell for a three-dimensional intergrated circuit memory is disclosed. The cell includes a very highly doped semiconductor regions with a doping level of 1020 atoms cm−3 or higher. An antifuse region is disposed between the heavily doped region and a more lightly doped region.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: August 17, 2004
    Assignee: Matrix Semiconductor, Inc.
    Inventor: N. Johan Knall
  • Patent number: 6777270
    Abstract: An exemplar method for making a resistive memory element generally includes providing a generally plateau-shaped insulating structure, the insulating structure having a first side wall, a second side wall and a central region disposed between the side walls, depositing a first conductive material on the insulating structure, removing the first conductive material from the central region of the insulating structure to form a first conductor on the first side wall of the insulating structure and a second conductor on the second side wall of the insulating structure, depositing anti-fuse material on the first conductive material and on the central region of the insulating structure, and depositing a second conductive material on the anti-fuse material.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: August 17, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Frederick A. Perner, Andrew L. Van Brocklin, Steven C. Johnson
  • Publication number: 20040155315
    Abstract: According to embodiments of the present invention, an antifuse circuit is operated by coupling an elevated voltage to a first terminal of an antifuse, controlling current in the antifuse with a program driver circuit coupled to a second terminal of the antifuse, and shunting current around the antifuse with a bypass circuit coupled between the first terminal of the antifuse and the program driver circuit to protect the antifuse. The antifuse includes a layer of gate dielectric between the first terminal and the second terminal. The embodiments of the present invention protect a gate dielectric antifuse.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Kenneth W. Marr, John D. Porter
  • Patent number: 6774456
    Abstract: A configuration of fuses in a semiconductor structure having Cu metallization planes is provided. The semiconductor structure has an Al metal layer on the topmost interconnect plane for providing Al bonding pads. The fuses are configured as Al fuses and, in the semiconductor structure having Cu metallization planes, are provided above the diffusion barrier of the topmost Cu metallization plane but below a passivation layer.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: August 10, 2004
    Assignee: Infineon Technologies AG
    Inventors: Andreas Rusch, Jens Moeckel
  • Patent number: 6774458
    Abstract: Interconnection structures for integrated circuits have first cells disposed in a first plane, at least second cells disposed in at least a second plane parallel to the first plane, and vertical interconnections disposed for connecting conductors in the first plane with conductors in the second plane, at least some of the vertical interconnections initially incorporating antifuses. The antifuses may be disposed over conductors that are disposed on a base substrate. The antifuses are selectively fused to prepare the integrated circuit for normal operation. Methods for fabricating and using such vertical interconnection structures are disclosed.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: August 10, 2004
    Assignee: Hewlett Packard Development Company, L.P.
    Inventors: Peter Fricke, Andrew L. Van Brocklin
  • Patent number: 6774457
    Abstract: A repair fuse element and method of construction are disclosed that eliminate or substantially reduce the disadvantages and problems associated with prior fuse elements. In one embodiment, the fuse element is constructed with a rectangular-shaped contact. The contact is made long enough so that it makes contact at each end with a metal layer, but design rule spacing is still maintained between the connections with the metal layer. The overlapping areas between the rectangular contact and the metal layers are asymmetrical. Alternatively, these overlapping areas are smaller than the design rule overlap requirements. In a second embodiment, a fuse element is constructed with a plurality of rectangular-shaped contacts. As a result, a current value that is significantly lower than conventional fuse current values, can be used to melt such a contact or blow the fuse.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: August 10, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Andrew T. Appel
  • Patent number: 6770907
    Abstract: A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: August 3, 2004
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Eric Adler, Jeffrey S. Brown, Robert J. Gauthier, Jr., Jonathan M. McKenna, Jed H. Rankin, Edward W. Sengle, William R. Tonti
  • Patent number: 6771528
    Abstract: A memory cell structure of a metal (or via) programmable ROM whereby a transistor is shared between bit cells of the programmable ROM. Such a memory cell structure may include: a word line; a bit line; first and second virtual grounding lines; a grounding line; a first bit cell selected by signals of the word line and the first virtual grounding line; and a second bit cell selected by signals of the word line and the second virtual grounding line, wherein a cell transistor, one side of which is connected to the bit line is shared both by the first and second bit cells. Also, the other side of the cell transistor may be floated or connected to the bit line or, alternatively, connected to any one of the first virtual grounding line, the second virtual grounding line and the grounding line, and the gate of the cell transistor is connected to the word line.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: August 3, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-ho Jeung, Young-keun Lee, Yong-jae Choo, Young-sook Do
  • Patent number: 6770947
    Abstract: A severable horizontal portion of a fuse link is formed relative to a vertically configured structure in an IC to promote separation of the severable portion upon applying energy from a laser beam. The vertically configured structure may be a reduced vertical thickness of the severable portion, an elevated lower surface of the severable portion above adjoining portions of the fuse link, a protrusion which supports the severable portion at a height greater than a height of the adjoining portions of the fuse link, flowing the melted severable portion down sloped surfaces away from a break point, and a propellent material beneath the severable portion which explodes to ablate the severable portion.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: August 3, 2004
    Assignee: LSI Logic Corporation
    Inventors: Gary K. Giust, Ruggero Castagnetti, Yauh-Ching Liu, Shiva Ramesh
  • Patent number: 6767768
    Abstract: The present invention provides a method for forming an antifuse via structure. The antifuse via structures comprising a substrate that having a first conductive wire therein. Then, a first dielectric layer is formed on the substrate, and a photoresist layer is formed on the first dielectric layer. Next, an etching process is performed to etch the first dielectric layer to form a via open in the first dielectric layer. Then, a first conductive layer is deposited to fill the via open and performing a polishing process to form a conductive plug, wherein the conductive plug is on the first conductive wire. Next, a buffer layer deposited on the partial first dielectric layer and on the surface of conductive plug. Then, another polishing process is performed to the buffer layer to expose the portion of the conductive plug. Thereafter, a first electrode of capacitor is deposited on the buffer layer.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: July 27, 2004
    Assignee: United Microelectronics, Corp.
    Inventor: Tsong-Minn Hsieh
  • Patent number: 6768185
    Abstract: The present invention is directed to novel antifuse arrays and their methods of fabrication. According to an embodiment of the present invention an array comprises a plurality of first spaced apart rail-stacks having a top semiconductor material. A fill dielectric is located between the first plurality of spaced apart rail-stacks wherein the fill dielectric extends above the top surface of the semiconductor material. An antifuse material is formed on the top of the semiconductor material of the first plurality of spaced apart rail-stacks. A second plurality of spaced apart rail-stacks having a lower semiconductor material is formed on the antifuse material. In the second embodiment of the present invention the array comprises a first plurality of spaced apart rail-stacks having a top semiconductor material. A fill dielectric is located between the first plurality of spaced apart rail-stacks wherein the fill dielectric is recessed below the top surface of the semiconductor material.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: July 27, 2004
    Assignee: Matrix Semiconductor, Inc.
    Inventors: James M. Cleeves, Michael A. Vyvoda, N. Johan Knall
  • Patent number: 6767785
    Abstract: Disclosed are methods of forming resistors and diodes from semiconductive material, and static random access memory (SRAM) cells incorporating resistors, and to integrated circuitry incorporating resistors and diodes. A node to which electrical connection is to be made is provided. An electrically insulative layer is provided outwardly of the node. An opening is provided in the electrically insulative layer over the node. The opening is filed with semiconductive material which depending on configuration serves as one or both of a vertically elongated diode and resistor.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: J. Brett Rolfson, Monte Manning
  • Patent number: 6768150
    Abstract: A magnetic memory cell is disclosed. The memory cell includes first conductor and second conductors coupled to first and second electrodes of a magnetic element. A plurality of memory cells is interconnected by first and second conductors to form a memory array or block. The second conductor is coupled to the second electrode via a conductive strap having a fuse portion. The fuse portion can be blown to sever the connection between the second conductor and magnetic element, Nitride.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: July 27, 2004
    Assignee: Infineon Technologies Aktiengesellschaft
    Inventors: Kia Seng Low, Joerg Dietrich Schmid
  • Publication number: 20040140525
    Abstract: Resistive memory elements and arrays for data storage devices are disclosed. An exemplar resistive memory element generally comprises a first conductive structure and a second conductive structure, each of the conductive structures having a width of less than 1&lgr;, anti-fuse material on each conductive structure, and conductive material on the anti-fuse material such that anti-fuse material is interposed between each conductive structure and the conductive material.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 22, 2004
    Inventors: Frederick A. Perner, Andrew L. Van Brocklin, Steven C. Johnson
  • Patent number: 6756254
    Abstract: An integrated circuit is formed by a method having the steps of providing a circuit substrate with a first metallized region, providing a first insulation layer covered by a silicon layer, patterning the first insulation layer and silicon layer to form a first insulation region and first silicon region, then forming a second metallized layer on the silicon region, heating the material so that the second metal layer diffuses into the silicon layer to form a metal silicide region, which is subsequently covered by a second insulating layer having a contact with an interconnect to enable contacting an antifuse formed by the metal silicide region.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: June 29, 2004
    Assignee: Infineon Technologies AG
    Inventor: Rene Tews
  • Patent number: 6756655
    Abstract: A semiconductor configuration is described which includes a semiconductor body having a main surface and an insulator layer disposed on the main surface of the semiconductor body. The insulator layer has a cavity formed therein extending to the main surface of the semiconductor body. A fuse having a fusible part extends from the main surface of the semiconductor body toward an upper surface of the insulator layer at right angles to the main surface of the semiconductor body, and the fuse is embedded in the cavity. A method for producing the semiconductor configuration having the fuse is also described.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 29, 2004
    Assignee: Infineon Technologies AG
    Inventors: Thoai-Thai Le, Jürgen Lindolf
  • Patent number: 6753590
    Abstract: A programmable element that has a first diode having an electrode and a first insulator disposed between the substrate and said electrode of said first device, said first insulator having a first value of a given characteristic, and an FET having an electrode and a second insulator disposed between the substrate and said electrode of said second device, said second insulator having a second value of said given characteristic that is different from said first value. The electrodes of the diode and the FET are coupled to one another, and a source of programming energy is coupled to the diode to cause it to permanently decrease in resistivity when programmed. The programmed state of the diode is indicated by a current in the FET, which is read by a sense latch. Thus a small resistance change in the diode translates to a large signal gain/change in the latch. This allows the diode to be programmed at lower voltages.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: June 22, 2004
    Assignee: International Business Machines Corporation
    Inventors: John A. Fifield, Russell J. Houghton, William R. Tonti
  • Publication number: 20040113234
    Abstract: A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 17, 2004
    Inventors: Wagdi W. Abadeer, Erle Adler, Jeffrey S. Brown, Robert J. Gauthier, Jonathan M. McKenna, Jed H. Rankin, Edward W. Sengle, William R. Tonti
  • Patent number: 6750530
    Abstract: A programmable device including: an antifuse; a resistive heating element having a substantially temperature to power response, the resistive heating element adjacent to but not in contact with the antifuse; and means for passing an electric current through the resistive heating element in order to generate heat to raise the temperature of the antifuse sufficiently high enough to decrease a programming voltage of the antifuse, a time the programming voltage is applied to the antifuse or both the programming voltage of the antifuse and the time the programming voltage is applied to the antifuse.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: June 15, 2004
    Assignee: International Business Machines Corporation
    Inventors: William A. Klaasen, Alvin W. Strong, Ernest Y. Wu
  • Patent number: 6751150
    Abstract: According to embodiments of the present invention, an antifuse circuit is operated by coupling an elevated voltage to a first terminal of an antifuse, controlling current in the antifuse with a program driver circuit coupled to a second terminal of the antifuse, and shunting current around the antifuse with a bypass circuit coupled between the first terminal of the antifuse and the program driver circuit to protect the antifuse. The antifuse includes a layer of gate dielectric between the first terminal and the second terminal. The embodiments of the present invention protect a gate dielectric antifuse.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kenneth W. Marr, John D. Porter
  • Publication number: 20040108573
    Abstract: A thin dielectric layer grown on a silicide layer can be used in many semiconductor devices. Such a grown dielectric, which may be, for example, a silicon oxide, silicon nitride, or silicon oxynitride dielectric layer, can advantageously be used as a dielectric antifuse. Such an antifuse paired with a diode or diode portions can operate as a memory cell, which is unprogrammed before rupture and programmed after rupture. Memory cell types using a dielectric grown on a silicide include Schottky diode portions separated by an antifuse, a Schottky diode separated from an adjacent conductor by an antifuse, and a junction diode separated from an adjacent conductor by an antifuse.
    Type: Application
    Filed: December 3, 2003
    Publication date: June 10, 2004
    Applicant: MATRIX SEMICONDUCTOR, INC.
    Inventor: S. Brad Herner
  • Patent number: 6744660
    Abstract: The present invention relates to a method of setting a state of a one-time programmable memory device having at least one memory cell with a thin gate-ox fuse element having an oxide of about 2.5 nm thick or less using a high voltage switch. The method comprises switching in a high programming voltage into the memory cell using such high voltage switch, setting the state of the thin gate-ox fuse element.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: June 1, 2004
    Assignee: Broadcom Corporation
    Inventors: Douglas D. Smith, Myron Buer, Bassem Radieddine
  • Patent number: 6740957
    Abstract: The antifuse device comprises an insulating layer positioned in the trench, a conductive member positioned above the insulating layer, at least a portion of the conductive member being positioned within the trench, the conductive member adapted to have at least one programming voltage applied thereto, and at least one doped active region formed in the substrate adjacent the trench. The antifuse further comprises at least one conductive contact coupled to the conductive member, and at least one conductive contact coupled to the doped active region.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: May 25, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Stephen R. Porter
  • Patent number: 6740913
    Abstract: A transistor using mechanical stress to alter carrier mobility. Voids are formed in one or more of the source, drain, channel or gate regions to introduce tensile or compressive stress to improve short channel effects.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: May 25, 2004
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Brian Roberds
  • Patent number: 6737686
    Abstract: A memory cell includes a heating component that is connected to a voltage-breakdown component. The heating component is configured to accelerate the break-down of a voltage-breakdown component. Memory structures and methods for making them are also disclosed.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 18, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Peter Fricke, Andrew VanBrocklin, Warren B. Jackson
  • Patent number: 6737345
    Abstract: A method of fabrication used for semiconductor integrated circuit devices to define a thin copper fuse at a top via opening, in a partial etch, dual damascene integration scheme, efficiently reducing top metal thickness in a fusible link, for the purpose of laser ablation. Some advantages of the method are: (a) avoids copper fuse contact to low dielectric material, which is subject to the thermal shock of laser ablation, (b) increases insulating material thickness over the fuse using better thickness control, and most importantly, (c) reduces the copper fuse thickness, for easy laser ablation of the copper fuse, and finally, (d) uses USG, undoped silicate glass to avoid direct contact with low dielectric constant materials.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: May 18, 2004
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Kang-Cheng Lin, Chin-Chiu Hsia
  • Patent number: 6737726
    Abstract: In one implementation, a non-volatile resistance variable device includes a body formed of a voltage or current controlled resistance setable material, and at least two spaced electrodes on the body. The body includes a surface extending from one of the electrodes to the other of the electrodes. The surface has at least one surface striation extending from proximate the one electrode to proximate the other electrode at least when the body of said material is in a highest of selected resistance setable states. In one implementation, a method includes structurally changing a non-volatile device having a body formed of a voltage or current controlled resistance setable material and at least two spaced electrodes on the body. The body has a surface extending from one of the electrodes to the other of the electrodes, and the surface is formed to comprise at least one surface striation extending from proximate the one electrode to proximate the other electrode.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: May 18, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Terry L. Gilton
  • Publication number: 20040089916
    Abstract: Within an option selection device structure and a method for fabrication thereof there is formed a terminal metal layer and an option selection device at a co-planar level over a microelectronic substrate. The option selection device is passivated with: (1) a terminal metal passivation layer having an etch stop layer within its thickness; and (2) a bond pad passivation layer. There is simultaneously also formed through the bond pad passivation layer: (1) a via which accesses a bond pad formed contacting the terminal metal layer; and (2) an aperture over the option selection device which stops at the etch stop layer.
    Type: Application
    Filed: November 13, 2002
    Publication date: May 13, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Juei-Kuo Wu, Yi-Lang Wu, Lin-June Wu, Dian-Hau Chen
  • Publication number: 20040089917
    Abstract: A multi-level memory array is described employing rail-stacks. The rail-stacks include a conductor and semiconductor layers. The rail-stacks are generally separated by an insulating layer used to form antifuses. In one embodiment, one-half the diode is located in one rail-stack and the other half in the other rail-stack.
    Type: Application
    Filed: October 20, 2003
    Publication date: May 13, 2004
    Inventors: N. Johan Knall, Mark Johnson
  • Patent number: 6734079
    Abstract: Within a method for fabricating a microelectronic fabrication, and the microelectronic fabrication fabricated employing the method, there is formed within the microelectronic fabrication a capacitor structure which comprises a first capacitor plate layer having formed thereupon a capacitor dielectric layer in turn having formed thereupon a second capacitor plate layer, wherein each of the foregoing layers having an exposed sidewall to thus form a series of exposed sidewalls. The capacitor structure also comprises a silicon oxide dielectric layer formed passivating the series of exposed sidewalls of the first capacitor plate layer, the capacitor dielectric layer and the second capacitor plate layer a silicon oxide dielectric layer.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 11, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Chi-Feng Huang, Shyh-Chyi Wang, Chih-Hsien Lin, Chun-Hon Chen, Tien-I Bao, Syun-Ming Jang