Including Capacitor Component Patents (Class 257/532)
  • Patent number: 11728262
    Abstract: A metal-insulator-metal (MIM) structure and methods of forming the same for reducing the accumulation of external stress at the corners of the conductor layers are disclosed herein. An exemplary device includes a substrate that includes an active semiconductor device. A stack of dielectric layers is disposed over the substrate. A lower contact is disposed over the stack of dielectric layers. A passivation layer is disposed over the lower contact. A MIM structure is disposed over the passivation layer, the MIM structure including a first conductor layer, a second conductor layer disposed over the first conductor layer, and a third conductor layer disposed over the second conductor layer. A first insulator layer is disposed between the first conductor layer and the second conductor layer. A second insulator layer is disposed between the second conductor layer and the third conductor layer. One or more corners of the third conductor layer are rounded.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yuan-Yang Hsiao, Hsiang-Ku Shen, Dian-Hau Chen, Hsiao Ching-Wen, Yao-Chun Chuang
  • Patent number: 11729973
    Abstract: According to one embodiment, a semiconductor memory device includes a first memory chip, a circuit chip, and an external connection electrode on a surface of the first memory chip. The first memory chip comprises first conductors stacked via an insulator, and a first pillar passing the first conductors. The circuit chip comprises a substrate, a control circuit, and a second conductor connected to the control circuit, the circuit chip being attached to the first memory chip. The external connection electrode comprises a portion extending from a side of the surface of the first memory chip through the first memory chip and connected to the second conductor. Part of the first conductors is between the external connection electrode and the substrate.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: August 15, 2023
    Assignee: KIOXIA CORPORATION
    Inventors: Masayoshi Tagami, Jun Iijima, Ryota Katsumata, Kazuyuki Higashi
  • Patent number: 11729994
    Abstract: A ferroelectric device structure includes an array of ferroelectric capacitors overlying a substrate, first metal interconnect structures electrically connecting each of first electrodes of the array of ferroelectric capacitors to a first metal pad embedded in a dielectric material layer, and second metal interconnect structures electrically connecting each of the second electrodes of the array of ferroelectric capacitors to a second metal pad embedded in the dielectric material layer. The second metal pad may be vertically spaced from the substrate by a same vertical separation distance as the first metal pad is from the substrate. First metal lines laterally extending along a first horizontal direction may electrically connect the first electrodes to the first metal pad, and second metal lines laterally extending along the first horizontal direction may electrically connect each of the second electrodes to the second metal pad.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: August 15, 2023
    Inventors: Chenchen Jacob Wang, Yu-Ming Lin, Chi On Chui, Sai-Hooi Yeong, Bo-Feng Young
  • Patent number: 11721773
    Abstract: A semiconductor substrate includes excavations which form trenches sunk. A capacitive element includes: a first dielectric envelope conforming to sides and bottoms of the trenches; a first semiconductor layer conforming to a surface of the first dielectric envelope in the trenches; a second dielectric envelope conforming to a surface of the first semiconductor layer in the trenches; and a second semiconductor layer conforming to a surface of the second dielectric envelope in the trenches.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: August 8, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Christian Rivero, Brice Arrazat, Julien Delalleau, Joel Metz
  • Patent number: 11721648
    Abstract: Methods and apparatus for a signal isolator having reduced parasitics. An example embodiment, a signal isolator and include a first metal region electrically connected to a first die portion, a second die portion isolated from the first die portion, and a second metal region electrically connected to the second die portion. A third metal region can be electrically isolated from the first and second metal regions and a third die portion can be electrically isolated from the first, second and third metal regions. In embodiments, the first metal region, the second metal region, and the third metal region provide a first isolated signal path from the first die portion to the second die portion.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: August 8, 2023
    Assignee: Allegro MicroSystems, LLC
    Inventors: Robert A. Briano, Alejandro Gabriel Milesi
  • Patent number: 11715717
    Abstract: In an embodiment, a device includes: a semiconductor die including a semiconductor material; a through via adjacent the semiconductor die, the through via including a metal; an encapsulant around the through via and the semiconductor die, the encapsulant including a polymer resin; and an adhesion layer between the encapsulant and the through via, the adhesion layer including an adhesive compound having an aromatic compound and an amino group, the amino group bonded to the polymer resin of the encapsulant, the aromatic compound bonded to the metal of the through via, the aromatic compound being chemically inert to the semiconductor material of the semiconductor die.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: August 1, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Cho, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo
  • Patent number: 11715705
    Abstract: An integrated circuit memory includes a state transistor having a floating gate which stores a respective data value. A device for protecting the data stored in the memory includes a capacitive structure having a first electrically-conducting body coupled to the floating gate of the state transistor, a dielectric body, and a second electrically-conducting body coupled to a ground terminal. The dielectric body is configured, if an aqueous solution is brought into contact with the dielectric body, to electrically couple the floating gate and the ground terminal so as to modify the charge on the floating gate and to lose the corresponding data. Otherwise, the dielectric body is configured to electrically isolate the floating gate and the ground terminal.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: August 1, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Fabrice Marinet
  • Patent number: 11715707
    Abstract: Described examples include an apparatus including a package substrate having a die attach pad and a first semiconductor die on the die attach pad, the first semiconductor die including a transmitter. The apparatus also includes an assembly having a first plate coupled to the transmitter, a second plate separated from the first plate by a dielectric and a second semiconductor die on the die attach pad, the second semiconductor die including a receiver coupled to the second plate.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: August 1, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sreeram SubramanyamNasum, Vijaylaxmi Khanolkar, Tarunvir Singh
  • Patent number: 11711915
    Abstract: Semiconductor device may include a landing pad and a lower electrode that is on and is connected to the landing pad and includes an outer portion and an inner portion inside the outer portion. The outer portion includes first and second regions. The semiconductor devices may also include a dielectric film on the first region of the outer portion on the lower electrode and an upper electrode on the dielectric film. The first region of the outer portion of the lower electrode may include a silicon (Si) dopant, the dielectric film does not extend along the second region of the outer portion. A concentration of the silicon dopant in the first region of the outer portion is different from a concentration of the silicon dopant in the second region of the outer portion and is higher than a concentration of the silicon dopant in the inner portion.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: July 25, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang Mu An, Sang Yeol Kang, Young-Lim Park, Jong-Bom Seo, Se Hyoung Ahn
  • Patent number: 11709985
    Abstract: A semiconductor device includes a first and a second power rails extending in a row direction, a third power rail extending in the row direction between the first and second power rail, and a first cell arranged between the first second power rails. A cell height of the first cell in a column direction perpendicular to the row direction is equal to a pitch between the first and second power rails. The semiconductor device also includes a second cell arranged between the first and third power rails. A cell height of the second cell in the column direction is equal to a pitch between the first and third power rails. A first active region of the first cell includes a first width in the column direction greater than a second width, in the column direction, of a second active region in the second cell.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: July 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ta-Pen Guo, Guru Prasad
  • Patent number: 11705483
    Abstract: A capacitor includes a lower electrode including a first metal material and having a first crystal size in a range of a few nanometers, a dielectric layer covering the lower electrode and having a second crystal size that is a value of a crystal expansion ratio times the first crystal size and an upper electrode including a second metal material and covering the dielectric layer. The upper electrode has a third crystal size smaller than the second crystal size.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 18, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Sun Kim, Sang-Yeol Kang, Kyoo-Ho Jung, Kyu-Ho Cho, Hyo-Sik Mun
  • Patent number: 11706057
    Abstract: Devices, systems, and methods for serial communication over a galvanically isolated channel are disclosed. A device includes a first IC device interface, first IO components connected to the first IC device interface, a second IC device interface, second IO components connected to the second IC device interface, an insulator layer having a first major surface and a second major surface, at least one pair of capacitor plates and corresponding interconnection paths on the first major surface, and at least one pair of capacitor plates and corresponding interconnection paths on the second major surface, wherein the at least one pair of capacitor plates on the first major surface of the insulator layer are aligned with the at least one pair of capacitor plates on the second major surface of the insulator layer to form at least one pair of capacitors.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: July 18, 2023
    Assignee: Nunami Inc.
    Inventor: Syed Enam Rehman
  • Patent number: 11694968
    Abstract: Provided is a semiconductor architecture including a carrier substrate, alignment marks provided in the carrier substrate, the alignment marks being provided from a first surface of the carrier substrate to a second surface of the carrier substrate, a first semiconductor device provided on the first surface of the carrier substrate based on the alignment marks, a second semiconductor device provided on the second surface of the carrier substrate based on the alignment marks and aligned with the first semiconductor device.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 4, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD
    Inventors: Seok Won Cho, Ki-Il Kim, Kang Ill Seo
  • Patent number: 11695007
    Abstract: A method of biasing a guard ring structure includes biasing a gate of a MOS transistor to a first bias voltage level, biasing first and second S/D regions of the MOS transistor to a power domain voltage level, biasing a gate of the guard ring structure to a second bias voltage level, and biasing first and second heavily doped regions of the guard ring structure to the power domain voltage level. Each of the first and second S/D regions has a first doping type, each of the first and second heavily doped regions has a second doping type different from the first doping type, and each of the first and second S/D regions and the first and second heavily doped regions is positioned in a substrate region having the second doping type.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Hsiang Wang, Szu-Lin Liu, Jaw-Juinn Horng, Yung-Chow Peng
  • Patent number: 11688800
    Abstract: A semiconductor device includes a substrate having a high electron mobility transistor (HEMT) region and a capacitor region, a first mesa isolation on the HEMT region, a HEMT on the first mesa isolation, a second mesa isolation on the capacitor region, and a capacitor on the second mesa isolation. The semiconductor device further includes buffer layer between the substrate, the first mesa isolation, and the second mesa isolation, in which bottom surfaces of the first mesa isolation and the second mesa isolation are coplanar.
    Type: Grant
    Filed: August 16, 2020
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Hsing Lee, Sheng-Yuan Hsueh, Chien-Liang Wu, Kuo-Yu Liao
  • Patent number: 11682529
    Abstract: A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: June 20, 2023
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Taek Jung Lee, Min Gon Lee, Jea Yeol Choi, Jin Man Jung, Jin Kyung Joo
  • Patent number: 11676892
    Abstract: Embodiments of the present invention are directed to methods and resulting structures for integrated circuits having metal-insulator-metal (MIM) capacitors that serve as both decoupling capacitors and crack stops. In a non-limiting embodiment, an interconnect is formed on a first portion of a substrate in an interior region of the integrated circuit. A second portion of the substrate is exposed in an edge region of the integrated circuit. A MIM capacitor is formed over the second portion of the substrate in the edge region. The MIM capacitor includes two or more plates and one or more dielectric layers. Each dielectric layer is positioned between an adjacent pair of the two or more plates and a portion of the two or more plates extends over the interconnect in the interior region. A plate of the two or more plates is electrically coupled to a last metal wiring level of the interconnect.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: June 13, 2023
    Assignee: International Business Machines Corporation
    Inventors: Baozhen Li, Chih-Chao Yang, Huimei Zhou, Nan Jing
  • Patent number: 11676815
    Abstract: A patterning method includes the following steps. A mask layer is formed on a material layer. A first hole is formed in the mask layer by a first photolithography process. A first mask pattern is formed in the first hole. A second hole is formed in the mask layer by a second photolithography process. A first spacer is formed on an inner wall of the second hole. A second mask pattern is formed in the second hole after the step of forming the first spacer. The first spacer surrounds the second mask pattern in the second hole. The mask layer and the first spacer are removed. The pattern of the first mask pattern and the second mask pattern are transferred to the material layer by an etching process.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: June 13, 2023
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Feng-Yi Chang, Fu-Che Lee
  • Patent number: 11671084
    Abstract: An integrated circuit includes a first metal-insulator-semiconductor capacitor, a second metal-insulator-semiconductor capacitor, and a metal-insulator-metal capacitor. A first terminal of the first metal-insulator-semiconductor capacitor is configured to receive a first reference voltage for a higher voltage domain, while a first terminal of the second metal-insulator-semiconductor capacitor is configured to receive a second reference voltage for the higher voltage domain. A second terminal of the first metal-insulator-semiconductor capacitor is conductively connected to a first terminal of the metal-insulator-metal capacitor, while a second terminal of the second metal-insulator-semiconductor capacitor is conductively connected to a second terminal of the metal-insulator-metal capacitor.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Szu-Lin Liu, Jaw-Juinn Horng, Yi-Hsiang Wang, Wei-Lin Lai
  • Patent number: 11670697
    Abstract: A semiconductor device includes a substrate comprising a semiconductor fin, a gate structure over the semiconductor fin, and source/drain structures over the semiconductor fin and on opposite sides of the gate structure. The gate stack comprises a high-k dielectric layer; a first work function metal layer over the high-k dielectric layer; an oxide of the first work function metal layer over the first work function metal layer; and a second work function metal layer over the oxide of the first work function metal layer, in which the first and second work function metal layers have different compositions; and a gate electrode over the second work function metal layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Che Chiang, Ju-Yuan Tzeng, Chun-Sheng Liang, Chih-Yang Yeh, Shu-Hui Wang, Jeng-Ya David Yeh
  • Patent number: 11670689
    Abstract: A method for eliminating divot formation includes forming an isolation layer; forming a conduction layer which has an upper inclined boundary with the isolation layer such that the conduction layer has a portion located above a portion of the isolation layer at the upper inclined boundary; etching back the isolation layer; and etching back the conduction layer after etching back the isolation layer such that a top surface of the etched conduction layer is located at a level lower than a top surface of the etched isolation layer.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Wen Tseng, Po-Wei Liu, Hung-Ling Shih, Tsung-Yu Yang, Tsung-Hua Yang, Yu-Chun Chang
  • Patent number: 11670594
    Abstract: Semiconductor structures and method of forming the same are provided. A semiconductor structure according to the present disclosure includes a contact feature in a dielectric layer, a passivation structure over the dielectric layer, a conductive feature over the passivation structure, a seed layer disposed between the conductive feature and the passivation structure, a protecting layer disposed along sidewalls of the conductive feature, and a passivation layer over the conductive feature and the protecting layer.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wen-Chun Wang, Tzy-Kuang Lee, Chih-Hsien Lin, Ching-Hung Kao, Yen-Yu Chen
  • Patent number: 11671010
    Abstract: A semiconductor structure includes a first substrate. A first die and a second die are disposed over the first substrate and are adjacent to one another. A plurality of first conductive bumps are disposed between the first substrate and the first die and between the first substrate and the second die. A second substrate is disposed below the first substrate. A plurality of second conductive bumps is disposed between the first substrate and the second substrate. An in-package voltage regulator (PVR) chip is disposed over the second substrate. A molding material is disposed over the first substrate and surrounds the first die, the second die, the plurality of first conductive bumps, the plurality of second conductive bumps, and the PVR chip.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alan Roth, Haohua Zhou, Eric Soenen, Ying-Chih Hsu, Paul Ranucci, Mei Hsu Wong, Tze-Chiang Huang
  • Patent number: 11664415
    Abstract: An interconnect structure for use in coupling transistors in an integrated circuit is disclosed, including various configurations in which ferroelectric capacitors exhibiting negative capacitance are coupled in series with dielectric capacitors. In one embodiment, the negative capacitor includes a dielectric/ferroelectric bi-layer. When a negative capacitor is electrically coupled in series with a conventional dielectric capacitor, the series combination behaves like a stable ferroelectric capacitor for which the overall capacitance can be measured experimentally, and tuned to a desired value. The composite capacitance of a dielectric capacitor and a ferroelectric capacitor having negative capacitance coupled in series is, in theory, infinite, and in practice, very large. A series combination of positive and negative capacitors within a microelectronic interconnect structure can be used to make high capacity DRAM memory cells.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: May 30, 2023
    Assignee: STMICROELECTRONICS, INC.
    Inventor: John H. Zhang
  • Patent number: 11665884
    Abstract: A semiconductor device includes conductive pillars on a semiconductor substrate, a first support pattern that contacts first portions of lateral surfaces of the conductive pillars and connects the conductive pillars to each other, the first support pattern including first support holes that expose second portions of the lateral surfaces of the conductive pillars, a capping conductive pattern that contacts the second portions of the lateral surfaces of the conductive pillars and exposes the first support pattern, the second portions of the lateral surfaces of the conductive pillars being in no contact with the first support pattern, and a dielectric layer that covers the first support pattern and the capping conductive pattern, the dielectric layer being spaced apart from the conductive pillars.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: May 30, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chang-Su Woo, Haeryong Kim, Younsoo Kim, Sunmin Moon, Jeonggyu Song, Kyooho Jung
  • Patent number: 11658174
    Abstract: A semiconductor device includes a plurality of capacitors with MIM structure disposed in an interconnection layer on a substrate. Each capacitor includes a first electrode and a second electrode provided by any two interconnection parts of the interconnection layer, in which the first electrode is one of the two interconnection parts located adjacent to the substrate and the second electrode is the other located opposite to the substrate with respect to the first electrode. One of the first and second electrode of each capacitor is provided by the same interconnection part as a subject electrode, and a distance between the first electrode and the second electrode is different among the plurality of capacitors to have different capacitances. The subject electrodes provided by the same interconnection part are covered with an insulating film of the interconnection layer, and have ends on a same plane.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 23, 2023
    Assignee: DENSO CORPORATION
    Inventors: Tsuyoshi Fujiwara, Seiji Noma
  • Patent number: 11658190
    Abstract: A display apparatus includes a substrate. A first buffer layer is disposed over the substrate. The first buffer layer includes silicon nitride and has an atomic percentage of hydrogen bonded to silicon of about 0.36 to about 1.01. A thin film transistor is disposed over the first buffer layer. The thin film transistor includes an active layer. A display element is electrically connected to the thin film transistor.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: May 23, 2023
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yungbin Chung, Yeoungkeol Woo, Eunjin Kwak
  • Patent number: 11657979
    Abstract: A multilayer ceramic capacitor includes a body including a dielectric layer and first and second internal electrodes disposed with the dielectric layer interposed therebetween and disposed in point-symmetry with each other; first and second connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the first internal electrode; third and fourth connection electrodes penetrating the body in a direction perpendicular to the dielectric layer and connected to the second internal electrode; first and second external electrodes disposed on both surfaces of the body and connected to the first and second connection electrodes; and third and fourth external electrodes spaced apart from the first and second external electrodes and connected to the third and fourth connection electrodes, and the first and second internal electrodes include a region in which an electrode is not disposed.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: May 23, 2023
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Taek Jung Lee, Min Gon Lee, Jea Yeol Choi, Jin Man Jung, Jin Kyung Joo
  • Patent number: 11659291
    Abstract: Stability of a current-voltage conversion circuit is increased in a solid-state imaging element that converts photocurrent to a voltage signal. A photodiode photoelectrically converts incident light and generates photocurrent. A conversion transistor converts photocurrent to a voltage signal and outputs the voltage signal from a gate. A current source transistor supplies predetermined constant current to an output signal line connected to the gate. A voltage supply transistor supplies a certain voltage corresponding to the predetermined constant current from the output signal line to a source of the conversion transistor. A capacitance is connected between the gate and the source of the conversion transistor.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: May 23, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Atsumi Niwa
  • Patent number: 11652068
    Abstract: A vertical memory device including: a circuit pattern on a first substrate; an insulating interlayer on the first substrate, the insulating interlayer covering the circuit pattern; a bending prevention layer on the insulating interlayer, the bending prevention layer extending in a first direction substantially parallel to an upper surface of the first substrate; a second substrate on the bending prevention layer; gate electrodes spaced apart from each other in a second direction on the second substrate, the second direction being substantially perpendicular to the upper surface of the first substrate; and a channel extending through the gate electrodes in the second direction.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: May 16, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sunil Shim
  • Patent number: 11652136
    Abstract: A semiconductor arrangement is provided. The semiconductor arrangement includes a molding layer and a first capacitor. The first capacitor includes a first vertical conductive structure within the molding layer, a second vertical conductive structure within the molding layer, and a first high-k dielectric material between the first vertical conductive structure and the second vertical conductive structure.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Huan-Neng Chen, Wen-Shiang Liao
  • Patent number: 11646262
    Abstract: The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a first palm portion positioned above a substrate; a second palm portion positioned above the substrate and opposite to the first palm portion; a first finger portion arranged substantially in parallel with a main surface of the substrate, positioned between the first palm portion and the second palm portion, and connecting to the first palm portion; a second finger portion arranged substantially in parallel with the first finger portion, positioned between the first palm portion and the second palm portion, and connecting to the second palm portion; a capacitor insulation layer positioned between the first finger portion and the second finger portion; a first spacer positioned between the first palm portion and second finger portion; and a second spacer positioned between the second palm portion and the first finger portion.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 9, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Yu-Han Hsueh
  • Patent number: 11640971
    Abstract: A deep trench is formed in a substrate, and a layer stack including at least three metallic electrode plates interlaced with at least two node dielectric layers is formed in, and over, the deep trench. A contact-level dielectric material layer over the layer stack, and contact via cavities are formed therethrough. The depths of the contact via cavities are differentiated by selectively increasing the depth of a respective subset of the contact via cavities by performing at least twice a combination of processing steps that includes an etch mask formation process and an etch process. A combination of a dielectric contact via liner and a plate contact via structure can be formed within each of the contact via cavities. Plate contact via structures that extend through any metallic electrode plate can be electrically isolated from such a metallic electrode plate by a respective dielectric contact via liner.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 2, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Ming Chyi Liu, Yu-Hsing Chang, Shih-Chang Liu
  • Patent number: 11637106
    Abstract: A capacitive element is located in an active region of the substrate and on a front face of the substrate. The capacitive element includes a first electrode and a second electrode. The first electrode is formed by a first conductive region and the active region. The second electrode is formed by a second conductive region and a monolithic conductive region having one part covering a surface of said front face and at least one part extending into the active region perpendicularly to said front face. The first conductive region is located between and is insulated from the monolithic conductive region and a second conductive region.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 25, 2023
    Assignee: STMicroelectronics (Rousset) SAS
    Inventor: Abderrezak Marzaki
  • Patent number: 11637055
    Abstract: The present disclosure provides a semiconductor device package. The semiconductor device package includes a first substrate and a second substrate. The first substrate has a first surface and a second surface opposite to the first surface of the first substrate. The second substrate has a first surface facing the first substrate and a second surface opposite to the first surface of the second substrate. The semiconductor device package also includes a first electronic component disposed on the first surface of the second substrate and electrically connected to the first surface of the second substrate. The semiconductor device package also includes a first encapsulant and a second encapsulant between the first substrate and the second substrate. The first encapsulant is different from the second encapsulant. A method of manufacturing a semiconductor device package is also disclosed.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 25, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Li-Hua Tai, Wen-Pin Huang
  • Patent number: 11637174
    Abstract: An integrated circuit device including a lower electrode on a substrate, the lower electrode including a first lower electrode portion extending in a first direction perpendicular to a top surface of the substrate and including a first main region and a first top region, and a second lower electrode portion extending in the first direction on the first lower electrode portion and including a second main region and a second top region; a first top supporting pattern surrounding at least a portion of a side wall of the first top region of the first lower electrode portion; and a second top supporting pattern surrounding at least a portion of a side wall of the second top region of the second lower electrode portion, and the second lower electrode portion includes a protrusion protruding outward to the second top supporting pattern.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 25, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yoonyoung Choi, SangJae Park, Dongkyun Lee
  • Patent number: 11631613
    Abstract: Provided is a semiconductor device, including a substrate including a pixel region, a gate structure on the substrate in the pixel region, wherein the gate structure comprises a gate dielectric layer and a gate conductive layer on the gate dielectric layer; a dielectric layer located over the substrate and the gate structure; and a contact located in the dielectric layer and electrically connected to the gate conductive layer. The contact includes a doped polysilicon layer in contact with the gate conductive layer; a metal layer located on the doped polysilicon layer, wherein a part of the metal layer is embedded in the doped polysilicon layer; a barrier layer located between the metal layer and the doped polysilicon layer; and a metal silicide layer located between the barrier layer and the doped polysilicon layer.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Chin-Hung Chen, Yu-Hsiang Lin
  • Patent number: 11631680
    Abstract: A process of smoothing a top surface of a bit line metal of a memory structure to decrease resistance of a bit line stack. The process includes depositing titanium layer of approximately 30 angstroms to 50 angstroms on polysilicon layer on a substrate, depositing first titanium nitride layer of approximately 15 angstroms to approximately 40 angstroms on titanium layer, annealing substrate at a temperature of approximately 700 degrees Celsius to approximately 850 degrees Celsius, depositing second titanium nitride layer of approximately 15 angstroms to approximately 40 angstroms on first titanium nitride layer after annealing, depositing a bit line metal layer of ruthenium on second titanium nitride layer, annealing bit line metal layer at temperature of approximately 550 degrees Celsius to approximately 650 degrees Celsius, and soaking bit line metal layer in hydrogen-based ambient for approximately 3 minutes to approximately 6 minutes during annealing.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: April 18, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Priyadarshi Panda, In Seok Hwang
  • Patent number: 11631677
    Abstract: A semiconductor memory device includes a device isolation pattern on a substrate to define an active region, a word line in the substrate, to intersect the active region, a first dopant region in the active region as at a first side of the word line, a second dopant region in the active region at a second side of the word line, a bit line connected to the first dopant region and intersecting the word line, a bit line contact connecting the bit line to the first dopant region, a landing pad on the second dopant region, and a storage node contact connecting the landing pad to the second dopant region, the storage node contact including a first portion in contact with the second dopant region, the first portion including a single-crystal silicon, and a second portion on the first portion and including a poly-silicon.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: April 18, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Daeyoung Moon, Jamin Koo, Kyuwan Kim, Kisoo Park
  • Patent number: 11631614
    Abstract: Certain aspects of the present disclosure are generally directed to techniques and apparatus for adjusting capacitance in one or more metal-insulator-metal (MIM) capacitors in an effort to reduce capacitance variation between semiconductor devices and improve yield during fabrication. One example method for fabricating a semiconductor device generally includes measuring a capacitance value of a MIM capacitor of the semiconductor device, determining the measured capacitance value of the MIM capacitor is above a target capacitance value for the MIM capacitor, and selectively rupturing a set of connections in the MIM capacitor based on the measured capacitance value. Selectively rupturing the set of connections in the MIM capacitor may reduce the capacitance value of the MIM capacitor to a value approximately that of the target capacitance value.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: April 18, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Jin-Su Ko, Beomsup Kim, Periannan Chidambaram
  • Patent number: 11626405
    Abstract: A semiconductor device includes a plurality of lower electrode structures disposed on a substrate, and a supporter pattern disposed between pairs of lower electrode structures of the plurality of lower electrode structures. The semiconductor device further includes a capacitor dielectric layer disposed on surfaces of each of the plurality of lower electrode structures and the supporter pattern, and an upper electrode disposed on the capacitor dielectric layer. The plurality of lower electrode structures includes a first lower electrode and a second lower electrode disposed on the first lower electrode and having a cylindrical shape. The first lower electrode has a pillar shape. The first lower electrode includes an insulating core. The insulating core is disposed in the first lower electrode. An outer side surface of the first lower electrode and an outer side surface of the second lower electrode are coplanar.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: April 11, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Hwan Kim, Ji Young Kim, Bong Soo Kim
  • Patent number: 11626412
    Abstract: A method for forming a semiconductor device includes forming a metal layer and a spacer adjacent to the metal layer. The spacer includes a composite-dielectric layer including a composite-dielectric material. A composition of the composite-dielectric material is a mixture of a composition of a first dielectric material and a composition of a second dielectric material different from the first dielectric material.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: April 11, 2023
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Liheng Liu, Chuan Yang, Shuangshuang Peng
  • Patent number: 11621318
    Abstract: The present disclosure provides a capacitor, a semiconductor device, and a method for preparing a capacitor. The semiconductor device includes a plurality of memory cells, at least one of the memory cells including a capacitor. The capacitor includes a first electrode comprising titanium nitride and disposed on a substrate, a dielectric film disposed on the first electrode, a multilayer film disposed on the dielectric film, and a second electrode comprising titanium nitride and disposed on the multilayer film. The method for preparing the capacitor includes forming the first electrode comprising titanium nitride on the substrate, forming a dielectric film on the first electrode, forming the multilayer film on the dielectric film, and forming the second electrode comprising titanium nitride on the multilayer film.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: April 4, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventors: Mao-Ying Wang, Tse-Yao Huang
  • Patent number: 11615857
    Abstract: A semiconductor well of a non-volatile memory houses memory cells. The memory cells each have a floating gate and a control gate. Erasing of the memory cells includes biasing the semiconductor well with a first erase voltage having an absolute value greater than a breakdown voltage level of bipolar junctions of a control gate switching circuit of the memory. An absolute value of the first erase voltage is based on a comparison of a value of an indication of wear of the memory cells to a wear threshold value.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: March 28, 2023
    Assignees: STMICROELECTRONICS S.r.l., STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Francesco La Rosa, Enrico Castaldo, Francesca Grande, Santi Nunzio Antonino Pagano, Giuseppe Nastasi, Franco Italiano
  • Patent number: 11610836
    Abstract: A method for fabricating a semiconductor device is provided and includes the following steps: providing a substrate; forming a lower electrode on the substrate; forming at least one sub-dielectric layer on the lower electrode; patterning the dielectric layer to form an intermediate dielectric layer, where the intermediate dielectric layer exposes a portion of the at least one sub-dielectric layer; forming a hole by etching the portion of the at least one sub-dielectric layer not covered by the intermediate dielectric layer; filling at least one plug into the hole; and forming an upper electrode on the intermediate dielectric layer.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: March 21, 2023
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Chi-Hua Yu, Shih-Tsung Kung, Wen-Chun Chung, Yi-Hong Hong
  • Patent number: 11605703
    Abstract: The present application discloses a semiconductor device with capacitors having a shared electrode and a method for fabricating the semiconductor device. The semiconductor device includes a substrate, a first capacitor unit, a second capacitor unit, and a connection structure. The first capacitor unit includes a bottom conductive structure inwardly positioned in the substrate, and a shared conductive layer positioned above the bottom conductive structure with a first insulating layer interposed therebetween. The second capacitor unit includes the shared conductive layer, a top conductive layer positioned above the shared conductive layer with a second insulating layer interposed therebetween. The connection structure electrically connects the bottom conductive structure and the top conductive layer such that the first capacitor unit and the second capacitor unit are in parallel.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: March 14, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Chih-Wei Huang
  • Patent number: 11600630
    Abstract: Some embodiments include an integrated assembly having a source structure, and having a stack of alternating conductive levels and insulative levels over the source structure. Cell-material-pillars pass through the stack. The cell-material-pillars are arranged within a configuration which includes a first memory-block-region and a second memory-block-region. The cell-material-pillars include channel material which is electrically coupled with the source structure. Memory cells are along the conductive levels and include regions of the cell-material-pillars. A panel is between the first and second memory-block-regions. The panel has a first material configured as a container shape. The container shape defines opposing sides and a bottom of a cavity. The panel has a second material within the cavity. The second material is compositionally different from the first material. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jordan D. Greenlee, Nancy M. Lomeli, John D. Hopkins, Jiewei Chen, Indra V. Chary, Jun Fang, Vladimir Samara, Kaiming Luo, Rita J. Klein, Xiao Li, Vinayak Shamanna
  • Patent number: 11600691
    Abstract: A memory cell comprises a capacitor having a first conductive capacitor electrode having laterally-spaced walls that individually have a top surface. A second conductive capacitor electrode is laterally between the walls of the first capacitor electrode, and comprises a portion above the first capacitor electrode. Ferroelectric material is laterally between the walls of the first capacitor electrode and laterally between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the ferroelectric material. A parallel current leakage path is between an elevationally-inner surface of the portion of the second capacitor electrode that is above the first capacitor electrode and at least one of the individual top surfaces of the laterally-spaced walls of the first capacitor electrode.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Muralikrishnan Balakrishnan, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Patent number: 11600621
    Abstract: Disclosed are semiconductor memory devices and methods of fabricating the same. The semiconductor memory device comprises a capacitor that includes a bottom electrode, a top electrode opposite to the bottom electrode across a dielectric layer, and an interface layer between the bottom electrode and the dielectric layer. The interface layer includes a combination of niobium (Nb), titanium (Ti), oxygen (O), and nitrogen (N), and further includes a constituent of the dielectric layer.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: March 7, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyooho Jung, Younsoo Kim, Young-lim Park, Jeong-Gyu Song, Se Hyoung Ahn, Changmu An
  • Patent number: 11594632
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen