Group Iii-v Compound On Dissimilar Group Iii-v Compound (epo) Patents (Class 257/E21.126)
  • Patent number: 8227826
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: July 24, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Patent number: 8212266
    Abstract: A light emitting device may include a plurality of nano-structures having a strip shape, each including a first nano-structure and a second nano-structure, the first nano-structures being the same height on the buffer layer.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 3, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-moon Lee, Young-soo Park
  • Patent number: 8188573
    Abstract: A nitride semiconductor substrate and a method for manufacturing the same are provided. The nitride semiconductor substrate includes an epitaxy substrate, a nitride pillar layer, a nitride semiconductor layer, and a mask layer. The nitride pillar layer includes a plurality of first patterned arranged pillars and a plurality of second patterned arranged pillars. The nitride pillar layer is formed on the epitaxy substrate. A width of a cross-section of each of the second patterned arranged pillars is smaller than a width of a cross-section of each of the first patterned arranged pillars, and a distance among each of the second patterned arranged pillars is longer than a distance among each of the first patterned arranged pillars. Surfaces of the epitaxy substrate, the first patterned arranged pillars, and the second patterned arranged pillars are covered by the mask layer. The nitride semiconductor layer is formed on the nitride pillar layer.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Yih-Der Guo, Suh-Fang Lin, Wei-Hung Kuo
  • Patent number: 8169004
    Abstract: A compound semiconductor epitaxial substrate and a process for producing the same are provided. The compound semiconductor epitaxial substrate comprises a single crystal substrate, a lattice mismatch compound semiconductor layer and a stress compensation layer, wherein the lattice mismatch compound semiconductor layer and the stress compensation layer are disposed on the identical surface side of the single crystal substrate, there is no occurrence of lattice relaxation in the lattice mismatch compound semiconductor layer, as well as the stress compensation layer, and Ls representing the lattice constant of the single crystal substrate, Lm representing the lattice constant of the lattice mismatch compound semiconductor layer, and Lc representing the lattice constant of the stress compensation layer satisfy the formula (1a) or (1b).
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: May 1, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenji Kohiro, Tomoyuki Takada, Kazumasa Ueda, Masahiko Hata
  • Patent number: 8148241
    Abstract: One embodiment of depositing a gallium nitride (GaN) film on a substrate comprises providing a source of indium (In) and gallium (Ga) and depositing a monolayer of indium (In) on the surface of the gallium nitride (GaN) film. The monolayer of indium (In) acts as a surfactant to modify the surface energy and facilitate the epitaxial growth of the film by suppressing three dimensional growth and enhancing or facilitating two dimensional growth. The deposition temperature is kept sufficiently high to enable the indium (In) to undergo absorption and desorption on the gallium nitride (GaN) film without being incorporated into the solid phase gallium nitride (GaN) film. The gallium (Ga) and indium (In) can be provided by a single source or separate sources.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jie Su, Olga Kryliouk
  • Patent number: 8133768
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 13, 2012
    Assignees: NthDegree Technologies Worldwide Inc, The United States of America as represented by the Unites States National Aeronautics and Space Administration
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Patent number: 8110880
    Abstract: Systems and methods for single lithography step interconnection metallization using a stop-etch layer are described. A method that includes depositing a stop-etch layer over a semiconductor device, depositing an interconnect metallization material over the stop-etch layer, performing a single lithography step to pattern a mask over the interconnect metallization material, etching the interconnect metallization material in non-masked areas, and removing the stop-etch layer. A system comprises a stop-etch layer material for deposit into a stop-etch layer over a wafer, an interconnect metallization material for deposit over the chrome layer, a lithography operation for patterning a mask over the interconnect metallization material, a first etching compound for etching the interconnect metallization material, where the etching stops at the stop-etch layer, and a second etching compound for removing the stop-etch layer.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 7, 2012
    Assignee: Northrop Grumman Systems Corporation
    Inventor: John V. Veliadis
  • Patent number: 8101490
    Abstract: A method for manufacturing a semiconductor device includes: irradiating a growth substrate with laser light to focus the laser light into a prescribed position inside a crystal for a semiconductor device or inside the growth substrate, the crystal for the semiconductor device being formed on a first major surface of the growth substrate; moving the laser light in a direction parallel to the first major surface; and peeling off a thin layer including the crystal for the semiconductor device from the growth substrate, a wavelength of the laser light being longer than an absorption end wavelength of the crystal for the semiconductor device or the growth substrate, the laser light being irradiated inside a crystal for the semiconductor device or inside the growth substrate.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masanobu Ando, Toru Gotoda, Toru Kita
  • Patent number: 8101530
    Abstract: A method for fabricating an integrated circuit device is disclosed. The method is a lithography patterning method that can include providing a substrate; forming a protective layer over the substrate; forming a conductive layer over the protective layer; forming a resist layer over the conductive layer; and exposing and developing the resist layer.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: January 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: I-Hsiung Huang, Chin-Hsiang Lin, Heng-Jen Lee, Heng-Hsin Liu
  • Patent number: 8071986
    Abstract: A nitride semiconductor light-emitting element 11 is one for generating light containing a wavelength component in an ultraviolet region. The nitride semiconductor light-emitting element 11 has an active region 17 including InX1AlY1Ga1-X1-Y1N well layers 13 (1>X1>0 and 1>Y1>0) and InX2AlY2Ga1-X2-Y2N barrier layers 15 (1>X2>0 and 1>Y2>0). An energy gap difference Eg1 between the InX1AlY1Ga1-X1-Y1N well layers 13 and the InX2AlY2Ga1-X2-Y2N barrier layers 15 is not less than 2.4×10?20 J nor more than 4.8×10?20 J.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: December 6, 2011
    Assignees: Sumitomo Electric Industries, Ltd., Riken
    Inventors: Takashi Kyono, Katsushi Akita, Hideki Hirayama
  • Patent number: 8044414
    Abstract: In formation of a quantum dot structure in a light emitting layer, a matrix region (an n-type conductive layer and matrix layers) is formed on a growth underlying layer of AlN whose abundance ratio of Al is higher (or whose lattice constant is smaller) than that in the matrix region by an MBE technique, thereby to realize conditions where compression stress is caused in an in-plane direction perpendicular to the direction of growth of the matrix region, and then to form island crystals by self-organization in the presence of this compression stress. The compression stress inhibits an increase in lattice constant caused by the reduced abundance ratio of Al in the matrix region, i.e., to compensate for a difference in lattice constant between the island crystals and the matrix region. The compression stress functions to enlarge compositional limits for formation of the island crystals by self-organization to the Ga-rich side.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: October 25, 2011
    Assignees: NGK Insulators, Ltd., Commissariat a l'Energie Atomique
    Inventors: Yuji Hori, Bruno Daudin, Edith Bellet-Amalric
  • Patent number: 8043872
    Abstract: A method of manufacturing epitaxial material used for GaN based LED with low polarization effect, which includes steps of growing n-type InGaAlN layer composed of GaN buffer layer (2) and n-type GaN layer (3), low polarizing active layer composed of InGaAlN multi-quantum well structure polarized regulating and controlling layer (4) and InGaAlN multi-quantum well structure light emitting layer (5) and p-type InGaAlN layer (6) on sapphire or SiC substrate (1) in turn. The method adds InGaAlN multi-quantum well structure polarized regulating and controlling layer, thus reduces polarization effect of quantum well active region.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 25, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Hong Chen, Haiqiang Jia, Liwei Guo, Wenxin Wang, Junming Zhou
  • Patent number: 8039371
    Abstract: A semiconductor-on-insulator hetero-structure and a method for fabricating the semiconductor -on-insulator hetero-structure include a crystalline substrate and a dielectric layer located thereupon having an aperture that exposes the crystalline substrate. The semiconductor-on -insulator hetero-structure and the method for fabricating the semiconductor-on-insulator hetero-structure also include a semiconductor layer of composition different than the crystalline substrate located within the aperture and upon the dielectric layer. A portion of the semiconductor layer located aligned over the aperture includes a defect. A portion of the semiconductor layer located aligned over the dielectric layer does not include a defect. Upon removing the portion of the semiconductor layer located aligned over the aperture a reduced defect semiconductor-on-insulator hetero-structure is formed.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jeehwan Kim, Alexander Reznicek, Devendra K. Sadana
  • Patent number: 8008696
    Abstract: A complementary metal-oxide-semiconductor (CMOS) optical sensor structure comprises a pixel containing a charge collection well of a same semiconductor material as a semiconductor layer in a semiconductor substrate and at least another pixel containing another charge collection well of a different semiconductor material than the material of the semiconductor layer. The charge collections wells have different band gaps, and consequently, generate charge carriers in response to light having different wavelengths. The CMOS sensor structure thus includes at least two pixels responding to light of different wavelengths, enabling wavelength-sensitive, or color-sensitive, capture of an optical data. Further, a design structure for the inventive complementary metal-oxide-semiconductor (CMOS) image sensor is also provided.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Toshiharu Furukawa, Robert Robison, William R. Tonti
  • Patent number: 8003510
    Abstract: Fabrication methods for nano-scale chalcopyritic powders and polymeric thin-film solar cells are presented. The fabrication method for nano-scale chalcopyritic powders includes providing a solution consisting of group IB, IIIA, VIA elements on the chemistry periodic table or combinations thereof. The solution is heated by a microwave generator. The solution is washed and filtered by a washing agent. The solution is subsequently dried, thereby acquiring nano-scale chalcopyritic powders.
    Type: Grant
    Filed: April 26, 2008
    Date of Patent: August 23, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yu Huang, Bing-Joe Hwang, Hsuan-Fu Wang, Chih-Chung Wu, Shih-Hong Chang
  • Patent number: 7998877
    Abstract: This invention describes a method of making solar cells wherein the efficiency of the solar cell is enhanced by defining a diffraction grating either on top of the cell or at the bottom of the cell. The diffraction grating spacing is defined such that it bends one or more wavelengths of the incident radiation thereby making those wavelengths traverse in the direction of the plane of the device. The addition of a diffraction grating is done in conjunction with thinning down the cell such that the minority carriers generated (holes and electrons) have a higher probability of being collected. The combined effect of the diffraction grating and the reduced thickness in the solar cell increases the efficiency of the solar cell.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: August 16, 2011
    Inventor: Saket Chadda
  • Patent number: 7989238
    Abstract: Provided is a Group III nitride-based compound semiconductor light-emitting device including aluminum regions. The Group III nitride-based compound semiconductor light-emitting device includes a sapphire substrate; aluminum regions which are formed on the substrate; an AlN buffer layer; an Si-doped GaN n-contact layer; an n-cladding layer formed of multiple layer units, each including an undoped In0.1Ga0.9N layer, an undoped GaN layer, and a silicon (Si)-doped GaN layer; an MQW light-emitting layer including alternately stacked eight well layers formed of In0.2Ga0.8N and eight barrier layers formed of GaN and Al0.06Ga0.94N; a p-cladding layer formed of multiple layers including a p-type Al0.3Ga0.7N layer and a p-type In0.08Ga0.92N layer; a p-contact layer having a layered structure including two p-type GaN layers having different magnesium concentrations; and an ITO light-transmitting electrode.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: August 2, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Koji Okuno
  • Patent number: 7985690
    Abstract: A method for fabricating a semiconductor device is disclosed. The method includes providing a substrate; forming one or more gate structures over the substrate; forming a buffer layer over the substrate, including over the one or more gate structures; forming an etch stop layer over the buffer layer; forming a interlevel dielectric (ILD) layer over the etch stop layer; and removing a portion of the buffer layer, a portion of the etch stop layer, and a portion of the ILD layer over the one or more gate structures.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: July 26, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kong-Beng Thei, Harry Chuang, Su-Chen Lai, Gary Shen
  • Patent number: 7972885
    Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: July 5, 2011
    Assignee: Banpil Photonics, Inc.
    Inventors: Achyut Kumar Dutta, Robert Allen Olah
  • Patent number: 7964483
    Abstract: The present invention relates to a method for growing a nitride semiconductor epitaxial layer, which comprises the steps of growing a second nitride semiconductor epitaxial layer on a first nitride semiconductor epitaxial layer at a first temperature, growing a third nitride semiconductor epitaxial layer on the second nitride semiconductor epitaxial layer at a second temperature, and releasing nitrogen from the second nitride semiconductor epitaxial layer by increasing a temperature to a third temperature higher than the second temperature, thereby, it is possible to lower the defect density of epitaxial layers and reduce warpage of a substrate.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: June 21, 2011
    Assignee: Seoul National University Industry Foundation
    Inventors: Euijoon Yoon, Hyunseok Na
  • Patent number: 7951695
    Abstract: A semiconductor process and apparatus to provide a way to reduce plasma-induced damage by applying a patterned layer of photoresist (114) which includes resist openings formed (117) over the active circuit areas (13, 14) as well as additional resist openings (119) formed over inactive areas (15) in order to maintain the threshold coverage level to control the amount of resist coverage over a semiconductor structure so that the total amount of resist coverage is at or below a threshold coverage level. Where additional resist openings (119) are required in order to maintain the threshold coverage level, these openings may be used to create additional charge dissipation structures (e.g., 152) for use in manufacturing the final structure.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 31, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David M. Schraub, Terry A. Breeden, James D. Legg, Mehul D. Shroff, Ruiqi Tian
  • Patent number: 7943530
    Abstract: Prototype semiconductor structures each including a semiconductor link portion and two adjoined pad portions are formed by lithographic patterning of a semiconductor layer on a dielectric material layer. The sidewalls of the semiconductor link portions are oriented to maximize hole mobility for a first-type semiconductor structures, and to maximize electron mobility for a second-type semiconductor structures. Thinning by oxidation of the semiconductor structures reduces the width of the semiconductor link portions at different rates for different crystallographic orientations. The widths of the semiconductor link portions are predetermined so that the different amount of thinning on the sidewalls of the semiconductor link portions result in target sublithographic dimensions for the resulting semiconductor nanowires after thinning.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Lidija Sekaric, Tymon Barwicz, Dureseti Chidambarrao
  • Patent number: 7910395
    Abstract: An LED structure includes a first substrate; an adhering layer formed on the first substrate; first ohmic contact layers formed on the adhering layer; epi-layers formed on the first ohmic contact layers; a first isolation layer covering the first ohmic contact layers and the epi-layers at exposed surfaces thereof; and first electrically conducting plates and second electrically conducting plates, both formed in the first isolation layer and electrically connected to the first ohmic contact layers and the epi-layers, respectively. The trenches allow the LED structure to facilitate complex serial/parallel connection so as to achieve easy and various applications of the LED structure in the form of single structures under a high-voltage environment.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: March 22, 2011
    Assignee: Helio Optoelectronics Corporation
    Inventors: Shih-Chang Shei, Ming-Hung Chen, Shih-Yi Wen, Chun-Che Lee
  • Patent number: 7911035
    Abstract: Nanowhiskers are grown in a non-preferential growth direction by regulation of nucleation conditions to inhibit growth in a preferential direction. In a preferred implementation, <001> III-V semiconductor nanowhiskers are grown on an (001) III-V semiconductor substrate surface by effectively inhibiting growth in the preferential <111>B direction. As one example, <001> InP nano-wires were grown by metal-organic vapor phase epitaxy directly on (001) InP substrates. Characterization by scanning electron microscopy and transmission electron microscopy revealed wires with nearly square cross sections and a perfect zincblende crystalline structure that is free of stacking faults.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: March 22, 2011
    Assignee: QuNano AB
    Inventors: Werner Seifert, Lars Ivar Samuelson, Björn Jonas Ohlsson, Lars Magnus Borgström
  • Patent number: 7897489
    Abstract: A method of selectively attaching a capping agent to an H-passivated Si or Ge surface is disclosed. The method includes providing the H-passivated Si or Ge surface, the H-passivated Si or Ge surface including a set of covalently bonded Si or Ge atoms and a set of surface substitutional atoms, wherein the set of surface substitutional atoms includes at least one of boron atoms, aluminum atoms, gallium atoms, indium atoms, tin atoms, lead atoms, phosphorus atoms, arsenic atoms, sulfur atoms, and bismuth atoms. The method also includes exposing the set of surface functional atoms to a set of capping agents, each capping agent of the set of capping agents having a set of functional groups bonded to a pair of carbon atoms, wherein the pair of carbon atoms includes at least one pi orbital bond, and further wherein a covalent bond is formed between at least some surface substitutional atoms of the set of surface substitutional atoms and at least some capping agents of the set of capping agents.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 1, 2011
    Assignee: Innovalight, Inc.
    Inventor: Elena Rogojina
  • Publication number: 20110042718
    Abstract: A nitride semiconductor layer-containing structure having a configuration in which: the structure includes a laminated structure based on at least two nitride semiconductor layers; the structure includes between the two nitride semiconductor layers in the laminated structure a plurality of voids surrounded by the faces of the walls inclusive of the inner walls of the recessed portions of the asperity pattern formed on the nitride semiconductor layer that is the lower layer of the two nitride semiconductor layers; and crystallinity defect-containing portions to suppress the lateral growth of the nitride semiconductor layer are formed on at least part of the inner walls of the recessed portions to form the voids.
    Type: Application
    Filed: May 25, 2009
    Publication date: February 24, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Shinan Wang, Kenji Tamamori
  • Patent number: 7888266
    Abstract: A complementary metal-oxide-semiconductor (CMOS) optical sensor structure includes a pixel containing a charge collection well of a same semiconductor material as a semiconductor layer in a semiconductor substrate and at least another pixel containing another charge collection well of a different semiconductor material than the material of the semiconductor layer. The charge collections wells have different band gaps, and consequently, generate charge carriers in response to light having different wavelengths. The CMOS sensor structure thus includes at least two pixels responding to light of different wavelengths, enabling wavelength-sensitive, or color-sensitive, capture of an optical data.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Toshiharu Furukawa, Robert Robison, William R. Tonti
  • Patent number: 7879726
    Abstract: A method of fabricating a semiconductor device is provided. The method can include forming a hard mask film including lower and upper hard mask films on a substrate in which an active region and an isolation region are defined and patterning the hard mask film to provide a hard mask pattern partially exposing the active region and the isolation region. An etchant can be applied to the active and isolation regions using the hard mask pattern as an etching mask to form a trench in the active region of the substrate while avoiding substantially etching the isolation region exposed to the etchant and a gate can be formed on the trench.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Sik Park, Jun-Ho Yoon, Cheol-Kyu Lee, Joon-Soo Park
  • Patent number: 7875912
    Abstract: The use of atomic layer deposition (ALD) to form a nanolaminate dielectric of zirconium oxide (ZrO2), hafnium oxide (HfO2) and tin oxide (SnO2) acting as a single dielectric layer with a formula of Zrx Hfy Sn1-x-y O2, and a method of fabricating such a dielectric layer is described that produces a reliable structure with a high dielectric constant (high k). The dielectric structure is formed by depositing zirconium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing hafnium oxide onto the substrate using precursor chemicals, followed by depositing tin oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. Such a dielectric may be used as a gate insulator, a capacitor dielectric, or as a tunnel insulator in non-volatile memories, because the high dielectric constant (high k) provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7871850
    Abstract: Disclosed are a light emitting device and a method for manufacturing the same. The light emitting device includes a substrate having a lead frame, a light emitting diode mounted on the substrate, a mold member formed on the substrate and the light emitting diode, and a reflecting member having an opening portion at one side thereof and being inclined at an outer portion of the mold member.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: January 18, 2011
    Assignee: LG Innotek Co., Ltd
    Inventor: Bo Geun Park
  • Patent number: 7846768
    Abstract: An assembly method is disclosed that includes providing a substrate, securing a first semiconductor device on a first surface thereof, and superimposing at least a second semiconductor device at least partially over the first semiconductor device. An outer peripheral portion of the second semiconductor device overhangs both the first semiconductor device and the substrate. Discrete conductive elements are placed between the outer peripheral portion of the second semiconductor device and a second surface of the substrate. Intermediate portions of the discrete conductive elements pass outside of a side surface of the substrate. Assemblies and packaged semiconductor devices that are formed in accordance with the method are also disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Dalson Ye Seng Kim, Chong Chin Hui, Lee Wang Lai, Roslan Bin Said
  • Patent number: 7838410
    Abstract: A method of electrically connecting an element to wiring includes the steps of forming a conductive fixing member precursor layer at least on wiring provided on a base; and arranging an element having a connecting portion on the wiring such that the connecting portion contacts the conductive fixing member precursor layer, and then heating the conductive fixing member precursor layer to form a conductive fixing member latter, thereby fixing the connecting portion of the element to the wiring, with the conductive fixing member layer therebetween, wherein the conductive fixing member precursor layer is composed of a solution-tape conductive material.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 23, 2010
    Assignee: Sony Corporation
    Inventors: Naoki Hirao, Yasunobu Iwakoshi, Katsuhiro Tomoda, Huy Sam
  • Patent number: 7825020
    Abstract: Disclosed herein is a method of manufacturing a semiconductor device that includes forming a metal catalytic pattern on a semiconductor substrate; etching the semiconductor substrate using the metal catalytic pattern as an etching mask to form a recess; forming an insulating layer over a structure including the recess, the metal catalytic pattern, and the semiconductor substrate; patterning the insulating layer to cross over the metal catalytic pattern and to expose a predetermined portion of the metal catalytic pattern; and growing a nano wire using the exposed predetermined portion of the metal catalytic pattern.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hyun Lee
  • Patent number: 7820525
    Abstract: A method for wafer-to-wafer bonding of a sensor readout circuitry separately fabricated with a silicon substrate to a photodiode device made of non-silicon materials grown from a separate substrate. In preferred embodiments the non-silicon materials are epitaxially grown on a silicon wafer. The bonding technique of preferred embodiments of the present invention utilizes lithographically pre-fabricated metallic interconnects to connect each of a number of pixel circuits on a readout circuit wafer to each of a corresponding number of pixel photodiodes on a photodiode wafer. The metallic interconnects are extremely small (with widths of about 2 to 4 microns) compared to prior art bump bonds with the solder balls of diameter typically larger than 20 microns. The present invention also provides alignment techniques to assure proper alignment of the interconnects during the bonding step.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: October 26, 2010
    Assignee: e-Phocus
    Inventor: Tzu-Chiang Hsieh
  • Patent number: 7820458
    Abstract: Test structures and methods for semiconductor devices, lithography systems, and lithography processes are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes using a lithography system to expose a layer of photosensitive material of a workpiece to energy through a lithography mask, the lithography mask including a plurality of first test patterns having a first phase shift and at least one plurality of second test patterns having at least one second phase shift. The layer of photosensitive material of the workpiece is developed, and features formed on the layer of photosensitive material from the plurality of first test patterns and the at least one plurality of second test patterns are measured to determine a optimal focus level or optimal dose of the lithography system for exposing the layer of photosensitive material of the workpiece.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: October 26, 2010
    Assignee: Infineon Technologies AG
    Inventor: Sajan Marokkey
  • Patent number: 7816221
    Abstract: High frequency performance of (e.g., silicon) bipolar devices (40, 100, 100?) is improved by reducing the capacitive coupling (Cbc) between the extrinsic base contact (46) and the collector (44, 44?, 44?). A dielectric ledge (453, 453?) is created during fabrication to separate the extrinsic base contract (46) from the collector (44, 44?, 44?) periphery (441). The dielectric ledge (453, 453?) underlies the transition region (461) where the extrinsic base contact (46) is coupled to the intrinsic base. (472) During device fabrication, a multi layer dielectric stack (45) is formed adjacent the intrinsic base (472) that allows the simultaneous creation of an undercut region (457, 457?) in which the intrinsic base (472) to extrinsic base contact (46) transition region (461) can be formed.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: October 19, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jay P. John, James A. Kirchgessner
  • Patent number: 7811908
    Abstract: Affords a method of storing GaN substrates from which semiconductor devices of favorable properties can be manufactured, the stored substrates, and semiconductor devices and methods of manufacturing the semiconductor devices. In the GaN substrate storing method, a GaN substrate (1) is stored in an atmosphere having an oxygen concentration of 18 vol. % or less, and/or a water-vapor concentration of 12 g/m3 or less. Surface roughness Ra of a first principal face on, and roughness Ra of a second principal face on, the GaN substrate stored by the storing method are brought to no more than 20 nm and to no more than 20 ?m, respectively. In addition, the GaN substrates are rendered such that the principal faces form an off-axis angle with the (0001) plane of from 0.05° to 2° in the <1 100> direction, and from 0° to 1° in the <11 20> direction.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: October 12, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideyuki Ijiri, Seiji Nakahata
  • Patent number: 7754504
    Abstract: A method for making a light-emitting diode, which including the steps of: providing a substrate having at least one recessed portion on one main surface and growing a first nitride-based III-V group compound semiconductor layer through a state of making a triangle in section having a bottom surface of the recessed portion as a base thereby burying the recessed portion; laterally growing a second nitride-based III-V group compound semiconductor layer from the first nitride-based III-V group compound semiconductor layer over the substrate; and successively growing a third nitride-based III-V group compound semiconductor layer of a first conduction type, an active layer and a fourth nitride-based III-V group compound semiconductor layer of a second conduction type on the second nitride-based III-V group compound semiconductor layer.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 13, 2010
    Assignee: Sony Corporation
    Inventors: Akira Ohmae, Shigetaka Tomiya, Yuki Maeda, Michinori Shiomi, Takaaki Ami, Takao Miyajima, Katsunori Yanashima, Takashi Tange, Atsushi Yasuda
  • Patent number: 7709823
    Abstract: The invention is directed to a group-III nitride vertical-rods substrate. The group-III vertical-rods substrate comprises a substrate, a buffer layer and a vertical rod layer. The buffer layer is located over the substrate. The vertical rod layer is located on the buffer layer and the vertical rod layer is comprised of a plurality of vertical rods standing on the buffer layer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: May 4, 2010
    Assignees: Industrial Technology Research Institute, National Tsing Hua University
    Inventors: Chih-Ming Lai, Wen-Yueh Liu, Jenq-Dar Tsay, Jung-Tsung Hsu, Shang-Jr Gwo, Chang-Hong Shen, Hon-Way Lin
  • Patent number: 7696020
    Abstract: A process of fabricating a thin film semiconductor device is proposed, which is suitable for mass production and enables to lower the production cost. A first substrate is subject to anodization to form a porous layer thereon. Then, a thin film semiconductor layer is formed on the porous layer. Using the thin film semiconductor layer, a semiconductor device is formed, and wiring is formed between the semiconductor devices. After that, the semiconductor devices on the first substrate is bonded to a second substrate. The semiconductor devices are separated from the first substrate. Further, the semiconductor devices are electrically insulated by removing a part of the thin film semiconductor layer from the separated surface of the second substrate.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Sony Corporation
    Inventor: Hiroshi Tayanaka
  • Patent number: 7687323
    Abstract: The method is disclosed as applied to roughening the light-emitting surface of an LED wafer for reduction of the internal total reflection of the light generated. A masking film of silver is first deposited on the surface of a wafer to be diced into LED chips. Then the masking film is heated to cause its coagulation into discrete particles. Then, using the silver particles as a mask, the wafer surface is dry etched to create pits therein. The deposition of silver on the wafer surface and its thermal coagulation into particles may be either successive or concurrent.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: March 30, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Tetsuji Matsuo, Mikio Tazima, Takashi Kato
  • Patent number: 7682944
    Abstract: A substrate comprising a trench lateral epitaxial overgrowth structure including a trench cavity, wherein the trench cavity includes a growth-blocking layer or patterned material supportive of a coalescent Pendeo layer thereon, on at least a portion of an inside surface of the trench. Such substrate is suitable for carrying out lateral epitaxial overgrowth to form a bridged lateral overgrowth formation overlying the trench cavity. The bridged lateral overgrowth formation provides a substrate surface on which epitaxial layers can be grown in the fabrication of microelectronic devices such as laser diodes, high electron mobility transistors, ultraviolet light emitting diodes, and other devices in which low dislocation density is critical. The epitaxial substrate structures of the invention can be formed without the necessity for deep trenches, such as are required in conventional Pendeo epitaxial overgrowth structures.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 23, 2010
    Assignee: Cree, Inc.
    Inventors: George R. Brandes, Arpan Chakraborty, Shuji Nakamura, Monica Hansen, Steven Denbaars
  • Patent number: 7682857
    Abstract: A method for manufacturing a semiconductor optical device includes: forming a p-type cladding layer; forming a capping layer on the p-type cladding layer, the capping layer being selectively etchable relative to the p-type cladding layer; forming a through film on the capping layer; forming a window structure by ion implantation; removing the through film after the ion implantation; and selectively removing the capping layer using a chemical solution.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: March 23, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiko Hanamaki, Takehiro Nishida, Makoto Takada, Kenichi Ono
  • Patent number: 7652282
    Abstract: A main semiconductor region of semiconducting nitrides is formed on a silicon substrate via a buffer region of semiconducting nitrides to provide devices such as HEMTs, MESFETs and LEDs. In order to render the wafer proof against warping, the buffer region is divided into a first and a second multilayered buffer subregion. The first buffer subregion comprises multiple alterations of a multi-sublayered first buffer layer and a non-sublayered second buffer layer. Each multi-sublayered first buffer layer of the first buffer subregion comprises multiple alternations of a first and a second buffer sublayer. The second buffer sublayers of each multi-sublayered first buffer layer either do not contain aluminum or do contain it in a higher proportion than do the first buffer sublayers. The second multilayered buffer subregion comprises multiple alternations of a first and a second buffer layer.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 26, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Masataka Yanagihara
  • Patent number: 7635875
    Abstract: At least one recess and/or protruding portion is created on the surface portion of a substrate for scattering or diffracting light generated in a light emitting region. The recess and/or protruding portion has a shape that prevents crystal defects from occurring in semiconductor layers.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 22, 2009
    Assignee: Nichia Corporation
    Inventors: Isamu Niki, Motokazu Yamada, Masahiko Sano, Shuji Shioji
  • Patent number: 7608532
    Abstract: A method of growing nitride semiconductor material and particularly a method of growing Indium nitride is disclosed can increase surface flatness of a nitride semiconductor material and decrease density of V-defects therein. Further, the method can increase light emission efficiency of a quantum well or quantum dots of the produced LED as well as greatly increase yield. The method is also applicable to the fabrications of electronic devices made of nitride semiconductor material and diodes of high breakdown voltage for rectification. The method can greatly increase surface flatness of semiconductor material for HBT, thereby increasing quality of the produced semiconductor devices.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: October 27, 2009
    Assignee: National Central University
    Inventors: Hung-Cheng Lin, Jen-Inn Chyi
  • Patent number: 7608865
    Abstract: A method of fabricating a T-gate HEMT with a club extension comprising the steps of: providing a substrate; providing a bi-layer resist on the substrate; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to a T-gate opening; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to the shape of the club extension wherein the area corresponding to the club extension is approximately 1 micron to an ohmic source side of a T-gate and approximately 0.5 microns forward from a front of the T-gate; developing out the bi-layer resist in the exposed area that corresponds to the T-gate opening; developing out the bi-layer resist in the exposed area that corresponds to the club extension; and forming the T-gate and club extension through a metallization process.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: October 27, 2009
    Assignee: Northrop Grumman Space & Mission Systems Corp.
    Inventors: Carol Osaka Namba, Po-Hsin Liu, Ioulia Smorchkova, Michael Wojtowicz, Robert Coffie, Yaochung Chen
  • Patent number: 7598108
    Abstract: A thermal expansion interface between silicon (Si) and gallium nitride (GaN) films using multiple buffer layers of aluminum compounds has been provided, along with an associated fabrication method. The method provides a (111) Si substrate and deposits a first layer of AlN overlying the substrate by heating the substrate to a relatively high temperature of 1000 to 1200° C. A second layer of AlN is deposited overlying the first layer of AlN at a lower temperature of 500 to 800° C. A third layer of AlN is deposited overlying the second layer of AlN by heating the substrate to the higher temperature range. Then, a grading Al1-XGaXN layer is formed overlying the third layer of AlN, where 0<X<1, followed by a fixed composition Al1-XGaXN layer overlying the first grading Al1-XGaXN layer. An epitaxial GaN layer can then be grown overlying the fixed composition Al1-XGaXN layer.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: October 6, 2009
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Douglas J. Tweet, Jer-Shen Maa, Sheng Teng Hsu
  • Patent number: 7595259
    Abstract: A compound semiconductor substrate manufacturing method suitable for manufacturing a compound semiconductor element having high electrical characteristics. The compound semiconductor substrate manufacturing method is a method for manufacturing a compound semiconductor substrate having pn junction, including an epitaxial growing process, a selective growing process and other discretionary processes after the epitaxial growing process. The highest temperatures in the selective growing process and other discretionary processes after the epitaxial growing process are lower than that in the epitaxial growing process prior to the selective growing process.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: September 29, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Kenji Kohiro, Kazumasa Ueda, Masahiko Hata
  • Patent number: 7589004
    Abstract: A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100° C.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: September 15, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Igor Usov, Paul N. Arendt