Layers Comprising Fluoro Hydrocarbon Compounds, E.g., Polytetrafluoroethylene (epo) Patents (Class 257/E21.264)
-
Patent number: 12108593Abstract: A method includes the following operations for preparing a semiconductor structure, a semiconductor, and a semiconductor memory. A first dielectric layer and a first barrier layer are deposited on a substrate including an active area in sequence. A first mask including a first etching pattern is formed on the first barrier layer, and includes a groove extending in a first direction and uniformly distributed etching holes. Herein, the groove penetrates through the etching hole, and the depth of the etching hole is larger than that of the groove. Etching is performed along the first etching pattern, to remove the first barrier layer and etch the first dielectric layer to form a conductive channel.Type: GrantFiled: June 20, 2022Date of Patent: October 1, 2024Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.Inventors: Yexiao Yu, Longyang Chen, Zhongming Liu, Zhong Kong
-
Patent number: 12082497Abstract: An organic light-emitting device includes a condensed cyclic compound represented by Formula 1: The condensed cyclic compound has an electron withdrawing group (EWG) substituent and an electron donating group (EDG) substituent at suitable positions, and thus has a low ?EST and may be used as an effective thermally activated delayed fluorescence (TADF) light-emitting material.Type: GrantFiled: March 12, 2019Date of Patent: September 3, 2024Assignee: Samsung Display Co., Ltd.Inventors: Seulong Kim, Jungmin Kang, Tsuyoshi Naijo, Hyein Jeong, Soungwook Kim
-
Patent number: 11935942Abstract: The present disclosure relates to a semiconductor device that includes a first terminal formed on a fin region and having a first spacer. The semiconductor device further includes a second terminal having a hard mask and a second spacer opposing the first spacer. The hard mask and the second spacer are formed using different materials. The semiconductor device also includes a seal layer formed between first and second spacers of the first and second terminals, respectively. The semiconductor device further includes an air gap surrounded by the seal layer, the fin region, and the first and second spacers.Type: GrantFiled: January 24, 2022Date of Patent: March 19, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventor: Yi-Lun Chen
-
Patent number: 11929329Abstract: A semiconductor device including a substrate, a low-k dielectric layer, a cap layer, and a conductive layer is provided. The low-k dielectric layer is disposed over the substrate. The cap layer is disposed on the low-k dielectric layer, wherein a carbon atom content of the cap layer is greater than a carbon atom content of the low-k dielectric layer. The conductive layer is disposed in the cap layer and the low-k dielectric layer.Type: GrantFiled: May 28, 2020Date of Patent: March 12, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Ming-Tsung Lee
-
Patent number: 11854884Abstract: A method of forming fully aligned top vias is provided. The method includes forming a fill layer on a conductive line, wherein the fill layer is adjacent to one or more vias. The method further includes forming a spacer layer selectively on the exposed surface of the fill layer, wherein the top surface of the one or more vias is exposed after forming the spacer layer. The method further includes depositing an etch-stop layer on the exposed surfaces of the spacer layer and the one or more vias, and forming a cover layer on the etch-stop layer.Type: GrantFiled: December 15, 2021Date of Patent: December 26, 2023Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Nicholas Anthony Lanzillo, Koichi Motoyama, Somnath Ghosh, Christopher J. Penny, Robert Robison, Lawrence A. Clevenger
-
Patent number: 11791154Abstract: The present disclosure is generally related to semiconductor devices, and more particularly to a dielectric material formed in semiconductor devices. The present disclosure provides methods for forming a dielectric material layer by a cyclic spin-on coating process. In an embodiment, a method of forming a dielectric material on a substrate includes spin-coating a first portion of a dielectric material on a substrate, curing the first portion of the dielectric material on the substrate, spin-coating a second portion of the dielectric material on the substrate, and thermal annealing the dielectric material to form an annealed dielectric material on the substrate.Type: GrantFiled: July 21, 2022Date of Patent: October 17, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Je-Ming Kuo, Yen-Chun Huang, Chih-Tang Peng, Tien-I Bao
-
Patent number: 11600740Abstract: A method of forming an opening in an insulating layer covering a semiconductor region including germanium, successively including: the forming of a first masking layer on the insulating layer; the forming on the first masking layer of a second masking layer including an opening; the etching of an opening in the first masking layer, in line with the opening of the second masking layer; the removal of the second masking layer by oxygen-based etching; and the forming of the opening of said insulating layer in line with the opening of the first masking layer, by fluorine-based etching.Type: GrantFiled: August 27, 2020Date of Patent: March 7, 2023Assignee: Commissariat à l'Énergie Atomique et aux Énergies AlternativesInventors: Willy Ludurczak, Abdelkader Aliane, Jean-Michel Hartmann, Zouhir Mehrez, Philippe Rodriguez
-
Patent number: 10932371Abstract: Disclosed herein is a bottom-up electrolytic via plating method wherein a first carrier substrate and a second substrate having at least one through-via are temporarily bonded together. The method includes applying a seed layer on a surface of the first substrate, forming a surface modification layer on the seed layer or the second substrate, bonding the second substrate to the first substrate with the surface modification layer to create an assembly wherein the seed layer and the surface modification layer are disposed between the first and second substrates, applying conductive material to the through-via, removing the second substrate having the through-via containing conductive material from the assembly.Type: GrantFiled: November 5, 2015Date of Patent: February 23, 2021Assignee: Corning IncorporatedInventors: Robert Alan Bellman, John Tyler Keech, Ekaterina Aleksandrovna Kuksenkova, Scott Christopher Pollard
-
Patent number: 10538056Abstract: An assembly structure is provided. A first material layer is disposed on a substrate. A hydrophobic layer is chemically attached to the first material layer. A patterned second material layer is disposed on the substrate, without the hydrophobic or slightly chemically attached with hydrophobic molecules and surrounded by the first material layer. A close-loop sealant wall is directly disposed on the patterned second material layer. A cover layer is directly disposed on the close-loop sealant wall to entirely cover the close-loop sealant wall.Type: GrantFiled: September 11, 2015Date of Patent: January 21, 2020Assignee: Himax Display, Inc.Inventor: Po-Hung Pan
-
Patent number: 10304726Abstract: The reliability of wirings, each of which includes a main conductive film containing copper as a primary component, is improved. On an insulating film including the upper surface of a wiring serving as a lower layer wiring, an insulating film formed of a silicon carbonitride film having excellent barrier properties to copper is formed; on the insulating film, an insulating film formed of a silicon carbide film having excellent adhesiveness to a low dielectric constant material film is formed; on the insulating film, an insulating film formed of a low dielectric constant material as an interlayer insulating film is formed; and thereafter a wiring as an upper layer wiring is formed.Type: GrantFiled: September 21, 2018Date of Patent: May 28, 2019Assignee: Renesas Electronics CorporationInventors: Junji Noguchi, Takayuki Oshima, Noriko Miura, Kensuke Ishikawa, Tomio Iwasaki, Kiyomi Katsuyama, Tatsuyuki Saito, Tsuyoshi Tamaru, Hizuru Yamaguchi
-
Patent number: 10121693Abstract: The reliability of wirings, each of which includes a main conductive film containing copper as a primary component, is improved. On an insulating film including the upper surface of a wiring serving as a lower layer wiring, an insulating film formed of a silicon carbonitride film having excellent barrier properties to copper is formed; on the insulating film, an insulating film formed of a silicon carbide film having excellent adhesiveness to a low dielectric constant material film is formed; on the insulating film, an insulating film formed of a low dielectric constant material as an interlayer insulating film is formed; and thereafter a wiring as an upper layer wiring is formed.Type: GrantFiled: October 9, 2017Date of Patent: November 6, 2018Assignee: Renesas Electronics CorporationInventors: Junji Noguchi, Takayuki Oshima, Noriko Miura, Kensuke Ishikawa, Tomio Iwasaki, Kiyomi Katsuyama, Tatsuyuki Saito, Tsuyoshi Tamaru, Hizuru Yamaguchi
-
Patent number: 9761836Abstract: Methods for forming an OLED device are described. An encapsulation structure having organic buffer layer sandwiched between barrier layers is deposited over an OLED structure. The buffer layer is formed with a fluorine-containing plasma. The second barrier layer is then deposited over the buffer layer. Additionally, to ensure good adhesion, a buffer adhesion layer is formed between the buffer layer and the first barrier layer. Finally, to ensure good transmittance, a stress reduction layer is deposited between the buffer layer and the second barrier layer.Type: GrantFiled: April 8, 2016Date of Patent: September 12, 2017Assignee: APPLIED MATERIALS, INC.Inventor: Jrjyan Jerry Chen
-
Patent number: 9387508Abstract: Methods and systems for coating articles are described herein. The methods and systems described herein include, but are not limited to, steps for actively or passively controlling the temperature during the coating process, steps for providing intimate contact between the substrate and the support holding the substrate in order to maximize energy transfer, and/or steps for preparing gradient coatings. Methods for depositing high molecular weight polymeric coatings, end-capped polymer coatings, coatings covalently bonded to the substrate or one another, metallic coatings, and/or multilayer coatings are also disclosed. Deposition of coatings can be accelerated and/or improved by applying an electrical potential and/or through the use of inert gases.Type: GrantFiled: November 20, 2014Date of Patent: July 12, 2016Assignee: GVD CorporationInventors: Erik S. Handy, Aleksander J. White, W. Shannan O'Shaughnessy, Hilton G. Pryce Lewis, Neeta P. Bansal, Karen K. Gleason
-
Patent number: 9331311Abstract: Methods for forming an OLED device are described. An encapsulation structure having organic buffer layer sandwiched between barrier layers is deposited over an OLED structure. The buffer layer is formed with a fluorine-containing plasma. The second barrier layer is then deposited over the buffer layer. Additionally, to ensure good adhesion, a buffer adhesion layer is formed between the buffer layer and the first barrier layer. Finally, to ensure good transmittance, a stress reduction layer is deposited between the buffer layer and the second barrier layer.Type: GrantFiled: February 6, 2014Date of Patent: May 3, 2016Assignee: APPLIED MATERIALS, INC.Inventor: Jrjyan Jerry Chen
-
Patent number: 9034736Abstract: The present invention provides a method of patterning an electronic or photonic material on a substrate comprising: forming a film of said electronic or photonic material on said substrate; and using a fluoropolymer to protect regions of said electronic or photonic material during a patterning process.Type: GrantFiled: July 9, 2010Date of Patent: May 19, 2015Assignee: Cambridge Enterprise LimitedInventors: Henning Sirringhaus, Jui-Fen Chang, Michael Gwinner
-
Patent number: 9029228Abstract: The invention generally related to a method for preparing a layer of graphene directly on the surface of a substrate, such as a semiconductor substrate. The layer of graphene may be formed in direct contact with the surface of the substrate, or an intervening layer of a material may be formed between the substrate surface and the graphene layer.Type: GrantFiled: May 9, 2013Date of Patent: May 12, 2015Assignees: SunEdision Semiconductor Limited (UEN201334164H), Kansas State University Research FoundationInventors: Michael R. Seacrist, Vikas Berry, Phong Tuan Nguyen
-
Patent number: 8999862Abstract: Methods of fabricating nano-scale structures are provided. A method includes forming a first hard mask pattern corresponding to first openings in a dense region, forming first guide elements on the first hard mask pattern aligned with the first openings, and forming second hard mask patterns in a sparse region to provide isolated patterns. A blocking layer is formed in the sparse region to cover the second hard mask patterns. A first domain and second domains are formed in the dense region using a phase separation of a block co-polymer layer. Related nano-scale structures are also provided.Type: GrantFiled: April 7, 2014Date of Patent: April 7, 2015Assignee: SK Hynix Inc.Inventors: Keun Do Ban, Cheol Kyu Bok, Myoung Soo Kim, Jung Hyung Lee, Hyun Kyung Shim, Chang Il Oh
-
Patent number: 8884310Abstract: The invention generally related to a method for preparing a layer of graphene directly on the surface of a semiconductor substrate. The method includes forming a carbon-containing layer on a front surface of a semiconductor substrate and depositing a metal film on the carbon layer. A thermal cycle degrades the carbon-containing layer, which forms graphene directly upon the semiconductor substrate upon cooling. In some embodiments, the carbon source is a carbon-containing gas, and the thermal cycle causes diffusion of carbon atoms into the metal film, which, upon cooling, segregate and precipitate into a layer of graphene directly on the semiconductor substrate.Type: GrantFiled: October 16, 2012Date of Patent: November 11, 2014Assignees: SunEdison Semiconductor Limited (UEN201334164H), KSU Research FoundationInventors: Michael R. Seacrist, Vikas Berry
-
Patent number: 8872194Abstract: An illumination device is disclosed. The illumination device includes a light source a pre-dip material that at least partially encapsulates the light source. The pre-dip material may include one or both of thermally-conductive particles and a cyclo-aliphatic composition. The pre-dip material may further include a resin and a hardener for the resin. Methods of manufacturing an illumination device are also disclosed.Type: GrantFiled: March 8, 2013Date of Patent: October 28, 2014Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.Inventors: Kum Soon Wong, Yean Chon Yaw, Kit Lai Wong
-
Patent number: 8835247Abstract: A sensor array for detecting particles, the sensor array comprising a substrate having a plurality of holes, a plurality of electronic sensor chips each having a sensor active region being sensitive to the presence of particles to be detected, and an electric contacting structure adapted for electrically contacting the plurality of electronic sensor chips, wherein the plurality of electronic sensor chips and/or the electric contacting structure are connected to the substrate in such a manner that the plurality of holes in combination with the plurality of electronic sensor chips and/or the electric contacting structure form a plurality of wells with integrated particle sensors.Type: GrantFiled: May 11, 2009Date of Patent: September 16, 2014Assignee: NXP, B.V.Inventors: Michel De Langen, Ger Reuvers, Frans Meeuwsen
-
Patent number: 8809916Abstract: A pH sensor may include a reference electrode including a p-channel field effect transistor (FET) whose gate includes a diamond surface having a hydrogen ion insensitive terminal, and a working electrode.Type: GrantFiled: February 8, 2012Date of Patent: August 19, 2014Assignee: Yokogawa Electric CorporationInventors: Yukihiro Shintani, Kazuma Takenaka
-
Patent number: 8796131Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.Type: GrantFiled: October 25, 2010Date of Patent: August 5, 2014Assignee: Advanced Technology Materials, Inc.Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
-
Patent number: 8551889Abstract: In a manufacture method for a photovoltaic module, a plurality of strips of resin adhesive film having a desired width and unwound from a single feeding reel is simultaneously pasted on a solar cell. In particular, the manufacture method is implemented by performing the steps of: unwinding a resin adhesive film sheet from a reel on which the resin adhesive film sheet is wound; splitting the unwound resin adhesive film into two or more film strips in correspondence to lengths of wiring material to bond; pasting the strips of resin adhesive film on an electrode of the solar cell; and placing the individual lengths of wiring material on the electrode of the solar cell having the plural strips of resin adhesive film pasted thereon and thermally setting the resin adhesive film by heating so as to fix together the electrode of the solar cell and the wiring material.Type: GrantFiled: April 25, 2012Date of Patent: October 8, 2013Assignee: Sanyo Electric Co., Ltd.Inventors: Yousuke Ishii, Shingo Okamoto
-
Patent number: 8395144Abstract: Provided are a novel anthracene derivative and an organic light-emitting device using the same, and more particularly, an anthracene derivative having a core (e.g., an indenoanthracene core) where an anthracene moiety with excellent device characteristics is fused with a fluorene moiety or the like with excellent fluorescent properties, wherein an aryl group is introduced at the core, and an organic light-emitting device using the anthracene derivative, which is enhanced in efficiency, operating voltage, lifetime, etc.Type: GrantFiled: November 12, 2010Date of Patent: March 12, 2013Assignee: Doosan CorporationInventors: Eunjung Lee, Jung-Sub Lee, Tae-Hyung Kim, Kyoung-Soo Kim
-
Patent number: 8222632Abstract: A luminescent or charge-transporting polymer which has in the backbone optionally substituted fluorenediyl groups as repeating units and further has a functional side chain comprising at least one functional group selected from the group consisting of a hole-injection/transporting group containing one or more heteroatoms other than nitrogen or two or more nitrogen atoms, an electron-injection/transporting group containing one or more heteroatoms other than nitrogen or two or more nitrogen atoms, and a luminescent group comprising a fused aromatic hydrocarbon or heterocycle, characterized in that the functional group is directly bonded to the saturated carbon atom of any of the fluorenediyl groups or is bonded to any of the fluorenediyl groups through —Rk—X—(Rk represents alkylene and X represents a direct bond or connecting group) at the X.Type: GrantFiled: June 21, 2006Date of Patent: July 17, 2012Assignee: Sumitomo Chemical Company, LimitedInventors: Tomoya Nakatani, Takeshi Yamada
-
Patent number: 8212345Abstract: A backgrinding machine 10 of a semiconductor wafer W includes: a table 13 set on the working plane of a mount 11; a multiple number of holding jigs 20 arranged via check tables 15 on table 13; a grinding machine 30 for performing a grinding process of the rear side of semiconductor wafer W held by holding jig 20; and a washing device 40 for ground semiconductor wafers W. Each holding jig 20 is constructed of a concave 22 depressed on the surface of a base plate 21, a multiple number of supporting projections 23 projectively arrayed on the bottom surface of concave 22, a deformable contact film 24, covering the concave 22, being supported by the multiple supporting projections 23, for detachably holding semiconductor wafer W in close contact with it; and an exhaust path 25 for conducting air from the concave 22 covered by contact film 24 to the outside.Type: GrantFiled: November 12, 2010Date of Patent: July 3, 2012Assignees: Shin-Etsu Polymer Co., Ltd., Lintec CorporationInventors: Kiyofumi Tanaka, Satoshi Odashima, Noriyoshi Hosono, Hironobu Fujimoto, Takeshi Segawa
-
Patent number: 8187982Abstract: The invention permits a plurality of strips of resin adhesive film having a desired width and unwound from a single feeding reel to be simultaneously pasted on a solar cell. For this purpose, the invention comprises the steps of: unwinding a resin adhesive film sheet from a reel on which the resin adhesive film sheet is wound; splitting the unwound resin adhesive film into two or more film strips in correspondence to lengths of wiring material to bond; pasting the strips of resin adhesive film on an electrode of the solar cell; and placing the individual lengths of wiring material on the electrode of the solar cell having the plural strips of resin adhesive film pasted thereon and thermally setting the resin adhesive film by heating so as to fix together the electrode of the solar cell and the wiring material.Type: GrantFiled: March 22, 2010Date of Patent: May 29, 2012Assignee: Sanyo Electric Co., Ltd.Inventors: Yousuke Ishii, Shingo Okamoto
-
Patent number: 8168742Abstract: To provide a crosslinkable fluorinated aromatic prepolymer which is capable of forming a cured product having a low relative permittivity, high heat resistance, low birefringence and high flexibility, and its uses.Type: GrantFiled: December 4, 2009Date of Patent: May 1, 2012Assignee: Asahi Glass Company, LimitedInventors: Shunsuke Yokotsuka, Masahiro Ito, Kaori Tsuruoka
-
Patent number: 8105961Abstract: A method of creating a sensor that may include applying a first conductive material on a first portion of a substrate to form a reference electrode and depositing a first mask over the substrate, the first mask having an opening that exposes the reference electrode and a second portion of the substrate. The method may also include depositing a second conductive material into the opening in the first mask, the second conductive material being in direct contact with the reference electrode and depositing a second mask over the second conductive material, the second mask having an opening over the second portion of the substrate, the opening exposing a portion of the second conductive material which forms a working surface to receive a fluid of interest.Type: GrantFiled: August 6, 2009Date of Patent: January 31, 2012Assignee: Edwards Lifesciences CorporationInventor: Kenneth M. Curry
-
Patent number: 8101530Abstract: A method for fabricating an integrated circuit device is disclosed. The method is a lithography patterning method that can include providing a substrate; forming a protective layer over the substrate; forming a conductive layer over the protective layer; forming a resist layer over the conductive layer; and exposing and developing the resist layer.Type: GrantFiled: September 25, 2009Date of Patent: January 24, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: I-Hsiung Huang, Chin-Hsiang Lin, Heng-Jen Lee, Heng-Hsin Liu
-
Patent number: 8053376Abstract: In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.Type: GrantFiled: June 26, 2009Date of Patent: November 8, 2011Assignee: Georgia Tech Research CorporationInventors: Zhong L. Wang, Xudong Wang, Jenny R. Morber, Jin Liu
-
Patent number: 8030139Abstract: A method of producing a thin film transistor includes a gate electrode formation step that forms a gate electrode on a substrate, a gate insulating layer formation step that forms a gate insulating layer on the substrate in such a manner as to cover the gate electrode formed in the gate electrode formation step, a source/drain electrodes formation step that forms a source electrode and a drain electrode on the gate insulating layer, and a semiconductor layer formation step that applies an aqueous solution for semiconductor layer formation which is an aqueous solution comprising at least a single wall carbon nanotube and a surfactant between the source electrode and the drain electrode formed in the source/drain electrodes formation step by a coating process to form a semiconductor layer comprising the single wall carbon nanotube.Type: GrantFiled: March 25, 2009Date of Patent: October 4, 2011Assignee: Brother Kogyo Kabushiki KaishaInventors: Takeshi Asano, Taishi Takenobu, Masashi Shiraishi
-
Patent number: 8021975Abstract: A plasma processing method for forming a film on a substrate using a gas processed by a plasma. The plasma processing method for forming a film includes the steps of forming a CF film on the substrate by using a CaFb gas (here, a is a counting number, and b is a counting number which satisfies an equation of “b=2×a?2”), processing the CF film with the gas processed by the plasma, and forming an insulating film on the CF film processed by using an insulating material processed with the plasma.Type: GrantFiled: December 28, 2007Date of Patent: September 20, 2011Assignee: Tokyo Electron LimitedInventors: Kotaro Miyatani, Kohei Kawamura, Toshihisa Nozawa, Takaaki Matsuoka
-
Patent number: 7981812Abstract: Methods for forming an ultra thin structure using a method that includes multiple cycles of polymer deposition of photoresist (PDP) process and etching process. The embodiments described herein may be advantageously utilized to fabricate a submicron structure on a substrate having a critical dimension less than 55 nm and beyond. In one embodiment, a method of forming a submicron structure on a substrate may include providing a substrate having a patterned photoresist layer disposed on a film stack into an etch chamber, wherein the film stack includes at least a hardmask layer disposed on a dielectric layer, performing a polymer deposition process to deposit a polymer layer on the pattered photoresist layer, thus reducing a critical dimension of an opening in the patterned photoresist layer, and etching the underlying hardmask layer through the opening having the reduced dimension.Type: GrantFiled: July 3, 2008Date of Patent: July 19, 2011Assignee: Applied Materials, Inc.Inventors: Kang-Lie Chiang, Chia-Ling Kao
-
Patent number: 7981810Abstract: The present invention addresses this need by providing a method for forming transparent PECVD deposited ashable hardmasks (AHMs) that have high plasma etch selectivity to underlying layers. Methods of the invention involve depositing the AHM using dilute hydrocarbon precursor gas flows and/or low process temperatures. The AHMs produced are transparent (having absorption coefficients of less than 0.1 in certain embodiments). The AHMs also have the property of high selectivity of the hard mask film to the underlying layers for successful integration of the film, and are suitable for use with 193 nm generation and below lithography schemes wherein high selectivity of the hard mask to the underlying layers is required. The lower temperature process also allows reduction of the overall thermal budget for a wafer.Type: GrantFiled: June 8, 2006Date of Patent: July 19, 2011Assignee: Novellus Systems, Inc.Inventors: Pramod Subramonium, Zhiyuan Fang, Jon Henri
-
Patent number: 7972885Abstract: This invention relates to imaging device and its related transferring technologies to independent substrate able to attain significant broadband capability covering the wavelengths from ultra-violet (UV) to long-Infrared. More particularly, this invention is related to the broadband image sensor (along with its manufacturing technologies), which can detect the light wavelengths ranges from as low as UV to the wavelengths as high as 20 ?m covering the most of the wavelengths using of the single monolithic image sensor on the single wafer. This invention is also related to the integrated circuit and the bonding technologies of the image sensor to standard integrated circuit for multicolor imaging, sensing, and advanced communication. Our innovative approach utilizes surface structure having more than micro-nano-scaled 3-dimensional (3-D) blocks which can provide broad spectral response.Type: GrantFiled: September 24, 2009Date of Patent: July 5, 2011Assignee: Banpil Photonics, Inc.Inventors: Achyut Kumar Dutta, Robert Allen Olah
-
Patent number: 7910475Abstract: A method for forming a semiconductor device is provided. In one embodiment, the method includes providing a semiconductor substrate with a surface region. The surface region includes one or more layers overlying the semiconductor substrate. In addition, the method includes depositing a dielectric layer overlying the surface region. The dielectric layer is formed by a CVD process. Furthermore, the method includes forming a diffusion barrier layer overlying the dielectric layer. In addition, the method includes forming a conductive layer overlying the diffusion barrier layer. Additionally, the method includes reducing the thickness of the conductive layer using a chemical-mechanical polishing process. The CVD process utilizes fluorine as a reactant to form the dielectric layer. In addition, the dielectric layer is associated with a dielectric constant equal or less than 3.3.Type: GrantFiled: July 17, 2009Date of Patent: March 22, 2011Assignee: Semiconductor Manufacturing International (Shanghai) CorporationInventor: Ting Cheong Ang
-
Patent number: 7902642Abstract: A resin composition for sealing a light-emitting device of the present invention includes a silsesquioxane resin including two or more oxetanyl groups, an aliphatic hydrocarbon including one or more epoxy groups and a cationic polymerization initiator. Furthermore, a lamp of the present invention includes a package equipped with a cup-shaped sealing member, an electrode exposed in the bottom portion of the sealing member, and a light-emitting device arranged on the bottom portion and electrically connected with the electrode, wherein the light-emitting device is sealed with the above-described resin composition for sealing a light-emitting device filled in the sealing member.Type: GrantFiled: December 27, 2007Date of Patent: March 8, 2011Assignee: Showa Denko K.K.Inventors: Tomoyuki Takei, Yuko Sakata
-
Patent number: 7902641Abstract: The present invention relates to a semiconductor device. The semiconductor device includes a fluorocarbon film formed on a substrate and a film containing metal formed on the fluorocarbon film, wherein the content amount of fluorine atom on the fluorocarbon film, which contacts the film containing metal, is in a predetermined range.Type: GrantFiled: July 24, 2008Date of Patent: March 8, 2011Assignee: Tokyo Electron LimitedInventor: Yoshiyuki Kikuchi
-
Patent number: 7875501Abstract: A backgrinding machine 10 of a semiconductor wafer W includes: a table 13 set on the working plane of a mount 11; a multiple number of holding jigs 20 arranged via check tables 15 on table 13; a grinding machine 30 for performing a grinding process of the rear side of semiconductor wafer W held by holding jig 20; and a washing device 40 for ground semiconductor wafers W. Each holding jig 20 is constructed of a concave 22 depressed on the surface of a base plate 21, a multiple number of supporting projections 23 projectively arrayed on the bottom surface of concave 22, a deformable contact film 24, covering the concave 22, being supported by the multiple supporting projections 23, for detachably holding semiconductor wafer W in close contact with it; and an exhaust path 25 for conducting air from the concave 22 covered by contact film 24 to the outside.Type: GrantFiled: March 9, 2007Date of Patent: January 25, 2011Assignees: Shin-Etsu Polymer Co., Ltd., Lintec CorporationInventors: Kiyofumi Tanaka, Satoshi Odashima, Noriyoshi Hosono, Hironobu Fujimoto, Takeshi Segawa
-
Patent number: 7795669Abstract: In accordance with an embodiment, a FinFET device includes: one or more fins, a dummy fin, a gate line, a gate contact landing pad, and a gate contact element. Each of the fins extends in a first direction above a substrate. The dummy fin extends in parallel with the fins in the first direction above the substrate. The gate line extends in a second direction above the substrate, and partially wraps around the fins. The gate contact landing pad is positioned adjacent to or above the dummy fin and electrically coupled to the gate line. The gate contact element is electrically coupled to the gate contact landing pad and is positioned to the top surface thereof.Type: GrantFiled: May 30, 2007Date of Patent: September 14, 2010Assignee: Infineon Technologies AGInventors: Georg Georgakos, Bernhard Dobler
-
Patent number: 7759677Abstract: Provided are a molecular electronic device and a method of fabricating the molecular electronic device. The molecular electronic device includes a substrate, an organic dielectric thin film formed over the substrate, a molecular active layer formed on the organic dielectric thin film and having a charge trap site, and an electrode formed on the molecular active layer. The organic dielectric thin film may be immobilized on the electrode or a Si layer by a self-assembled method. The organic dielectric thin film may include first and second molecular layers bound together through hydrogen bonds. An organic compound may be self-assembled over the substrate to form the organic dielectric thin film. The organic compound may include an M?-R-T structure, where M?, R and T represent a thiol or silane derivative, a saturated or unsaturated C1 to C20 hydrocarbon group which is substituted or unsubstituted with fluorine (F), and an amino(—NH2) or carboxyl (—COOH) group, respectively.Type: GrantFiled: June 11, 2007Date of Patent: July 20, 2010Assignee: Electronics and Telecommunications Research InstituteInventors: Hyoyoung Lee, Gyeong Sook Bang, Jonghyurk Park, Junghyun Lee, Nak Jin Choi, Ja Ryong Koo
-
Patent number: 7723133Abstract: A method for forming a pattern, comprises: forming a bank film on a substrate; performing a lyophobic treatment on a surface of the bank film; patterning the bank film on which the lyophobic treatment has been performed to form a bank; performing a surface modification treatment in which a hydroxyl group on a surface of a pattern forming region partitioned by the bank is alkylated; disposing a functional liquid in the pattern forming region; and firing the functional liquid to form a pattern.Type: GrantFiled: June 27, 2007Date of Patent: May 25, 2010Assignee: Seiko Epson CorporationInventors: Katsuyuki Moriya, Toshimitsu Hirai
-
Patent number: 7648922Abstract: The major objective is to provide a fluorocarbon film wherein fine voids are formed by a step (SA1) for introducing a mixed gas containing a first carbon fluoride gas and a second carbon fluoride gas on a substrate placed inside a chamber, and depositing a fluorocarbon film on the substrate; and a step (SA2) for forming voids in the fluorocarbon film by selectively removing volatile components contained in the fluorocarbon film are included and especially in the step (SA2) for forming voids, it is preferable to include a step for cleaning the fluorocarbon film with a supercritical fluid.Type: GrantFiled: November 9, 2004Date of Patent: January 19, 2010Assignees: Kyoto University, Zeon CorporationInventors: Tatsuru Shirafuji, Kunihide Tachibana
-
Publication number: 20090215255Abstract: Some embodiments include methods of forming dispersions of nanoparticles. The nanoparticles are incorporated into first coordination complexes in which the nanoparticles are coordinated to hydrophobic ligands, and the first coordination complexes are dispersed within a non-polar solvent. While the first coordination complexes are within the non-polar solvent, the ligands are reacted with one or more reactants to convert the first coordination complexes into second coordination complexes that contain hydrophilic ligands. The second coordination complexes are then extracted from the non-polar solvent into water, to form a mixture of the second coordination complexes and the water. In some embodiments, the mixture may be dispersed across a semiconductor substrate to form a uniform distribution of the nanoparticles across the substrate. In some embodiments, the nanoparticles may then be incorporated into flash memory devices as charge-trapping centers.Type: ApplicationFiled: February 21, 2008Publication date: August 27, 2009Inventor: Dan Millward
-
Patent number: 7485492Abstract: A process for manufacturing a non-volatile memory structure, in particular of a cross-point type provided with an array of memory cells, including forming bottom electrodes on a substrate; forming areas of active material on the bottom electrodes; and forming top electrodes on the areas of active material. The memory cells are defined at the intersection of the bottom electrode with the top electrode. At least one from among the steps of forming bottom electrodes, forming areas of active material, and forming top electrodes includes using soft-lithography techniques, chosen from amongst “microtransfer molding”, “micromolding in capillary”, and “microcontact printing”.Type: GrantFiled: April 9, 2007Date of Patent: February 3, 2009Assignee: STMicroelectronics S.r.l.Inventors: Raffaele Vecchione, Roberta Cuozzo, Anna Morra, Teresa Napolitano
-
Patent number: 7445953Abstract: The invention relates to low temperature curable spin-on glass materials which are useful for electronic applications, such as optical devices. A substantially crack-free and substantially void-free silicon polymer film is produced by (a) preparing a composition comprising at least one silicon containing pre-polymer, a catalyst, and optionally water; (b) coating a substrate with the composition to form a film on the substrate, (c) crosslinking the composition by heating to produce a substantially crack-free and substantially void-free silicon polymer film, having a a transparency to light in the range of about 400 nm to about 800 nm of about 95% or more.Type: GrantFiled: July 29, 2005Date of Patent: November 4, 2008Assignee: Honeywell International Inc.Inventors: Victor Lu, Lei Jin, Arlene J. Suedmeyer, Paul G. Apen, Peter Alfred Smith, JingHong Chen
-
Patent number: 7427559Abstract: According to one aspect of the invention, a method of constructing a memory array is provided. An insulating layer is formed on a semiconductor wafer. A first metal stack is then formed on the insulating layer and etched to form first metal lines. A polymeric layer is formed over the first metal lines and the insulating layer. A puddle of smoothing solvent is then allowed to stand on the wafer. The smoothing solvent is then removed. After the smoothing solvent is removed, the polymeric layer has a reduced surface roughness. A second metal stack is then formed on the polymeric layer and etched to form second metal lines.Type: GrantFiled: November 27, 2006Date of Patent: September 23, 2008Assignee: Intel CorporationInventors: Michael J. Leeson, Ebrahim Andideh
-
Patent number: 7326653Abstract: A method for preparing an organic electronic or optoelectronic device is described. The method comprises depositing a layer of fluorinated polymer on a substrate, patterning the layer of fluorinated polymer to form a relief pattern and depositing from solution a layer of organic semiconductive or conductive material on the substrate. The fluorinated polymer may be a fluorinated photoresist and may be treated by exposure to ultraviolet light and ozone prior to the deposition of the layer of organic semiconductive or conductive material. The method has particular application in the preparation of organic light emitting devices by ink-jet printing.Type: GrantFiled: March 21, 2003Date of Patent: February 5, 2008Assignee: Cambridge Display Technology LimitedInventors: Alec Gunner, Martin Cacheiro
-
Patent number: 7288488Abstract: A two-step process is disclosed for stripping photoresist material from a substrate, wherein the substrate includes a low k dielectric material underlying the photoresist material and a polymer film overlying both the photoresist material and the low k dielectric material. The first step of the two-step process uses an oxygen plasma to remove the polymer film. The second step of the two-step process uses an ammonia plasma to remove the photoresist material, wherein the second step commences after completion of the first step. Each step of the two-step photoresist stripping process is respectively defined by particular values for process parameters including chemistry, temperature, pressure, gas flow rate, radio frequency power and frequency, and duration.Type: GrantFiled: May 10, 2005Date of Patent: October 30, 2007Assignee: Lam Research CorporationInventors: Helen Zhu, Reza Sadjadi