Oxidation Of Silicon-containing Layer (epo) Patents (Class 257/E21.301)
  • Patent number: 11495456
    Abstract: Processes for surface treatment of a workpiece are provided. In one example implementation, a method can include placing the workpiece on a workpiece support in a processing chamber. The method can include admitting a process gas into the processing chamber. The process gas can include an ozone gas. The method can include exposing the silicon nitride layer and the low-k dielectric layer to the process gas to modify a surface wetting angle of the silicon nitride layer.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: November 8, 2022
    Assignees: BEIJING E-TOWN SEMICONDUCTOR TECHNOLOGY, CO., LTD, MATTSON TECHNOLOGY, IN
    Inventors: Ting Xie, Xinliang Lu, Hua Chung, Michael X. Yang
  • Patent number: 9634021
    Abstract: A semiconductor device manufacturing method includes forming a silicon layer by epitaxial growth over a semiconductor substrate having a first area and a second area; forming a first gate oxide film by oxidizing the silicon layer; removing the first gate oxide film from the second area, while maintaining the first gate oxide film in the first area; thereafter, increasing a thickness of the first gate oxide film in the first area and simultaneously forming a second gate oxide film by oxidizing the silicon layer in the second area; and forming a first gate electrode and a second gate electrode over the first gate oxide film and the second gate oxide film, respectively, wherein after the formation of the first and second gate electrodes, the silicon layer in the first area is thicker than the silicon layer in the second area.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 25, 2017
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Makoto Yasuda, Taiji Ema, Mitsuaki Hori, Kazushi Fujita
  • Patent number: 9583637
    Abstract: A novel amorphous oxide applicable, for example, to an active layer of a TFT is provided. The amorphous oxide comprises microcrystals.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: February 28, 2017
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Japan Science and Technology Agency
    Inventors: Masafumi Sano, Katsumi Nakagawa, Hideo Hosono, Toshio Kamiya, Kenji Nomura
  • Patent number: 8895455
    Abstract: To form an insulating film with extremely low concentration of impurities such as carbon, hydrogen, nitrogen, chlorine, etc in a film. There are provided the steps of forming a specific element-containing layer on a substrate by supplying source gas containing a specific element into a processing container in which the substrate is accommodated; changing the specific element-containing layer into a nitride layer, by activating and supplying gas containing nitrogen into the processing container; and changing the nitride layer into an oxide layer or an oxynitride layer, by activating and supplying gas containing oxygen into the processing container; with this cycle set as one cycle and performed for at least one or more times.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: November 25, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Naonori Akae, Yoshiro Hirose
  • Patent number: 8853067
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 7, 2014
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yin Jin, Marko Radosavljevic, Willy Rachmady
  • Patent number: 8609551
    Abstract: To form an insulating film with extremely low concentration of impurities such as carbon, hydrogen, nitrogen, chlorine, etc in a film. There are provided the steps of forming a specific element-containing layer on a substrate by supplying source gas containing a specific element into a processing container in which the substrate is accommodated; changing the specific element-containing layer into a nitride layer, by activating and supplying gas containing nitrogen into the processing container; and changing the nitride layer into an oxide layer or an oxynitride layer, by activating and supplying gas containing oxygen into the processing container; with this cycle set as one cycle and performed for at least one or more times.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 17, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Naonori Akae, Yoshiro Hirose
  • Patent number: 8525162
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 3, 2013
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yih Jin, Marko Radosavljevic, Willy Rachmady
  • Patent number: 8501636
    Abstract: A method for fabricating silicon dioxide layer is disclosed. The method includes the following steps. Firstly, a semiconductor substrate is provided. Next, the semiconductor substrate is cleaned with a solution containing hydrogen peroxide to form a chemical oxide layer on the semiconductor substrate. Then, the chemical oxide layer is heated in no oxygen atmosphere, such that the chemical oxide layer forms a compact layer. Then, the semiconductor substrate is heated in oxygen atmosphere to form a silicon dioxide layer between the semiconductor substrate and the compact layer.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: August 6, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shao-Wei Wang, Yu-Ren Wang, Chien-Liang Lin, Ying-Wei Yen, Kun-Yuan Lo, Chih-Wei Yang
  • Patent number: 8389412
    Abstract: The invention relates to a finishing method for a silicon-on-insulator (SOI) substrate that includes an oxide layer buried between an active silicon layer and a support layer of silicon. The method includes applying the following steps in succession: a first rapid thermal annealing (RTA) of the SOI substrate; a sacrificial oxidation of the active silicon layer of the substrate conducted to remove a first oxide thickness; a second RTA of the substrate; and a second sacrificial oxidation of the active silicon layer conducted to remove a second oxide thickness that is thinner than the first oxide thickness.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 5, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Sébastien Kerdiles, Patrick Reynaud, Ludovic Ecarnot, Eric Neyret
  • Patent number: 8372761
    Abstract: A silicon oxide film is formed in a processing chamber of a plasma processing apparatus by performing oxidation process, by using plasma to a processing object having a patterned irregularity, wherein the plasma is generated while high-frequency power is supplied to a mount table under the conditions that the oxygen content in a process gas is not less than 0.5% and less than 10% and the process pressure is 1.3 to 665 Pa.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 12, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yoshiro Kabe, Takashi Kobayashi, Toshihiko Shiozawa, Junichi Kitagawa
  • Patent number: 8334220
    Abstract: A method for selectively forming a dielectric layer. An embodiment includes forming a dielectric layer, such as an oxide layer, on a semiconductor substrate, depositing a silicon layer on the dielectric layer, and treating the silicon layer with nitrogen, thereby converting the silicon layer into a silicon nitride layer. This method allows for a protective silicon nitride layer to be formed, while also preventing and/or reducing the nitrogen itself from penetrating far enough to contaminate the substrate. In another embodiment the treating with nitrogen is continued to form not only a silicon nitride, but to also diffuse a small portion of nitrogen into the dielectric layer to nitridized a portion of the dielectric layer. Optionally, an anneal could be performed to repair any damage that has been done by the treatment process.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chen-Hua Yu
  • Patent number: 8168508
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: May 1, 2012
    Assignee: Intel Corporation
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yih Jin, Marko Radosavljevic, Willy Rachmady
  • Patent number: 8163626
    Abstract: Embodiments described herein generally relate to flash memory devices and methods for manufacturing flash memory devices. In one embodiment, a method for selective removal of nitrogen from the nitrided areas of a substrate is provided. The method comprises positioning a substrate comprising a material layer disposed adjacent to an oxide containing layer in a processing chamber, exposing the substrate to a nitridation process to incorporate nitrogen onto the material layer and the exposed areas of the oxide containing layer, and exposing the nitrided material layer and the nitrided areas of the oxide containing layer to a gas mixture comprising a quantity of a hydrogen containing gas and a quantity of an oxygen containing gas to selectively remove nitrogen from the nitrided areas of the oxide containing layer relative to the nitrided material layer using a radical oxidation process.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: April 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Johanes Swenburg, David Chu, Theresa Kramer Guarini, Yonah Cho, Udayan Ganguly, Lucien Date
  • Patent number: 8158487
    Abstract: The invention relates to a process for annealing a structure that includes at least one wafer, with the annealing process including conducting a first annealing of the structure in an oxidizing atmosphere while holding the structure in contact with a holder in a first position in order to oxidize at least portion of the exposed surface of the structure, shifting the structure on the holder into a second position in which non-oxidized regions of the structure are exposed, and conducting a second annealing of the structure in an oxidizing atmosphere while holding the structure in the second position. The process provides an oxide layer on the structure.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 17, 2012
    Assignee: Soitec
    Inventors: Nicolas Sousbie, Bernard Aspar, Thierry Barge, Chrystelle Lagahe Blanchard
  • Patent number: 8124494
    Abstract: A method for making a semiconductor device by reshaping a silicon surface with a sacrificial layer is presented. In the present invention the steps of forming a sacrificial dielectric layer and removing the sacrificial dielectric layer are repeated multiple times in order to remove sharp edges from the silicon surface near the field oxides. Another aspect of the present invention includes making a MOSFET transistor that incorporates the forming and removing of multiple sacrificial layers into the process.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: February 28, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hsiung Wang, Wen-Ting Chu, Eric Chen, Hsien-Wei Chin
  • Patent number: 8105958
    Abstract: A selective oxidation process is performed on a gate electrode in a plasma processing apparatus 100. A wafer W with the gate electrode formed thereon is placed on a susceptor 2 within a chamber 1. Ar gas, H2 gas, and O2 gas are supplied from an Ar gas supply source 17, an H2 gas supply source 18, and an O2 gas supply source 19 in a gas supply system 16 through a gas feed member 15 into the chamber 1. At this time, a flow rate ratio H2/O2 of H2 gas relative to O2 gas is set to be 1.5 or more and 20 or less, preferably to be 4 or more, and more preferably to be 8 or more. Further, the pressure inside the chamber is set to be 3 to 700 Pa, such as 6.7 Pa (50 mTorr).
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: January 31, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Yoshiro Kabe, Masaru Sasaki
  • Patent number: 8053322
    Abstract: A method of fabricating an integrated circuit (IC) and ICs therefrom including a plurality of Metal Oxide Semiconductor (MOS) transistors having reduced gate dielectric thinning and corner sharpening at the trench isolation/semiconductor edge for gate dielectric layers generally 500 to 5,000 Angstroms thick. The method includes providing a substrate having a silicon including surface. A plurality of dielectric filled trench isolation regions are formed in the substrate. The silicon including surface forms trench isolation active area edges along its periphery with the trench isolation regions. An epitaxial silicon comprising layer is deposited, wherein the epitaxial comprising silicon layer is formed over the silicon comprising surface.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: November 8, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir F. Drobny, Amitava Chatterjee, Phillipp Steinmann, Rick Wise
  • Patent number: 8043979
    Abstract: A plasma oxidizing method in which a plasma is produced in a processing chamber of a plasma processing apparatus under a processing condition that the proportion of oxygen in the processing gas is 20% or more and the processing pressure is 400 to 1333 Pa, and silicon exposed from the surface of an object to be processed is oxidized by the plasma to form a silicon oxide film.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 25, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Kobayashi, Junichi Kitagawa, Yoshiro Kabe, Toshihiko Shiozawa
  • Patent number: 8043981
    Abstract: Methods and apparatus for forming an oxide layer on a semiconductor substrate are disclosed. A two frequency plasma source is used to form a plasma in a plasma reactor. In various embodiments, different quantities of power are supplied to a power source operating at the first frequency and a power source operating at the second frequency over time.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: October 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Kai Ma, Yoshitaka Yokota, Christopher S. Olsen
  • Patent number: 8011319
    Abstract: A holding device is presented in which a layer which is to be oxidized is processed, in a single-substrate process. The process temperature during the processing is recorded directly at the substrate or at a holding device for the substrate. The process includes introducing a substrate, which bears a layer to be oxidized uncovered in an edge region in a layer stack, into a heating device, passing an oxidation gas onto the substrate, heating the substrate to a process temperature, which is recorded during the processing via a temperature of the holding device which holds the substrate, and controlling the substrate temperature to a desired temperature or temperature curve during the processing.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Hin-Yiu Chung, Thomas Gutt
  • Patent number: 7989364
    Abstract: A plasma oxidation process is performed to form a silicon oxide film on the surface of a target object by use of plasma with an O(1D2) radical density of 1×1012 [cm?3] or more generated from a process gas containing oxygen inside a process chamber of a plasma processing apparatus. During the plasma oxidation process, the O(1D2) radical density in the plasma is measured by a VUV monochromator 63, and a correction is made to the plasma process conditions.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: August 2, 2011
    Assignees: National University Corporation Nagoya University, Tokyo Electron Limited
    Inventors: Masaru Hori, Toshihiko Shiozawa, Yoshiro Kabe, Junichi Kitagawa
  • Patent number: 7989363
    Abstract: A method for fabricating semiconductor devices, e.g., SONOS cell. The method includes providing a semiconductor substrate (e.g., silicon wafer, silicon on insulator) having a surface region, which has a native oxide layer. The method includes treating the surface region to a wet cleaning process to remove a native oxide layer from the surface region. In a specific embodiment, the method includes subjecting the surface region to an oxygen bearing environment and subjecting the surface region to a high energy electromagnetic radiation having wavelengths ranging from about 300 to about 800 nanometers for a time period of less than 10 milli-seconds to increase a temperature of the surface region to greater than 1000 Degrees Celsius. In a specific embodiment, the method causes formation of an oxide layer having a thickness of less than 10 Angstroms. In a preferred embodiment, the oxide layer is substantially free from pinholes and other imperfections.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: David Gao, Mieno Fumitake
  • Patent number: 7972933
    Abstract: Methods of forming semiconductor devices are provided herein. In some embodiments, a method of forming a semiconductor device may include providing a substrate having an oxide surface and a silicon surface; forming a nitrogen-containing layer on exposed portions of both the oxide and silicon surfaces; and oxidizing the nitrogen-containing layer to selectively remove the nitrogen-containing layer from atop the oxide surface. In some embodiments, an oxide layer is formed atop a remaining portion of the nitrogen-containing layer formed on the silicon feature. In some embodiments, the oxide surface is an exposed surface of a shallow trench isolate region (STI) disposed adjacent to one or more floating gates of a semiconductor device. In some embodiments, the silicon surface is an exposed surface of a silicon or polysilicon floating gate of a semiconductor device.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Christopher S. Olsen, Johanes Swenberg, Udayan Ganguly, Theresa Kramer Guarini, Yonah Cho
  • Patent number: 7910495
    Abstract: A plasma oxidizing method includes a step of placing an object to be processed and having a surface containing silicon on a susceptor disposed in a processing vessel of a plasma processing apparatus, a step of producing a plasma from a processing gas containing oxygen in the processing vessel, a step of supplying high-frequency electric power to the susceptor and applying a high-frequency bias to the object to be processed when the plasma is produced, and a step of forming a silicon oxide film by oxidizing silicon in the surface of the object to be processed by the plasma.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: March 22, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Toshihiko Shiozawa, Yoshiro Kabe, Takashi Kobayashi, Hikaru Adachi, Junichi Kitagawa, Nobuhiko Yamamoto
  • Patent number: 7892935
    Abstract: A semiconductor process is provided. The semiconductor process includes providing a substrate. Then, a surface treatment is performed to the substrate to form a buffer layer on the substrate. Next, a first pre-amorphous implantation is performed to the substrate.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: February 22, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chao-Ching Hsieh, Tsai-Fu Hsiao, Yu-Lan Chang, Tsung-Yu Hung, Chun-Chieh Chang
  • Patent number: 7811945
    Abstract: A selective plasma processing method, within a processing chamber of a plasma processing apparatus, acts oxygen-containing plasma on a target object having silicon and a silicon nitride layer to selectively oxidize the silicon with respect to the silicon nitride layer and to form a silicon oxide film. Further, the ratio of a thickness of a silicon oxynitride film formed within the silicon nitride layer to a thickness of the silicon oxide film formed by the oxidization is equal to or smaller than 20%.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 12, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Masaru Sasaki
  • Patent number: 7795158
    Abstract: In an oxidation method for a semiconductor process, target substrates are placed at intervals in a vertical direction within a process field of a process container. An oxidizing gas and a deoxidizing gas are supplied to the process field from one side of the process field while gas is exhausted from the other side. One or both of the oxidizing gas and the deoxidizing gas are activated. The oxidizing gas and the deoxidizing gas are caused to react with each other, thereby generating oxygen radicals and hydroxyl group radicals within the process field. An oxidation process is performed on the surfaces of the target substrate by use of the oxygen radicals and the hydroxyl group radicals.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: September 14, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Takehiko Fujita, Jun Ogawa, Shigeru Nakajima, Kazuhide Hasebe
  • Patent number: 7723789
    Abstract: A nonvolatile memory device with nanowire channel and a method for fabricating the same are proposed, in which side etching is used to shrink side walls of a side-gate to form a nanowire pattern, thereby fabricating a nanowire channel on the dielectric of the side walls of the side-gate. A nonvolatile memory device with nanowire channel and dual-gate control can thus be achieved. This nonvolatile memory device can enhance data writing and erasing efficiency, and also has the capability of low voltage operation. Moreover, through a process of low cost and easy steps, highly reproducible and mass producible fabrication of nanowire devices can be accomplished.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 25, 2010
    Assignee: National Chiao Tung University
    Inventors: Horng-Chih Lin, Chun-Jung Su, Hsin-Hwei Hsu
  • Patent number: 7723173
    Abstract: A method for preventing oxidation in a high-k dielectric/metal gate stack in the manufacture of an integrated circuit device is disclosed. In a detailed embodiment, a PMOS region stack has nitrided hafnium silicide, tungsten, tantalum nitride and polysilicon layers. An NMOS region stack has nitrided hafnium silicide, tungsten silicide, tantalum nitride and polysilicon layers. A thin polysilicon layer deposited over the stacks is converted to an oxide using a low temperature ultraviolet ozone oxidation process or a plasma nitridation using decoupled plasma nitridation or NH3 annealing. The oxide provides a coating over the top and sides of the stacks to protect metal and interfaces from oxidation.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: May 25, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Ajith Varghese, James J. Chambers
  • Patent number: 7700425
    Abstract: A method is provided for forming an SOI MOSFET device with a silicon layer formed on a dielectric layer with a gate electrode stack, with sidewall spacers on sidewalls of the gate electrode stack and raised source/drain regions formed on the surface of the silicon layer. The gate electrode stack comprises a gate electrode formed of polysilicon over a gate dielectric layer formed on the surface of the silicon layer. A thin amorphous silicon cap layer is formed in the top surface of the gate electrode by implanting dopant into the surface thereof. A notch is etched into the periphery of the cap layer. A plug of dielectric material is formed in the notch. The sidewalls of the gate electrode are covered by the sidewall spacers which cover a portion of the plug for the purpose of eliminating the exposure of the gate polysilicon so that formation of spurious epitaxial growth during the formation of raised source/drain regions is avoided.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Tina J. Wagner, Werner A. Rausch, Sadanand V. Deshpande
  • Patent number: 7678659
    Abstract: A method for reducing leakage current in a semiconductor capacitor. The method includes providing a top plate for collecting charge, providing a bottom plate for collecting an opposing charge to the top plate, providing a dielectric layer for insulation between the top plate and the bottom plate, providing a top contact, providing a bottom contact, providing a plurality of vias including top level vias for connecting the top plate to the top contact, and bottom level vias for connecting the bottom plate to the bottom contact; and separating a via and an adjacent structure such that their distance is greater than a minimum via spacing requirement of a foundry design rule for a semiconductor process producing the semiconductor capacitor.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: MediaTek Inc.
    Inventors: Chao-Chun Tu, Ming-Chieh Lin
  • Patent number: 7645656
    Abstract: A field effect transistor (“FET”) is provided which includes a gate stack overlying a single-crystal semiconductor region of a substrate, a pair of first spacers disposed over sidewalls of said gate stack, and a pair of regions consisting essentially of a single-crystal semiconductor alloy which are disposed on opposite sides of the gate stack. Each of the semiconductor alloy regions is spaced a first distance from the gate stack. The source region and drain region of the FET are at least partly disposed in respective ones of the semiconductor alloy regions, such that the source region and the drain region are each spaced a second distance from the gate stack by a first spacer of the pair of first spacers, the second distance being different from the first distance.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Sang-Hyun Oh, Siddhartha Panda, Werner A. Rausch, Tsutomu Sato, Henry K. Utomo
  • Patent number: 7615499
    Abstract: A method is presented in which a layer which is to be oxidized is processed, in a single-substrate process. The process temperature during the processing is recorded directly at the substrate or at a holding device for the substrate. The method includes introducing a substrate, which bears a layer to be oxidized uncovered in an edge region in a layer stack, into a heating device, passing an oxidation gas onto the substrate, heating the substrate to a process temperature, which is recorded during the processing via a temperature of a holding device which holds the substrate, and controlling the substrate temperature to a desired temperature or temperature curve during the processing.
    Type: Grant
    Filed: July 26, 2003
    Date of Patent: November 10, 2009
    Assignee: Infineon Technologies AG
    Inventors: Hin-Yiu Chung, Thomas Gutt
  • Patent number: 7598168
    Abstract: A method of forming a dual damascene semiconductor interconnection and an etchant composition specially adapted for stripping a sacrificial layer in a dual damascene fabrication process without profile damage to a dual damascene pattern are provided. The method includes sequentially forming a first etch stop layer, a first intermetal dielectric, a second intermetal dielectric, and a capping layer on a surface of a semiconductor substrate on which a lower metal wiring is formed; etching the first intermetal dielectric, the second intermetal dielectric, and the capping layer to form a via; forming a sacrificial layer within the via; etching the sacrificial layer, the second intermetal dielectric, and the capping layer to form a trench; removing the sacrificial layer remaining around the via using an etchant composition including NH4F, HF, H2O and a surfactant; and forming an upper metal wiring within the thus formed dual damascene pattern including the via and the trench.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-cheol Han, Kyoung-woo Lee, Mi-young Kim
  • Patent number: 7592227
    Abstract: Example embodiments of the present invention relate to methods of manufacturing a semiconductor device. Other example embodiments of the present invention relate to methods of manufacturing a semiconductor device having a gate electrode. In the method of manufacturing the semiconductor device, a gate electrode may be formed on a semiconductor substrate. Damage in the semiconductor substrate and a sidewall of the gate electrode may be cured, or repaired, by a radical re-oxidation process to form an oxide layer on the semiconductor substrate and the gate electrode.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Sun Lee, Jai-Dong Lee, Bong-Hyun Kim, Man-Sug Kang, Jung-Hwan Kim, Hyun-Jin Shin, Won-Seok Yoo, Seung-Mok Shin
  • Patent number: 7585720
    Abstract: A dual stress liner manufacturing method and device is described. Overlapping stress liner layers of opposite effect (e.g., tensile versus compression) may be deposited over portions of the device, and the uppermost overlapping layer may be polished down in a process that uses the bottom overlapping layer as a stopper. An insulating film may be deposited on the stress liner layers before the polishing, and another insulating film may be deposited above the first insulating film after the polishing. Contacts may be formed such that the contacts need only penetrate one stress liner layer to reach a transistor well or gate structure.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: September 8, 2009
    Assignee: Toshiba America Electronic Components, Inc.
    Inventor: Gaku Sudo
  • Publication number: 20090146302
    Abstract: Embodiments relate to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device capable of simplifying a silicide manufacturing process using a photo resist overhang structure. According to embodiments, a surface is subjected to a monochlorobenzene coating processing to cure the surface of the exposed photo resist so as not to react with developing solution and such a processed photo resist is developed to make the lower of the photo resist in the overhang structure so as to form an accurate pattern according to the clear removal of the oxide film, making it possible to simply manufacture the silicide and the non-silicide without performing an etching process by a subsequent cobalt deposition process.
    Type: Application
    Filed: October 5, 2008
    Publication date: June 11, 2009
    Inventor: In-Cheol Baek
  • Patent number: 7485520
    Abstract: A silicon containing fin is formed on a semiconductor substrate. A silicon oxide layer is formed around the bottom of the silicon containing fin. A gate dielectric is formed on the silicon containing fin followed by formation of a gate electrode. While protecting the portion of the semiconductor fin around the channel, a bottom portion of the silicon containing semiconductor fin is etched by a isotropic etch leaving a body strap between the channel of a finFET on the silicon containing fin and an underlying semiconductor layer underneath the silicon oxide layer. The fin may comprise a stack of inhomogeneous layers in which a bottom layer is etched selectively to a top semiconductor layer. Alternatively, the fin may comprise a homogeneous semiconductor material and the silicon containing fin may be protected by dielectric films on the sidewalls and top surfaces of the silicon containing fin.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Thomas W. Dyer, Jack A. Mandelman, Werner Rausch
  • Patent number: 7425480
    Abstract: A method of manufacturing a MOS transistor incorporating a silicon oxide film serving as a gate insulating film and containing nitrogen and a polycrystalline silicon film serving as a gate electrode and containing a dopant and arranged such that the gate electrode is formed on the gate electrode insulating film, and an oxidation process using ozone is performed to sufficiently round the shape of the lower edge of the gate electrode.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: September 16, 2008
    Assignee: Kabushiki Kaisha Tohisba
    Inventors: Yoshio Ozawa, Yasumasa Suizu, Yoshitaka Tsunashima
  • Publication number: 20080220594
    Abstract: The fabrication method of a mixed substrate comprising a tensile strained silicon-on-insulator portion and a compressive strained germanium-on-insulator portion comprises a first step of producing a strained silicon-on-insulator base substrate comprising first and second tensile strained silicon zones. After the base substrate has been produced, the method comprises the successive steps of masking the first tensile strained silicon zone forming the tensile strained silicon-on-insulator portion of the substrate, of performing germanium enrichment treatment of the second tensile strained silicon zone of the base substrate until a compressive strained germanium layer is obtained forming said compressive strained germanium-on-insulator portion of the substrate, and of removing the masking.
    Type: Application
    Filed: February 27, 2008
    Publication date: September 11, 2008
    Applicant: COMMISSARIAT A L' ENERGIE ATOMIQUE
    Inventors: Laurent Clavelier, Cyrille Le Royer, Jean-Francois Damlencourt
  • Publication number: 20080166893
    Abstract: A method of forming a semiconductor structure includes oxidizing a gate stack at a temperature of at most 600° C. with a plasma prepared from a gas mixture. The gas mixture includes an oxygen-containing gas and ammonia, and the gate stack is on a semiconductor substrate. The gate stack contains a gate layer, a conductive layer on the gate layer, a metal layer on the conductive layer, and a capping layer on the metal layer.
    Type: Application
    Filed: January 3, 2008
    Publication date: July 10, 2008
    Inventors: Jeong Soo Byun, Krishnaswamy Ramkumar
  • Patent number: 7381601
    Abstract: Integrated circuit field effect transistor devices include a substrate having a surface and an active channel pattern on the surface. The active channel pattern includes channels that are stacked upon one another and are spaced apart from one another to define at least one tunnel between adjacent channels. A gate electrode surrounds the channels and extends through the at least one tunnel. A pair of source/drain regions also is provided. Integrated circuit field effect transistors are manufactured, by forming a pre-active pattern on a surface of a substrate. The pre-active pattern includes a series of interchannel layers and channel layers stacked alternately upon each other. Source/drain regions are formed on the substrate at opposite ends of the pre-active pattern. The interchannel layers are selectively removed to form tunnels. A gate electrode is formed in the tunnels and surrounding the channels.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: June 3, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Min Kim, Dong-Gun Park, Chang-Sub Lee, Jeong-Dong Choe, Shin-Ae Lee, Seong-Ho Kim
  • Patent number: 7303946
    Abstract: A method of manufacturing a MOS transistor incorporating a silicon oxide film serving as a gate insulating film and containing nitrogen and a polycrystalline silicon film serving as a gate electrode and containing a dopant and arranged such that the gate electrode is formed on the gate electrode insulating film, and an oxidation process using ozone is performed to sufficiently round the shape of the lower edge of the gate electrode.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: December 4, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Yasumasa Suizu, Yoshitaka Tsunashima
  • Publication number: 20070048917
    Abstract: When an oxidation treatment for regenerating a gate insulating film 6 is performed after forming gate electrodes 7A of a polymetal structure in which a WNx film and a W film are stacked on a polysilicon film, a wafer 1 is heated and cooled under conditions for reducing a W oxide 27 on the sidewall of each gate electrode 7A. As a result, the amount of the W oxide 27 to be deposited on the surface of the wafer 1 is reduced.
    Type: Application
    Filed: October 27, 2006
    Publication date: March 1, 2007
    Inventors: Naoki Yamamoto, Hiroyuki Uchiyama, Norio Suzuki, Eisuke Nishitani, Shin'ichiro Kimura, Kazuyuki Hozawa
  • Patent number: 7169682
    Abstract: A method for manufacturing a semiconductor device comprising: a first step of successively forming a silicon oxide film and a silicon nitride film on a silicon substrate, followed by forming a silicon nitride oxide film or a multilayered film containing the silicon nitride oxide film on the silicon nitride film; a second step of forming a photoresist film having an opening portion located at the position corresponding to an element isolation area of the silicon substrate on the silicon nitride film or the multilayered film according to a photolithography method; a third step of forming a trench having a pair of tapered side surface portions on the confronting side surfaces thereof on the silicon nitride oxide film or the multilayered film by using the photoresist film as a mask, the tapered side surface portions being inclined toward the substrate side so as to approach each other; and a fourth step of patterning the silicon nitride film and the silicon oxide film by dry etching by using the photoresist fi
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: January 30, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuhiro Hirohama, Masaru Tanaka, Takayoshi Hashimoto, Shinichi Sato, Hideyuki Kanzawa
  • Patent number: 7109076
    Abstract: Mutual diffusion of impurities in a gate electrode is suppressed near a boundary between an n-channel type MISFET and a p-channel type MISFET, which adopt a polycide's dual-gate structure. Since a gate electrode of an n-channel type MISFET and a gate electrode of a p-channel type MISFET are of mutually different conductivity types, they are separated to prevent the mutual diffusion of the impurities and are electrically connected to each other via a metallic wiring formed in the following steps. In a step before a gate electrode material is patterned to separate the gate electrodes, the mutual diffusion of the impurities before forming the gate electrodes is prevented by performing no heat treatment at a temperature of 700° C. or higher.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 19, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Satoshi Sakai, Daichi Matsumoto, Katsuyuki Asaka, Masatoshi Hasegawa, Kazutaka Mori