Silicon Vertical Transistor (epo) Patents (Class 257/E21.375)
  • Patent number: 7615805
    Abstract: Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: November 10, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Joe R. Trogolo, Tathagata Chatterjee, Lily X. Springer, Jeffrey P. Smith
  • Publication number: 20090250785
    Abstract: The disclosed subject matter provides a method of forming a bipolar transistor. The method includes depositing a first insulating layer over a first layer of material that is doped with a dopant of a first type. The first layer is formed over a substrate. The method also includes modifying a thickness of the first oxide layer based on a target dopant profile and implanting a dopant of the first type in the first layer. The dopant is implanted at an energy selected based on the modified thickness of the first insulating layer and the target dopant profile.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: Thomas Joseph Krutsick, Christopher J. Speyer
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
  • Patent number: 7563686
    Abstract: A method for forming a memory device with a recessed gate is disclosed. A substrate with a pad layer thereon is provided. The pad layer and the substrate are patterned to form at least two trenches. A deep trench capacitor device is formed in each trench. The pad layer is recessed until upper portions of the deep trench capacitor devices are revealed. Spacers are formed on sidewalls of the upper portions of the deep trench capacitor devices. The pad layer and the substrate are etched using the spacers and the deep trench capacitor devices as a mask to form a recess, and a recessed gate is formed in the recess.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 21, 2009
    Assignee: Nanya Technology Corporation
    Inventors: Pei-Ing Lee, Chung-Yuan Lee, Chien-Li Cheng
  • Publication number: 20090181513
    Abstract: A vertical organic transistor and a method for fabricating the same are provided, wherein an emitter, a grid with openings and a collector are sequentially arranged above a substrate. Two organic semiconductor layers are interposed respectively between the emitter and the grid with openings and between the grid with openings and the collector. The channel length is simply decided by the thickness of the organic semiconductor layers. The collector current depends on the space-charge-limited current contributed by the potential difference between the emitter and the openings of the grid. And the grid voltage can thus effectively control the collector current. Further, the fabrication process of the vertical organic transistor of the present invention is simple and exempt from using the photolithographic process.
    Type: Application
    Filed: February 20, 2009
    Publication date: July 16, 2009
    Inventors: Hsin-Fei Meng, Sheng-Fu Horng, Yu-Chiang Chao
  • Publication number: 20090140388
    Abstract: A semiconductor emitter structure for emitting charge carriers of a first conductivity type in a base volume of a second conductivity type material neighbored to the emitter structure in a vertical direction, includes multiple emitter volumes of first conductivity tape material having a predetermined lateral dimension in a lateral direction perpendicular to the vertical direction. The emitter volumes are, in the lateral direction, neighbored by semiconductor volumes of second conductivity type material, wherein the predetermined lateral dimension is such that space charges created by second conductivity type carriers laterally diffusing into the emitter volumes from the semiconductor volumes limit a maximum density of first conductivity type carriers within the emitter volumes by more than 20% as compared to emitter volumes of the same lateral dimension not neighbored by semiconductor volumes of the second conductivity type material.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Applicant: Infineon Technologies Austria AG
    Inventors: Joachim Joos, Matthias Stecher
  • Publication number: 20090079031
    Abstract: A configuration composed of multiple short emitters still share common DTI regions and a single big piece of base poly. This allows for base current to flow in 4 directions (e.g., 2 dimensions) as opposed to only two. This significantly reduces the base resistance of the transistor that is crucial for better NPN transistor RF performance and high frequency noise performance.
    Type: Application
    Filed: June 1, 2006
    Publication date: March 26, 2009
    Applicant: NXP B.V.
    Inventors: Poh Cheng Tan, Peter Deixler, Cicero Silveira Vaucher
  • Publication number: 20090045457
    Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate including a low-side steering diode, a high-side steering diode integrated with a main Zener diode for suppressing a transient voltage. The low-side steering diode and the high-side steering diode integrated with the Zener diode are disposed in the semiconductor substrate and each constituting a vertical PN junction as vertical diodes in the semiconductor substrate whereby reducing a lateral area occupied by the TVS device. In an exemplary embodiment, the high-side steering diode and the Zener diode are vertically overlapped with each other for further reducing lateral areas occupied by the TVS device.
    Type: Application
    Filed: October 1, 2008
    Publication date: February 19, 2009
    Inventor: Madhur Bobde
  • Patent number: 7489003
    Abstract: In a semiconductor device, the semiconductor device includes a conductive structure, first insulating layers and first conductive layer patterns. The conductive structure includes a first portion, second portions and third portions. The second portions extend in a first direction on the first portion. The second portions are spaced apart from one another in a second direction substantially perpendicular to the first direction. The third portions are provided on the second portions. The third portions are spaced apart from one another in the first and second directions. The first insulating layers cover sidewalls of the second portions. The first conductive layer patterns are provided on the first insulating layers.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: February 10, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyoung-Seub Rhie
  • Publication number: 20090026578
    Abstract: A vertical NPN bipolar transistor includes a P-type semiconductor structure, an N-well as the collector, a P-Base region in the N-well and an N-type region as the emitter. The transistor further includes P-type region formed in the P-Base region and underneath the field oxide layer where the P-type region has a doping concentration higher than the P-base region. The P-type region functions to inhibit the lateral parasitic bipolar action so that the transistor action is confined to the intrinsic base region vertically underneath the emitter. In one embodiment, the P-type region is a boron field doping region. The boron field doping region can be the same field doping region used to form channel stops for NMOS transistors in a CMOS fabrication process.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Applicant: MICREL, INC.
    Inventors: Schyi-yi Wu, Martin Alter
  • Patent number: 7439137
    Abstract: In a MOSFET, after an element region is formed, a wiring layer is formed subsequently to a barrier metal layer, and hydrogen annealing is performed. However, in the case of an n-channel MOSFET, a threshold voltage is lowered due to an occlusion characteristic of the barrier metal layer. Thus, an increased impurity concentration in a channel layer causes a problem that reduction in an on-resistance is inhibited. According to the present invention, after a barrier metal layer is formed, an opening is provided in the barrier metal layer on an interlayer insulating film, and hydrogen annealing treatment is performed after a wiring layer is formed. Thus, an amount of hydrogen which reaches a substrate is further increased, and lowering of a threshold voltage is suppressed. Moreover, since an impurity concentration in a channel layer can be lowered, an on-resistance is reduced.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: October 21, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Hiroyasu Ishida, Hirotoshi Kubo, Shouji Miyahara, Masato Onda
  • Patent number: 7439558
    Abstract: A method and system for providing a bipolar transistor is described. The method and system include providing a compound base region, providing an emitter region coupled with the compound base region, and providing a collector region coupled with the compound base region. The bipolar transistor may also include at least one other predetermined portion. The method and system also include providing at least one predetermined amount of oxygen to at least one of the compound base region, the emitter region, the collector region, and the predetermined portion of the bipolar transistor.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: October 21, 2008
    Assignee: Atmel Corporation
    Inventor: Darwin Gene Enicks
  • Patent number: 7439572
    Abstract: A stacked gate nonvolatile memory floating gate device has a control gate. Programming of the cell in the array is accomplished by hot channel electron injecton from the drain to the floating gate. Erasure occurs by Fowler-Nordheim tunneling of electrons from the floating gate to the control gate. Finally, to increase the density, each cell can be made in a trench.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 21, 2008
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Bomy Chen, Hieu Van Tran, Dana Lee, Jack Edward Frayer
  • Patent number: 7414298
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 7410856
    Abstract: A vertical transistor forming method includes forming a first pillar above a first source/drain and between second and third pillars, providing a first recess between the first and second pillars and a wider second recess between the first and third pillars, forming a gate insulator over the first pillar, forming a front gate and back gate over opposing sidewalls of the first pillar by depositing a gate conductor material within the first and second recesses and etching the gate conductor material to substantially fill the first recess, forming the back gate, and only partially fill the second recess, forming the front gate, forming a second source/drain elevationally above the first source/drain, and providing a transistor channel in the first pillar. The channel is operationally associated with the first and second sources/drains and with the front and back gates to form a vertical transistor configured to exhibit a floating body effect.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Kris K. Brown
  • Patent number: 7364997
    Abstract: In one implementation, field oxide is grown within bulk semiconductive material in a first circuitry area and not over immediately adjacent bulk semiconductive material in a second circuitry area. The field oxide is etched from the first circuitry area. After the etching, a circuit component is formed in the first circuitry area and a circuit component is formed in the second circuitry area. Dielectric material is formed over the first and second circuitry areas. The dielectric material comprises a conductive contact extending outwardly from the circuit component in the first circuitry area. The dielectric material has a first outermost surface. A portion of the dielectric material and a portion of the conductive contact are removed to form a second outermost surface of the dielectric material which has greater degree of planarity than did the first outermost surface. Other aspects are contemplated.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7347228
    Abstract: A method for fabricating semiconductor device is provided. A high stress layer formed on, under or on both sides of the transistors of the semiconductor device is employed as a cap layer. A specific region is then defined through photo resistor mask, and the stress of the region is changed by ion implanting. Therefore, compressive stress and tensile stress occur on the high stress layer. According the disclosed method, the high stress layer may simultaneously improve the characteristics of the transistors formed on the same wafer. Further, the mobility of the carriers of the device is enhanced.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: March 25, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Cha-Hsin Lin, Zing-Way Pei, Shing-Chii Lu, Wen-Yi Hsieh
  • Publication number: 20080054370
    Abstract: A semiconductor device include an emitter layer, an emitter electrode containing a metal-semiconductor compound of a metal and a semiconductor, formed on a surface of the emitter layer, and a first reaction suppression layer formed between the emitter layer and the emitter electrode and suppressing permeation of the metal diffused from the emitter electrode.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 6, 2008
    Inventors: Shinya Naito, Hideaki Fujiwara, Toru Dan
  • Patent number: 7288815
    Abstract: A semiconductor device (20, 21, 22), including: a channel region (4) of a first conductivity type formed at a surface layer portion of a semiconductor substrate (1); a source region (25) of a second conductivity type which is different from the first conductivity type, the source region (25) being formed at a rim of a trench (17) having a depth sufficient to penetrate through the channel region (4); a drain region (2) of the second conductivity type formed at a region adjacent to a bottom of the trench (17); a gate insulating film (13) formed along an inner side wall of the trench (17); a gate electrode (26, 36) arranged in the trench (17) so as to be opposed to the channel region (4) with the gate insulating film (13) interposed therebetween; a conductive layer (37, 40, 40a, 40b) formed in the trench (17) so as to be nearer to the drain region (2) than the gate electrode (26, 36); and an insulating layer (15) surrounding the conductive layer (37, 40, 40a, 40b) to electrically insulate the conductive layer (3
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: October 30, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Masaru Takaishi
  • Patent number: 7276754
    Abstract: A memory structure having a vertically oriented access transistor with an annular gate region and a method for fabricating the structure. More specifically, a transistor is fabricated such that the channel of the transistor extends outward with respect to the surface of the substrate. An annular gate is fabricated around the vertical channel such that it partially or completely surrounds the channel. A buried annular bitline may also be implemented. After the vertically oriented transistor is fabricated with the annular gate, a storage device may be fabricated over the transistor to provide a memory cell.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Lucien J. Bissey, Kevin G. Duesman
  • Patent number: 7271067
    Abstract: A semiconductor high-voltage device comprising a voltage sustaining layer between a n+-region and a p+-region is provided, which is a uniformly doped n (or p)-layer containing a plurality of floating p (or n)-islands. The effect of the floating islands is to absorb a large part of the electric flux when the layer is fully depleted under high reverse bias voltage so as the peak field is not increased when the doping concentration of voltage sustaining layer is increased. Therefore, the thickness and the specific on-resistance of the voltage sustaining layer for a given breakdown voltage can be much lower than those of a conventional voltage sustaining layer with the same breakdown voltage. By using the voltage sustaining layer of this invention, various high voltage devices can be made with better relation between specific on-resistance and breakdown voltage.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: September 18, 2007
    Assignee: Third Dimension (3D) Semiconductor, Inc.
    Inventor: Xing-Bi Chen
  • Patent number: 7271048
    Abstract: A method of manufacturing a trench MOSFET with high cell density is disclosed. The method introduces a sidewall oxide spacer for narrowing the opening of the trench structure, thereby decreasing the cell pitch of the memory units. Moreover, the source structure is formed automatically by means of an extra contact silicon etch for preventing the photoresist from lifting during the ion implantation of the prior art. On the other hand, the contact structure is filled with W-plug for overcoming the defect of poor metal step coverage resulted from filling the contact structure with AlSiCu according to the prior art. Thus, the cell density of the device can be increased; and the Rds-on and the power loss of the device can be decreased.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: September 18, 2007
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chien-Ping Chang, Mao Song Tseng, Hsin Huang Hsieh, Tien-Min Yuan
  • Patent number: 7259048
    Abstract: An architecture for creating a vertical silicon-on-insulator MOSFET. Generally, an integrated circuit structure includes a semiconductor area with a major surface formed along a plane and a first source/drain contact region formed in the surface. A relatively thin single crystalline layer is oriented vertically above the major surface and comprises a first source/drain doped region over which is located a doped channel region, over which is located a second source/drain region. An insulating layer is disposed adjacent said first and said second source/drain regions and said channel region, serving as the insulating material of the SOI device. In another embodiment, insulating material is adjacent only said first and said second source/drain regions. A conductive region is adjacent the channel region for connecting the back side of the channel region to ground, for example, to prevent the channel region from floating.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 21, 2007
    Assignee: Agere Systems, Inc.
    Inventors: Samir Chaudhry, Paul Arthur Layman, John Russell McMacken, J. Ross Thomson, Jack Qingsheng Zhao
  • Patent number: 7253070
    Abstract: A transistor having minimized parasitics is provided including an emitter having a recessed extrinsic emitter portion atop an intrinsic emitter portion; a base including an intrinsic base portion in electrical contact with the intrinsic emitter portion and an extrinsic base portion in electrical contact with the intrinsic base portion and electrically isolated from the recessed extrinsic emitter portion by a set of emitter/base spacers; and a collector in electrical contact with the intrinsic base portion. The transistor may further include extrinsic base having top surfaces entirely silicided to the emitter/base spacer. Additionally, the transistor may include a base window opening within the transistor's active area. Methods of forming the above-described transistor are also provided.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventors: David R. Greenberg, Shwu-Jen Jeng
  • Patent number: 7208370
    Abstract: To fabricate a vertical transistor, a trench is provided, the side wall of which is formed by a semiconductor substrate in single crystal form and the base of which is formed by a polycrystalline semiconductor substrate. A transition region is arranged between the side wall and the base. A semiconductor layer is deposited so that an epitaxial semiconductor layer grows on the side wall and a semiconductor layer grows on the base, with a space remaining between these layers. The semiconductor layers are covered with a thin dielectric, which partially limits a flow of current, and the space is filled. During a subsequent heat treatment, dopants diffuse out of the conductive material into the epitaxial semiconductor layer, where they form a doping region. The thin dielectric limits the diffusion of the dopants into the semiconductor substrate and prevents the propagation of crystal lattice defects into the epitaxial semiconductor layer.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventors: Albert Birner, Joern Luetzen