Mounting On Insulating Member Provided With Metallic Leads, E.g., Flip-chip Mounting, Conductive Die Mounting (epo) Patents (Class 257/E21.511)
  • Patent number: 9076754
    Abstract: A package includes a first die and a second die underlying the first die and in a same first die stack as the first die. The second die includes a first portion overlapped by the first die, and a second portion extending beyond edges of the first die. A first Thermal Interface Material (TIM) is overlying and contacting a top surface of the first die. A heat sink has a first bottom surface over and contacting the first TIM. A second TIM is overlying and contacting the second portion of the second die. A heat dissipating ring is overlying and contacting the second TIM.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: July 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wensen Hung, Szu-Po Huang, Kim Hong Chen, Shin-Puu Jeng
  • Patent number: 9035465
    Abstract: Various embodiments include semiconductor structures. In one embodiment, the semiconductor structure includes a chip having a body having a polyhedron shape with a pair of opposing sides; and a solder member extending along a side that extends between the pair of opposing sides of the polyhedron shape.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Timothy J. Dalton, Mukta G. Farooq, John A. Fitzsimmons, Louis L. Hsu
  • Patent number: 9024452
    Abstract: A semiconductor package and a method of manufacturing the same. The semiconductor package includes; a printed circuit board (PCB); a first semiconductor chip attached onto the PCB; an interposer that is attached onto the first semiconductor chip to cover a portion of the first semiconductor chip and comprises first connection pad units and second connection pad units that are electrically connected to each other, respectively, on an upper surface opposite to a surface of the interposer facing the first semiconductor chip; a second semiconductor chip attached onto the first semiconductor chip and the interposer as a flip chip type; a plurality of bonding wires that electrically connect the second connection pad units of the interposer to the PCB or the first semiconductor chip to the PCB; and a sealing member formed on the PCB to surround the first semiconductor chip, the second semiconductor chip, the interposer, and the bonding wires.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 5, 2015
    Assignee: STS Semiconductor & Telecommunications Co., Ltd.
    Inventor: Jung Hwan Chun
  • Patent number: 8987064
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a lead-frame having a metal connector mounted thereon and having a peripheral mounting region; forming an insulation cover on the lead-frame and on the metal connector; connecting an integrated circuit die over the insulation cover; forming a top encapsulation on the integrated circuit die with the peripheral mounting region exposed from the top encapsulation; forming a routing layer, having a conductive land, from the lead-frame; and forming a bottom encapsulation partially encapsulating the routing layer and the insulation cover.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 24, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8987922
    Abstract: A semiconductor device includes a substrate, a bond pad above the substrate, a guard ring above the substrate, and an alignment mark above the substrate, between the bond pad and the guard ring. The device may include a passivation layer on the substrate, a polymer layer, a post-passivation interconnect (PPI) layer in contact with the bond pad, and a connector on the PPI layer, wherein the connector is between the bond pad and the guard ring, and the alignment mark is between the connector and the guard ring. The alignment mark may be at the PPI layer. There may be multiple alignment marks at different layers. There may be multiple alignment marks for the device around the corners or at the edges of an area surrounded by the guard ring.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Yuan Yu, Hsien-Wei Chen, Wen-Hsiung Lu, Hung-Jen Lin
  • Patent number: 8980689
    Abstract: Provided is a method of fabricating a multi-chip stack package. The method includes preparing single-bodied lower chips having a single-bodied lower chip substrate having a first surface and a second surface disposed opposite the first surface, bonding unit package substrates onto the first surface of the single-bodied lower chip substrate to form a single-bodied substrate-chip bonding structure, separating the single-bodied substrate-chip bonding structure into a plurality of unit substrate-chip bonding structures, preparing single-bodied upper chips having a single-bodied upper chip substrate, bonding the plurality of unit substrate-chip bonding structures onto a first surface of the single-bodied upper chip substrate to form a single-bodied semiconductor chip stack structure, and separating the single-bodied semiconductor chip stack structure into a plurality of unit semiconductor chip stack structures.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-Soo Kwak, Cha-Jea Jo, Tae-Je Cho, Sang-Uk Han
  • Patent number: 8975734
    Abstract: A semiconductor package without a chip carrier formed thereon and a fabrication method thereof. A metallic carrier is half-etched to form a plurality of grooves and metal studs corresponding to the grooves. The grooves are filled with a first encapsulant and a plurality of bonding pads are formed on the metal studs. The first encapsulant is bonded with the metal studs directly. Each of the bonding pads and one of the metal studs corresponding to the bonding pad form a T-shaped structure. Therefore, bonding force between the metal studs and the first encapsulant is enhanced such that delamination is avoided. Die mounting, wire-bonding and molding processes are performed subsequently. Since the half-etched grooves are filled with the first encapsulant, the drawback of having pliable metallic carrier that makes transportation difficult to carry out as encountered in prior techniques is overcome, and the manufacturing cost is educed by not requiring the use of costly metals as an etching resist layer.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 10, 2015
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Yueh-Ying Tsai, Fu-Di Tang, Chien-Ping Huang, Chun-Chi Ke
  • Patent number: 8969143
    Abstract: A light-emitting device package including a lead frame formed of a metal and on which a light-emitting device chip is mounted; and a mold frame coupled to the lead frame by injection molding. The lead frame includes: a mounting portion on which the light-emitting device chip is mounted; and first and second connection portions that are disposed on two sides of the mounting portion in a first direction and connected to the light-emitting device chip by wire bonding, wherein the first connection portion is stepped with respect to the mounting portion, and a stepped amount is less than a material thickness of the lead frame.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daniel Kim, Jae-sung You, Jong-kil Park
  • Patent number: 8963197
    Abstract: An LED package includes a package body having a well formed in its upper surface, where the well is configured to receive a light emitting chip. An optical lens is disposed above the package body and includes a hollow dome structure located above and encompassing the lateral extent of the light emitting chip within the well of the package body. In one implementation, the package body and the optical lens collectively include at least one protrusion and concave, where the protrusion is aligned with the concave so that the optical lens mates with the package body, thereby causing the optical lens to self align with the package body. In another implementation, a protruding inner portion of the upper surface of the package body mates with the hollow dome structure, achieving a similar purpose. Consequently, generation of an eccentric fault between the optical lens and the package body is prevented.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 24, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Myung Soo Han, Seung Ho Jang, Won Seok Choi
  • Patent number: 8957512
    Abstract: An embodiment of an interposer is disclosed. For this embodiment of the interposer, a first circuit portion is created responsive to a first printing region. A second circuit portion is created responsive to a second printing region. The interposer has at least one of: (a) a length dimension greater than a maximum reticle length dimension, and (b) a width dimension greater than a maximum reticle width dimension.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Xilinx, Inc.
    Inventor: Toshiyuki Hisamura
  • Patent number: 8912646
    Abstract: An integrated circuit assembly includes an insulating layer having a having a first surface and a second surface. A first active layer contacts the first surface of the insulating layer. A metal bond pad is electrically connected to the first active layer and formed on the second surface of the insulating layer. A substrate having a first surface and a second surface, with a second active layer formed in the first surface, is provided such that the first active layer is coupled to the second surface of the substrate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 16, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Mark Drucker, Peter Fowler
  • Patent number: 8912659
    Abstract: A stacked semiconductor package includes a first semiconductor chip having a first surface and a second surface which faces away from the first surface and including first bonding pads which are formed on the first surface and first through electrodes which pass through the first surface and the second surface; a second semiconductor chip stacked over the second surface of the first semiconductor chip, and including second bonding pads which are formed on a third surface facing the first semiconductor chip and second through electrodes which pass through the third surface and a fourth surface facing away from the third surface and are electrically connected with the first through electrodes; and a molding part formed to substantially cover the stacked first and second semiconductor chips and having openings which expose one end of the first through electrodes disposed on the first surface of the first semiconductor chip.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: December 16, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hyeong Seok Choi
  • Patent number: 8907354
    Abstract: The present disclosure relates to an optoelectronic device, in particular to an arrangement for contacting an optoelectronic device. The optoelectronic device (200) includes an elastic electrode (208). A method for forming the elastic electrode (208) is described.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 9, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Andrew Ingle
  • Patent number: 8901753
    Abstract: A microelectronic package is provided. The microelectronic package includes a substrate having a plurality of solder bumps disposed on a top side of the substrate and a die disposed adjacent to the top side of the substrate. The die includes a plurality of glassy metal bumps disposed on a bottom side of the die wherein the plurality of glassy metal bumps are to melt the plurality of solder bumps to form a liquid solder layer. The liquid solder layer is to attach the die with the substrate.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 2, 2014
    Assignee: Intel Corporation
    Inventor: Daewoong Suh
  • Patent number: 8895367
    Abstract: A semiconductor package includes: a chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; an encapsulant encapsulating the chip and having opposite first and second surfaces, the first surface being flush with the active surface of the chip; and first and second metal layers formed on the second surface of the encapsulant, thereby providing a rigid support to the overall structure to prevent warpage and facilitating heat dissipation of the overall structure.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 25, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Jung-Pang Huang, Hui-Min Huang, Kuan-Wei Chuang, Chun-Tang Lin, Yih-Jenn Jiang
  • Patent number: 8896110
    Abstract: Embodiments of the present disclosure describe techniques and configurations for paste thermal interface materials (TIMs) and their use in integrated circuit (IC) packages. In some embodiments, an IC package includes an IC component, a heat spreader, and a paste TIM disposed between the die and the heat spreader. The paste TIM may include particles of a metal material distributed through a matrix material, and may have a bond line thickness, after curing, of between approximately 20 microns and approximately 100 microns. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Intel Corporation
    Inventors: Wei Hu, Zhizhong Tang, Syadwad Jain, Rajen S. Sidhu
  • Patent number: 8884343
    Abstract: A system in package and a method for manufacturing the same is provided. The system in package comprises a laminate body having a substrate arranged inside a laminate body. A semiconductor die is embedded in the laminate body and the semiconductor is bonded to contact pads of the substrate by help of a sintered bonding layer, which is made from a sinter paste. Lamination of the substrate and further layers providing the laminate body and sintering of the sinter paste may be performed in a single and common curing step.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Bernhard Lange, Juergen Neuhaeusler
  • Patent number: 8884318
    Abstract: A semiconductor light emitting device includes a substrate; a plurality of light emitting cells disposed on the top surface of the substrate, the light emitting cells each having an active layer; a plurality of connection parts formed on the substrate with the light emitting cells formed thereon to connect the light emitting cells in a parallel or series-parallel configuration; and an insulation layer formed on the surface of the light emitting cell to prevent an undesired connection between the connection parts and the light emitting cell. The light emitting cells comprise at least one defective light emitting cell, and at least one of the connection parts related to the defective light emitting cell is disconnected.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su Yeol Lee, Yong Tae Kim, Jin Bock Lee, Gi Bum Kim
  • Patent number: 8872326
    Abstract: The mechanisms of forming a semiconductor device package described above provide a low-cost manufacturing process due to the relative simple process flow. By forming an interconnecting structure with a redistribution layer(s) to enable bonding of one or more dies underneath a package structure, the warpage of the overall package is greatly reduced. In addition, interconnecting structure is formed without using a molding compound, which reduces particle contamination. The reduction of warpage and particle contamination improves yield. Further, the semiconductor device package formed has low form factor with one or more dies fit underneath a space between a package structure and an interconnecting structure.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chin-Chuan Chang, Jui-Pin Hung
  • Patent number: 8872319
    Abstract: A stacked package structure is provided. The stacked package structure includes a stacked package including a lower semiconductor package, an upper semiconductor package disposed on the lower semiconductor package and spaced a predetermined distance apart from the lower semiconductor package, an inter-package connecting portion electrically connecting the lower semiconductor package and the upper semiconductor package while supporting a space therebetween, and an insulation layer disposed at least outside the inter-package connecting portion and filling the space between the lower semiconductor package and the upper semiconductor package, and an electromagnetic shielding layer surrounding lateral and top surfaces of the stacked package.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Kim, Hee-Seok Lee, Seong-Ho Shin, Se-Ho You, Yun-Hee Lee
  • Patent number: 8835300
    Abstract: The present invention relates to a method for inhibiting growth of intermetallic compounds, comprising the steps of: (i) preparing a substrate element including a substrate on which at least one layer of metal pad is deposited, wherein at least one thin layer of solder is deposited onto the layer of metal pad, and then carry out reflowing process; and (ii) further depositing a bump of solder with an appropriate thickness on the substrate element, characterized in that a thin intermetallic compound is formed by the reaction of the thin solder layer and the metal in the metal pad after appropriate heat treatment of the thin solder layer. In the present invention, the formation of a thin intermetallic compound is able to slow the growth of the intermetallic compound and to prevent the transformation of the intermetallic compounds.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 16, 2014
    Assignee: National Chiao Tung University
    Inventors: Chih Chen, King-Ning Tu, Hsiang-Yao Hsiao
  • Patent number: 8835219
    Abstract: An electric device and a method of making an electric device are disclosed. In one embodiment the electric device comprises a component comprising a component contact area and a carrier comprising a carrier contact area. The electric device further comprises a first conductive connection layer connecting the component contact area with the carrier contact area, wherein the first conductive connection layer overlies a first region of the component contact area and a second connection layer connecting the component contact area with the carrier contact area, wherein the second connection layer overlies a second region of the component contact area, and wherein the second connection layer comprises a polymer layer.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: September 16, 2014
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Khalil Hosseini
  • Patent number: 8836115
    Abstract: A stacked inverted flip chip package includes a substrate having a secondary electronic component opening and first traces. Primary flip chip bumps electrically and physically couple a primary electronic component structure to the substrate. Secondary flip chip bumps electrically and physically couple an inverted secondary electronic component to the primary electronic component structure between the primary electronic component structure and the substrate and within the secondary electronic component opening. By placing the secondary electronic component between the primary electronic component structure and the substrate, the height of the stacked inverted flip chip package is minimized.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 16, 2014
    Inventors: Roger D. St. Amand, August Joseph Miller, Jr., Alexander William Copia, KwangSeok Oh
  • Patent number: 8828799
    Abstract: A method for forming an integrated circuit package is disclosed. A flex circuit is form by forming a direct connect pad on a first side of a dielectric layer. After forming the direct connect pad, an opening from a second side of the dielectric layer is formed to expose the direct connect pad. A blind via is formed within the opening in the dielectric layer. A first conductor is formed within the opening. A bond pad of a semiconductor die is electrically coupled with the direct connect pad using a second conductor, wherein the bond pad and the second conductor directly overlie the direct connect pad.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kenneth Robert Rhyner, Peter R. Harper
  • Patent number: 8828848
    Abstract: A die having a ledge along a sidewall, and a method of forming the die, is provided. A method of packaging the die is also provided. A substrate, such as a processed wafer, is diced by forming a first notch having a first width, and then forming a second notch within the first notch such that the second notch has a second width less than the first width. The second notch extends through the substrate, thereby dicing the substrate. The difference in widths between the first width and the second width results in a ledge along the sidewalls of the dice. The dice may be placed on a substrate, e.g., an interposer, and underfill placed between the dice and the substrate. The ledge prevents or reduces the distance the underfill is drawn up between adjacent dice. A molding compound may be formed over the substrate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Ying-Da Wang, Li-Chung Kuo, Szu Wei Lu
  • Patent number: 8815731
    Abstract: A semiconductor package and a method for fabricating the same. The semiconductor package includes a first substrate including a first pad, a second substrate spaced apart from the first substrate and where a second pad is formed to face the first pad, a first bump electrically connecting the first pad to the second pad, and a second bump mechanically connecting the first substrate to the second substrate is disposed between the first substrate where the first pad is not formed and the second substrate where the second pad is not formed. A coefficient of thermal expansion (CTE) of the second bump is smaller than that of the first bump.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 26, 2014
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young Lyong Kim, Hyeongseob Kim, Jongho Lee, Eunchul Ahn
  • Patent number: 8802497
    Abstract: Systems and methods are disclosed that enable forming semiconductor chip connections. In one embodiment, the semiconductor chip includes a body having a polyhedron shape with a pair of opposing sides; and a solder member extending along a side that extends between the pair of opposing sides of the polyhedron shape.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Kangguo Cheng, Timothy J. Dalton, Mukta G. Farooq, John A. Fitzsimmons
  • Patent number: 8796864
    Abstract: The semiconductor device according to the present invention has a planar semiconductor chip having projecting connection terminals provided on one surface thereof. A shelf is provided where a peripheral edge of a surface of the semiconductor chip opposite one surface thereof onto which connection terminals are provided is removed. This makes it possible to secure a larger volume of the fillet portion of the underfill, thereby helping improve the function of preventing the rising up of the excess underfill by providing a shelf in the semiconductor chip.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: August 5, 2014
    Assignee: Spansion LLC
    Inventors: Naomi Masuda, Koji Taya
  • Patent number: 8790962
    Abstract: A semiconductor device is made by forming an interconnect structure over a substrate. A semiconductor die is mounted to the interconnect structure. The semiconductor die is electrically connected to the interconnect structure. A ground pad is formed over the interconnect structure. An encapsulant is formed over the semiconductor die and interconnect structure. A shielding cage can be formed over the semiconductor die prior to forming the encapsulant. A shielding layer is formed over the encapsulant after forming the interconnect structure to isolate the semiconductor die with respect to inter-device interference. The shielding layer conforms to a geometry of the encapsulant and electrically connects to the ground pad. The shielding layer can be electrically connected to ground through a conductive pillar. A backside interconnect structure is formed over the interconnect structure, opposite the semiconductor die.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Rui Huang, Yaojian Lin
  • Patent number: 8785250
    Abstract: Fabrication of a semiconductor package includes placing a conductive material on a protrusion from a leadframe to form a first assembly, forming a non-conductive mask about the protrusion, and placing a die on the first assembly, the die having an active area. Fabrication can further include reflowing the conductive material to form a second assembly such that a connection extends from the die active area, through the conductive material, to the protrusion. A semiconductor package includes a leadframe having a protrusion, a conductive material reflowed to the protrusion, and a die having an active area coupled to the protrusion by the reflowed solder.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 22, 2014
    Assignee: Allegro Microsystems, LLC
    Inventors: Nirmal Sharma, Virgil Ararao
  • Patent number: 8772088
    Abstract: In a high frequency module, electronic components are mounted on a mounting surface of a collective substrate including a plurality of unit substrates that include a via conductor electrically conducted to a ground potential in a peripheral portion thereof, and the mounting surface and the electronic components are encapsulated with an encapsulation layer. The collective substrate is cut on the encapsulation layer side, thereby forming a half-cut groove penetrating through the encapsulation layer and extending halfway along the collective substrate in a thickness direction such that the via conductor is exposed only at a bottom surface of the half-cut groove. A conductive shield layer is formed to cover the encapsulation layer and is electrically conducted to the exposed via conductor. The collective substrate is then cut into individual unit substrates each including the conductive shield layer electrically conducted to the ground potential through the via conductor.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 8, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takayuki Horibe
  • Patent number: 8766461
    Abstract: A flip chip mounting board includes a substrate having a top surface and a plurality of generally parallel, longitudinally extending, laterally spaced apart bond fingers are formed on the top surface. Each of the plurality of bond fingers has a first longitudinal end portion and a second longitudinal end portion. A first strip of laterally extending solder resist material overlies the first longitudinal end portions of the bond fingers. The first strip has an edge wall with a plurality of longitudinally projecting tooth portions separated by gaps with a longitudinally extending tooth portion being aligned with every other one of the bond fingers. Adjacent bond fingers have first end portions covered by different longitudinal lengths of solder resist material.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Raymond Partosa, Jesus Bajo Bautista, James Raymond Baello, Roxanna Bauzon Samson
  • Patent number: 8759956
    Abstract: Embodiments provide provides a chip package. The chip package may include a leadframe having a die pad and a plurality of lead fingers; a first chip attached to the die pad, the first chip being bonded to one or more of the lead fingers via a first set of wire bonds; a second chip bonded to one or more of the lead fingers via flip chip; and a heat slug attached to the second chip.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 24, 2014
    Assignee: Infineon Technologies AG
    Inventor: Tyrone Jon Donato Soller
  • Patent number: 8749073
    Abstract: A wiring board includes a structure in which a plurality of wiring layers are stacked with insulating layers interposed therebetween, a plurality of pads for mounting an electronic component, the pads being formed on an outermost insulating layer on one surface side of the structure and exposed to the surface of the outermost insulating layer, and a recessed portion formed at a place corresponding to a mounting area for the electronic component. The recessed portion is formed in the outermost insulating layer at an area between the pads to which electrode terminals of the electronic component to be mounted are to be connected, respectively.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: June 10, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Junichi Nakamura, Kentaro Kaneko, Shunichiro Matsumoto
  • Patent number: 8741691
    Abstract: A method of fabricating a three dimensional integrated circuit comprises forming a redistribution layer on a first side of a packaging component, forming a holding chamber in the redistribution layer, attaching an integrated circuit die on the first side of the packaging component, wherein an interconnect bump of the integrated circuit die is inserted into the holding chamber, applying a reflow process to the integrated circuit die and the packaging component and forming an encapsulation layer on the packaging component.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chung Yee, Chun Hui Yu
  • Publication number: 20140134799
    Abstract: Methods of manufacturing a flat-pack no-lead microelectronic package (2100) coat exposed base metal at a cut end of a lead frame of the package with solder (1001). One method coats the exposed base metal with solder when the package is in a strip (200, 300). Another method coats the exposed base metal with solder after the package is singulated. As a result, all portions of leads of the package that may receive solder during mounting of the package to a printed circuit board are solder wettable. A solder wettable lead end (504) on the package facilitates formation of a solder fillet during mounting of the package.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Alan J. MAGNUS, Pamela A. O'BRIEN
  • Patent number: 8723330
    Abstract: A method of protecting through substrate via (TSV) die from bonding damage includes providing a substrate including a plurality of TSV die having a topside including active circuitry, a bottomside, and a plurality of TSVs that include an inner metal core that reaches from the topside to protruding TSV tips that extend out from the bottomside. A protective layer is formed on or applied to the bottomside of the TSV die including between and over the protruding TSV tips. The TSV die is bonded with its topside down onto a workpiece having a workpiece surface and its bottomside up and in contact with a bond head. The protective layer reduces damage from the bonding process including warpage of the TSV die by preventing the bond head from making direct contact to the protruding TSV tips.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 13, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Jeffrey A. West
  • Patent number: 8703534
    Abstract: A method of forming semiconductor assemblies is disclosed. The method includes providing an interposer with through interposer vias. The interposer includes a first surface and a second surface. The through interposer vias extend from the first surface to the second surface of the interposer. A first die is mounted on the first surface of the interposer. The first die comprises a first surface with first conductive contacts thereon. The interposer comprises material with coefficient of thermal expansion (CTE) similar to that of the first die. The first conductive contacts of the first die are coupled to the through interposer vias on the first surface of the interposer.
    Type: Grant
    Filed: January 29, 2012
    Date of Patent: April 22, 2014
    Assignee: United Test and Assembly Center Ltd.
    Inventors: Chin Hock Toh, Kriangsak Sae Le
  • Patent number: 8703540
    Abstract: A method of packaging one or more semiconductor dies includes: providing a first die having a circuit surface and a connecting surface; providing a chip-scale frame having an inside surface and an outside surface, the chip-scale frame having a well region having an opening in the inside surface; coupling the first die to a wall of the well region using a first coupling mechanism for electrical and mechanical coupling; providing a substrate having a top surface and a bottom surface; coupling the inside surface of the chip-scale frame with the top surface of the substrate by a second coupling mechanism, wherein a gap is provided between the circuit surface of the first die and the top surface of the substrate; coupling a heat sink to the outside surface of the chip-scale frame; attaching a lid to the chip-scale frame to form a substantially airtight chamber around the first die.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 22, 2014
    Assignee: Semtech Corporation
    Inventors: Andrew J. Bonthron, Darren Jay Walworth
  • Patent number: 8698291
    Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 15, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
  • Patent number: 8698187
    Abstract: A light emitting device comprises a case having a space therein, the space defined by an inner bottom surface and an inner side surface of the case, a lead frame housed in the space, and having a bending portion bent along the inner side surface of the case, and a light emitting element electrically connected to the lead frame, wherein a rear surface of the bending portion is embedded in the case and a front surface of the bending portion is exposed from the inner side surface of the case so as to oppose the light emitting element, and wherein a projecting portion projected from the inner bottom surface and inclined to the inner side surface of the case is formed on the inner side surface of the case.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hideki Kokubu, Kosei Fukui, Toshimasa Hayashi
  • Patent number: 8691624
    Abstract: A die fixing method is disclosed which includes providing a substrate having a metallized surface, forming a joining material on the metallized surface and placing a die alignment member with a plurality of openings on the substrate so that portions of the joining material are exposed through the openings. The method further includes placing a plurality of dies in the openings of the die alignment member with a bottom side of each die in contact with part of the joining material and attaching the plurality of dies to the metallized surface of the substrate at an elevated temperature and pressure, the die alignment member withstanding the elevated temperature and pressure. The die alignment member is removed from the substrate after the plurality of dies are attached to the metallized surface of the substrate.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: April 8, 2014
    Assignee: Infineon Technologies AG
    Inventors: Alexander Ciliox, Georg Borghoff, Torsten Groening, Karsten Guth
  • Patent number: 8673684
    Abstract: A disclosed semiconductor device includes a wiring board, a semiconductor element mounted on a principal surface of the wiring board with flip chip mounting, a first conductive pattern formed on the principal surface along at least an edge portion of the semiconductor element, a second conductive pattern formed on the principal surface along the first conductive pattern and away from the first conductive pattern, a passive element bridging between the first conductive pattern and the second conductive pattern on the principal surface of the wiring board, and a resin layer filling a space between the wiring board and the semiconductor chip, wherein the resin layer extends between the semiconductor element and the first conductive pattern on the principal surface of the wiring board.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takumi Ihara
  • Patent number: 8669173
    Abstract: A method of establishing conductive connections is disclosed. The method includes providing an integrated circuit die having a plurality of solder balls each of which has an oxide layer on an outer surface of the solder ball. The method also includes performing a heating process to heat at least the solder balls and applying a force causing each of a plurality of piercing bond structures on a substrate to pierce one of the solder balls and its associated oxide layer to thereby establish a conductive connection between the solder ball and the piercing bond structure.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology
    Inventor: Teck Kheng Lee
  • Patent number: 8664749
    Abstract: A method of forming integrated circuits includes laminating a patterned film including an opening onto a wafer, wherein a bottom die in the wafer is exposed through the opening. A top die is placed into the opening. The top die fits into the opening with substantially no gap between the patterned film and the top die. The top die is then bonded onto the bottom die, followed by curing the patterned film.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Weng-Jin Wu, Hung-Jung Tu, Ku-Feng Yang, Jung-Chih Hu, Wen-Chih Chiou
  • Patent number: 8642381
    Abstract: A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. A shielding layer is formed between the first and second semiconductor die. An electrical interconnect, such as conductive pillar, bump, or bond wire, is formed between the first and second semiconductor die. A conductive TSV can be formed through the first and second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and electrical interconnect. A heat sink is formed over the second semiconductor die. An interconnect structure, such as a bump, can be formed over the second semiconductor die. A portion of a backside of the first semiconductor die is removed. A protective layer is formed over exposed surfaces of the first semiconductor die. The protective layer covers the exposed backside and sidewalls of the first semiconductor die.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: February 4, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, DaeSik Choi, Jun Mo Koo
  • Patent number: 8637391
    Abstract: A method of manufacturing a semiconductor chip is disclosed. A die having a plurality of die-pads is attached to a substrate in a semiconductor package which includes a plurality of substrate-pads. The method involves forming conductive column bumps of differing volumes extending from the die-pads; attaching each of the column bumps to a corresponding substrate-pad to form a subassembly; and reflowing the subassembly so that the column bumps form robust electrical and mechanical connections between the die pads and the substrate pads.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: January 28, 2014
    Assignee: ATI Technologies ULC
    Inventor: Vincent K. Chan
  • Patent number: 8637350
    Abstract: A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-seok Ahn, Dong-hyeon Jang, Ho-geon Song, Sung-jun Im, Chang-seong Jeon, Teak-hoon Lee, Sang-sick Park
  • Patent number: 8633586
    Abstract: A mock bump system includes: providing a first structure having an edge; and forming a mock bump near the edge.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 21, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Oh Han Kim, BaeYong Kim, YoungMin Kim
  • Patent number: 8633597
    Abstract: In a multi-module integrated circuit package having a package substrate and package contacts, a die is embedded in the package substrate with thermal vias that couple hotspots on the embedded die to some of the package contacts.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Fifin Sweeney, Milind P. Shah, Mario Francisco Velez, Damion B. Gastelum