Mounting On Insulating Member Provided With Metallic Leads, E.g., Flip-chip Mounting, Conductive Die Mounting (epo) Patents (Class 257/E21.511)
  • Patent number: 8629567
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an isolated contact having a contact protrusion; forming a die paddle, adjacent to the isolated contact, having a die paddle contour; depositing a contact pad on the contact protrusion; coupling an integrated circuit die to the contact protrusion; molding an encapsulation on the integrated circuit die; and depositing an organic filler on and between the isolated contact and the die paddle, the contact protrusion extended past the organic filler.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8623763
    Abstract: A method of protecting through substrate via (TSV) die from bonding damage includes providing a substrate including a plurality of TSV die having a topside including active circuitry, a bottomside, and a plurality of TSVs that include an inner metal core that reaches from the topside to protruding TSV tips that extend out from the bottomside. A protective layer is formed on or applied to the bottomside of the TSV die including between and over the protruding TSV tips. The TSV die is bonded with its topside down onto a workpiece having a workpiece surface and its bottomside up and in contact with a bond head. The protective layer reduces damage from the bonding process including warpage of the TSV die by preventing the bond head from making direct contact to the protruding TSV tips.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 7, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Jeffrey Alan West
  • Patent number: 8618645
    Abstract: A package process is provided. An adhesive layer is disposed on a carrier board and then plural first semiconductor devices are disposed on the adhesive layer. A first molding compound formed on the carrier board covers the sidewalls of the first semiconductor devices and fills the gaps between the first semiconductor devices so as to form a chip array board constructed by the first semiconductor devices and the first molding compound. Next, plural second semiconductor devices are flip-chip bonded to the first semiconductor devices respectively. Then, a second molding compound formed on the chip array board at least covers the sidewalls of the second semiconductor devices and fills the gaps between the second semiconductor devices. Subsequently, the chip array board is separated from the adhesive layer. Then, the first and the second molding compound are cut along the gaps between the second semiconductor devices.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 31, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chi-Chih Shen, Jen-Chuan Chen, Tommy Pan
  • Patent number: 8617923
    Abstract: A semiconductor device manufacturing method is provided. First and second semiconductor chips are prepared, including first and second electrodes on first and second surfaces respectively. The second semiconductor chip includes a third electrode on a third surface opposite to the second surface. The third electrode overlaps the second electrode. The second surface includes an electrode-free region that is free of any electrode. A sealing resin is applied on the first surface of the first semiconductor chip. A second surface of the first semiconductor chip is held by a bonding tool including a pressing surface and a supporting-portion projected from the pressing surface. The pressing surface is made into contact with the second electrode. The supporting-portion is arranged at a position facing the electrode-free region. The second semiconductor chip is stacked over the first semiconductor chip by the bonding tool to electrically connect the third electrode to the first electrode.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 31, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Tadashi Koyanagi
  • Publication number: 20130328216
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an interposer having an interposer bottom side and an interposer top side; attaching a base integrated circuit to the interposer bottom side; attaching a lead to the interposer bottom side, the lead adjacent the base integrated circuit and entirely below the interposer; and forming an encapsulation partially covering the lead and exposing the interposer top side.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Inventors: Wei Qiang Jin, Ding Hui Xu
  • Patent number: 8603859
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; mounting a top integrated circuit on a first side of the substrate; mounting a bottom integrated circuit on a second side of the substrate; forming a top encapsulation over the top integrated circuit and a bottom encapsulation over the bottom integrated circuit simultaneously; and forming a bottom via through the bottom encapsulation to the substrate.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: December 10, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: DeokKyung Yang, DaeSik Choi
  • Patent number: 8592255
    Abstract: A method includes providing a handle wafer having first and second sides. A first oxide layer covers the first side, a second oxide layer covers the second side, a first silicon layer covers the first oxide layer, and a second silicon layer covers the second oxide layer. A portion of the first silicon layer and the first oxide layer is etched to create an exposed portion of the first side. A portion of the second silicon layer and the second oxide layer is etched to create an exposed portion of the second side. A first conductive layer is deposited on the exposed portion of the first side such that it contacts the handle wafer, first oxide layer, and first silicon layer. A second conductive layer is deposited on the exposed portion of the second side such that it contacts the handle wafer, second oxide layer, and second silicon layer.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: November 26, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Richard Waters
  • Patent number: 8587104
    Abstract: A wiring board includes a stacked body having a plurality of insulating layers and a plurality of wiring layers which are alternately stacked, and a solder-resist layer being formed on one side of the stacked body and covering the wiring layer exposed to the one side of the stacked body. The insulating layer is exposed to the other side of the stacked body. The solder-resist layer is in a transparent or semitransparent light yellow color.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 19, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Fumihisa Miyasaka, Junji Sato
  • Patent number: 8580621
    Abstract: A method of forming an electronic device provides an electronic device substrate having a solder bump pad located thereover. A nickel-containing layer is located over the solder bump pad. A copper-containing layer is formed on the nickel-containing layer prior to subjecting the electronic device to a reflow process.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 12, 2013
    Assignee: LSI Corporation
    Inventors: Mark A. Bachman, John W. Osenbach, Kishor V. Desai
  • Patent number: 8580620
    Abstract: To aim at improvement of reliability of a semiconductor device of flip chip connection type. In assembling a BGA of flip chip connection type, when a semiconductor chip is solder-connected by a flip chip connection, because solder precoat is formed on the surface of a land on the side of an undersurface of a wiring substrate, the connection between the land and a solder ball, which is an external terminal, is solder-connection, and therefore, it is possible to increase impact resistance of a connection part between the land and the solder ball and to aim at improvement of reliability of the BGA.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyuki Nakagawa, Shinji Baba, Satoshi Yamada, Takashi Karashima
  • Patent number: 8574966
    Abstract: A semiconductor device having a semiconductor chip having an active surface with flip-chip contacts and a passive surface is disclosed. The flip-chip contacts are surrounded by an electrically insulating layer as underfill material, the layer having a UV B-stageable material. The UV B-stageable material is applied on the active surface of the semiconductor wafer.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: November 5, 2013
    Assignee: Infineon Technologies AG
    Inventors: Michael Bauer, Edward Fuergut
  • Publication number: 20130285239
    Abstract: A chip assembly includes a PCB and a chip positioned on the PCB. The PCB includes a number of first bonding pads. Each bonding pad includes two soldering balls formed thereon. The chip includes a number of second bonding pads, and each second bonding pad corresponds to a respective first bonding pad. The two soldering balls of each first bonding pad are electrically connected to a corresponding second bonding pad via two bonding wires, and the bonding wires are bonded to the second corresponding bonding pad by a wedge bonding manner.
    Type: Application
    Filed: July 27, 2012
    Publication date: October 31, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: KAI-WEN WU
  • Publication number: 20130256871
    Abstract: Methods and apparatus to inhibit cracks and delaminations in a semiconductor chip solder bump and to reduce pad parasitic capacitance are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first insulating layer over plural conductor pads of a semiconductor chip and forming an opening over each of the conductor pads. An individual solder structure is coupled to the insulating layer. The solder structure has a projection in each of the openings and in electrical contact with one of the plural conductor pads.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Inventors: Roden R. Topacio, Neil McLellan
  • Publication number: 20130256915
    Abstract: A semiconductor package includes a packaging substrate having a die attach area, a plurality of flow-guiding blocks disposed around an outer periphery of the die attach area, a first semiconductor element mounted on the die attach area, a second semiconductor element mounted on the first semiconductor element, and an underfill formed between the packaging substrate and the second semiconductor element. During filling of the underfill between the packaging substrate and the second semiconductor element, the flow-guiding blocks can guide a portion of the underfill to flow between the first semiconductor element and the second semiconductor element such that only one dispensing process is required for the underfill to completely encapsulate all conductive bumps used for flip-chip interconnection, thereby simplifying the fabrication process and improving the production efficiency.
    Type: Application
    Filed: September 13, 2012
    Publication date: October 3, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Huei-Nuan Huang, Chun-Tang Lin, Chien-Feng Chan, Chi-Hsin Chiu
  • Patent number: 8541259
    Abstract: A disclosed semiconductor device includes a wiring board, a semiconductor element mounted on a principal surface of the wiring board with flip chip mounting, a first conductive pattern formed on the principal surface along at least an edge portion of the semiconductor element, a second conductive pattern formed on the principal surface along the first conductive pattern and away from the first conductive pattern, a passive element bridging between the first conductive pattern and the second conductive pattern on the principal surface of the wiring board, and a resin layer filling a space between the wiring board and the semiconductor chip, wherein the resin layer extends between the semiconductor element and the first conductive pattern on the principal surface of the wiring board.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takumi Ihara
  • Publication number: 20130234317
    Abstract: Packaging methods and packaged semiconductor devices are disclosed. In one embodiment, a packaging method includes providing a first die, partially packaging the first die, and forming a plurality of solder balls on a surface of the partially packaged first die. An epoxy flux is disposed over the plurality of solder balls. A second die is provided, and the second die is partially packaged. The plurality of solder balls is coupled to the partially packaged second die.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Wei-Hung Lin, Yu-Peng Tsai, Chun-Cheng Lin, Chih-Wei Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8525353
    Abstract: In a system for providing temporary or permanent connection of an integrated circuit die to a base substrate using electrical microsprings, a thermal element is provided that assists with cooling of the pad structure during use. The thermal element may be formed of the same material and my similar processes as the microsprings. The thermal element may be one or more block structures or one or more thermal microsprings. The thermal element may be provided with channels to contain and/or direct the flow of a thermal transfer fluid. Cooling of components associated with the pad structure (e.g., ICs) may be provided.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 3, 2013
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eugene M. Chow, Eric J. Shrader, John S. Paschkewitz
  • Patent number: 8519526
    Abstract: A semiconductor package includes: a chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; an encapsulant encapsulating the chip and having opposite first and second surfaces, the first surface being flush with the active surface of the chip; and first and second metal layers formed on the second surface of the encapsulant, thereby providing a rigid support to the overall structure to prevent warpage and facilitating heat dissipation of the overall structure.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 27, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Jung-Pang Huang, Hui-Min Huang, Kuan-Wei Chuang, Chun-Tang Lin, Yih-Jenn Jiang
  • Patent number: 8513057
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a routable layer having a column; mounting an integrated circuit structure in direct contact with the column; and forming a gamma connector to electrically connect the column to the integrated circuit structure.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 20, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Oh Han Kim, Ki Youn Jang, DaeSik Choi, DongSoo Moon
  • Patent number: 8513823
    Abstract: In a semiconductor package, a stamp is provided on at least one of at least a pair of opposed sides on an outer peripheral portion in contact with an edge of the package, which is a blank space up to now. With this configuration, the amount of stamp can be increased even in a narrow stamp area.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 20, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroyuki Shoji
  • Patent number: 8513680
    Abstract: A light-emitting device package including a lead frame formed of a metal and on which a light-emitting device chip is mounted; and a mold frame coupled to the lead frame by injection molding. The lead frame includes: a mounting portion on which the light-emitting device chip is mounted; and first and second connection portions that are disposed on two sides of the mounting portion in a first direction and connected to the light-emitting device chip by wire bonding, wherein the first connection portion is stepped with respect to the mounting portion, and a stepped amount is less than a material thickness of the lead frame.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daniel Kim, Jae-sung You, Jong-kil Park
  • Patent number: 8513810
    Abstract: There is provided a semiconductor device and a manufacturing method therefor, the semiconductor device requiring flip-chip mounting of a fine pitch electrode, wherein the fine electrode is easily manufactured, resin sealing is not required, and reliability can be improved. In the semiconductor device, one or more LSI chips (1), having an insulating layer (3) surface and an electrode (2) surface on one side, and a substrate (4), having an insulating layer (6) surface and an electrode (5) surface on one side, are bonded by having surfaces of the electrodes and surfaces of the insulating layers face each other via a bonding layer (7) made in a thin film form, in a region excluding the surfaces of the electrodes (2, 5) and the surfaces of the insulating layers (3, 6) in areas surrounding the electrodes.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 20, 2013
    Assignee: NEC Corporation
    Inventor: Masamoto Tago
  • Patent number: 8508036
    Abstract: A microelectronic package including a dielectric layer having top and bottom surfaces, the dielectric layer having terminals exposed at the bottom surface; a metallic wall bonded to the dielectric layer and projecting upwardly from the top surface of the dielectric layer and surrounding a region of the top surface; a metallic lid bonded to the wall and extending over the region of the top surface so that the lid, the wall and the dielectric layer cooperatively define an enclosed space; and a microelectronic element disposed within the space and electrically connected to the terminals.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: August 13, 2013
    Assignee: Tessera, Inc.
    Inventors: Kenneth Allen Honer, Philip Damberg
  • Patent number: 8501545
    Abstract: In a reflow process for connecting a semiconductor die and a package substrate, the temperature gradient and thus the thermally induced mechanical forces in a sensitive metallization system of the semiconductor die may be reduced during the cooling phase. To this end, one or more heating intervals may be introduced into the cooling phase, thereby efficiently reducing the temperature difference. In other cases, the central region may additionally be cooled by providing appropriate locally restricted mechanisms, such as a locally restricted gas flow and the like. Consequently, desired short overall process times may be obtain without contributing to increased yield losses when processing sophisticated metallization systems on the basis of a lead-free contact regime.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 6, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Michael Grillberger, Matthias Lehr, Rainer Giedigkeit
  • Patent number: 8501534
    Abstract: A method for housing an electronic component in a device package includes providing a first substrate, wherein the electronic component is arranged in a component area on a first main surface of the first substrate, and wherein first contact pads are arranged outside of the component area, forming an open top frame structure around the component area on the first main surface of the first substrate, providing a second substrate having second contact pads, arranged symmetrically to the first contact pads and electrically and mechanically connecting the first main surface of the first substrate with the first main surface of the second substrate, so that the frame structure and the second substrate from a cavity or recess around the electronic component on the first substrate.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: August 6, 2013
    Assignee: Infineon Technologies AG
    Inventors: Klaus-Guenter Oppermann, Martin Franosch, Bernhard Gebauer
  • Patent number: 8492171
    Abstract: A method for rejoining an IC die, removed from an existing substrate, to a new substrate, is disclosed herein. In one embodiment, such a method includes grinding an existing substrate from an IC die to create a substantially planar surface exposing interconnects and surrounding underfill material. A new substrate is provided having electrically conductive pedestals protruding therefrom. The electrically conductive pedestals are positioned to align with the exposed interconnects and have a melting point substantially higher than the melting point of the interconnects. The method places the exposed interconnects in contact with the electrically conductive pedestals. The method then applies a reflow process to melt and electrically join the exposed interconnects with the electrically conductive pedestals. A structure produced by the method is also disclosed.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michel Deschenes, Marco Gauvin, Eric Giguère
  • Patent number: 8492196
    Abstract: A semiconductor device has a plurality of semiconductor die mounted to a temporary carrier. A prefabricated shielding frame has a plate and integrated bodies extending from the plate. The bodies define a plurality of cavities in the shielding frame. A penetrable material is deposited in the cavities of the shielding frame. The shielding frame is mounted over the semiconductor die such that the penetrable material encapsulates the die. The carrier is removed. An interconnect structure is formed over the die, shielding frame, and penetrable material. The bodies of the shielding frame are electrically connected through the interconnect structure to a ground point. The shielding frame is singulated through the bodies or through the plate and penetrable material to separate the die. TIM is formed over the die adjacent to the plate of the shielding frame. A heat sink is mounted over the plate of the shielding frame.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: July 23, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Patent number: 8486756
    Abstract: The semiconductor device according to the present invention has a planar semiconductor chip having projecting connection terminals provided on one surface thereof. A shelf is provided where a peripheral edge of a surface of the semiconductor chip opposite one surface thereof onto which connection terminals are provided is removed. This makes it possible to secure a larger volume of the fillet portion of the underfill, thereby helping improve the function of preventing the rising up of the excess underfill by providing a shelf in the semiconductor chip.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 16, 2013
    Assignee: Spansion LLC
    Inventors: Naomi Masuda, Koji Taya
  • Patent number: 8481364
    Abstract: A fabrication method for integrating chip(s) onto a flexible substrate in forming a flexible micro-system. The method includes a low-temperature flip-chip and a wafer-level fabrication process. Using the low-temperature flip-chip technique, the chip is bonded metallically onto the flexible substrate. To separate the flexible substrate from the substrate, etching is used to remove the sacrificial layer underneath the flexible substrate. The instant disclosure applies standardized micro-fabrication process for integrating chip(s) onto the flexible substrate. Without using special materials or fabrication procedures, the instant disclosure offers a cost-effective fabrication method for flexible micro-systems.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: July 9, 2013
    Assignee: National Chiao Tung University
    Inventors: Tzu-Yuan Chao, Chia-Wei Liang, Yu-Ting Cheng
  • Patent number: 8476135
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base carrier having a base carrier hole from a base carrier interconnection side to a base carrier device side; mounting a base integrated circuit over the base carrier; forming an encapsulation over the base carrier covering the base integrated circuit, the encapsulation having an encapsulation top side and having an encapsulation hole directly over the base carrier hole; and forming an interconnection structure as a single integral structure through the base carrier hole and the encapsulation hole, the interconnection structure directly on the encapsulation top side and directly on the base carrier interconnection side.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: July 2, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JinGwan Kim, Hyunil Bae
  • Publication number: 20130154092
    Abstract: A method of manufacture of an integrated circuit packaging system including: providing a package carrier; mounting an integrated circuit to the package carrier; mounting a circuit interposer above the integrated circuit; mounting a mounting integrated circuit above the circuit interposer; forming a conductive pillar to the circuit interposer adjacent to the mounting integrated circuit; connecting the circuit interposer to the package carrier; and forming an encapsulation on the package carrier.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: DeokKyung Yang, In Sang Yoon, SeongHun Mun, KyungHwan Kim
  • Patent number: 8466544
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias and conductive layer formed over the substrate. A semiconductor die is mounted over a carrier. The substrate is mounted to the semiconductor die opposite the carrier. An encapsulant is deposited between the substrate and carrier around the semiconductor die. A plurality of conductive TMVs is formed through the substrate and encapsulant. The conductive TMVs protrude from the encapsulant to aid with alignment of the interconnect structure. The conductive TMVs are electrically connected to the conductive layer and conductive vias. The carrier is removed and an interconnect structure is formed over a surface of the encapsulant and semiconductor die opposite the substrate. The interconnect structure is electrically connected to the conductive TMVs. A plurality of semiconductor devices can be stacked and electrically connected through the substrate, conductive TMVs, and interconnect structure.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 18, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 8445329
    Abstract: Various circuit boards and methods of manufacturing the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a first interconnect layer of a circuit board. The first interconnect layer includes a first conductor structure. A first via is formed in the first interconnect layer and in electrical contact with the first conductor structure. The first via has a first oval footprint.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 21, 2013
    Assignee: ATI Technologies ULC
    Inventors: Andrew K W Leung, Neil McLellan
  • Patent number: 8435834
    Abstract: A semiconductor die has a conductive layer including a plurality of trace lines formed over a carrier. The conductive layer includes a plurality of contact pads electrically continuous with the trace lines. A semiconductor die has a plurality of contact pads and bumps formed over the contact pads. A plurality of conductive pillars can be formed over the contact pads of the semiconductor die. The bumps are formed over the conductive pillars. The semiconductor die is mounted to the conductive layer with the bumps directly bonded to an end portion of the trace lines to provide a fine pitch interconnect. An encapsulant is deposited over the semiconductor die and conductive layer. The conductive layer contains wettable material to reduce die shifting during encapsulation. The carrier is removed. An interconnect structure is formed over the encapsulant and semiconductor die. An insulating layer can be formed over the conductive layer.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 7, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Rajendra D. Pendse, Jun Mo Koo
  • Patent number: 8436478
    Abstract: A method is disclosed which includes forming a layer of conductive material above a substrate, forming a masking layer above the layer of conductive material, performing a first etching process on the layer of conductive material with the masking layer in place, removing the masking layer and, after removing the masking layer, performing an isotropic etching process on the layer of conductive material to thereby define a plurality of piercing bond structures positioned on the substrate.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 7, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Teck Kheng Lee
  • Patent number: 8436439
    Abstract: A semiconductor device is made by forming an interconnect structure over a substrate. A semiconductor die is mounted to the interconnect structure. The semiconductor die is electrically connected to the interconnect structure. A ground pad is formed over the interconnect structure. An encapsulant is formed over the semiconductor die and interconnect structure. A shielding cage can be formed over the semiconductor die prior to forming the encapsulant. A shielding layer is formed over the encapsulant after forming the interconnect structure to isolate the semiconductor die with respect to inter-device interference. The shielding layer conforms to a geometry of the encapsulant and electrically connects to the ground pad. The shielding layer can be electrically connected to ground through a conductive pillar. A backside interconnect structure is formed over the interconnect structure, opposite the semiconductor die.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: May 7, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Rui Huang, Yaojian Lin
  • Publication number: 20130099370
    Abstract: A semiconductor package includes a workpiece with a conductive trace and a chip with a conductive pillar. The chip is attached to the workpiece and a solder joint region is formed between the conductive pillar and the conductive trace. The distance between the conductive pillar and the conductive trace is less than or equal to about 16 ?m.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Da CHENG, Chih-Wei LIN, Kuei-Wei HUANG, Yu-Peng TSAI, Chun-Cheng LIN, Chung-Shi LIU
  • Publication number: 20130099371
    Abstract: A semiconductor package includes a workpiece with a conductive trace and a chip with a conductive pillar. The chip is attached to the workpiece and a solder joint region is formed between the conductive pillar and the conductive trace. The silver (Ag) content in the solder layer is between 0.5 and 1.8 weight percent.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Da CHENG, Kuei-Wei HUANG, Yu-Peng TSAI, Cheng-Ting CHEN, Hsiu-Jen LIN, Chung-Shi LIU
  • Patent number: 8426953
    Abstract: A two tier power module has, in one form thereof, a PC board having upper and lower traces with an opening in the insulating material that contains a power device which has upward extending solder bump connections. An upper leadframe is mounted on the solder bumps and the upper tracks of the PC board. Vias in the PC board connect selected upper and lower traces. A control device is mounted atop the leadframe and wire bonded to the leadframe, and the assembly is encapsulated leaving exposed the bottom surfaces of the lower traces of the PC board as external connections. In another form the PC board is replaced by a planar leadframe and the upper leadframe has stepped sections which make connections with the planar leadframe, the bottom surfaces of the planar leadframe forming external connections of the module.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 23, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Yong Liu, Margie T. Rios, Hua Yang, Yumin Liu, Tiburcio A. Maldo
  • Patent number: 8426255
    Abstract: A method for manufacturing a semiconductor package structure is disclosed. In one embodiment, the method includes the steps of forming a plurality of conductive pastes on a matrix lead frame with a groove located within a predetermined distance from each conductive paste on the lead; partially curing the conductive pastes so that the conductive pastes are in a semi-cured state; preparing at least one chip with a plurality of bumps thereon; electrically connecting the chip and the lead by implanting the bumps into the semi-cured conductive pastes, wherein the groove on the lead of the matrix lead frame is configured to receive overflowed semi-cured conductive pastes; curing the semi-cured conductive pastes to completely secure the bumped chip; and forming an encapsulating material covering the lead frame and the chip. The method can also be applied in pre-molded lead frame package.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 23, 2013
    Assignee: Chipmos Technologies, Inc.
    Inventor: Geng-Shin Shen
  • Patent number: 8421210
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a first terminal; connecting an integrated circuit to the first terminal; forming a second terminal connected over the first terminal and the integrated circuit by a vertical conductive post integral with the first terminal or the second terminal; and encapsulating the integrated circuit and the vertical conductive post leaving portions of the first terminal and the second terminal exposed.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 16, 2013
    Assignee: STATS ChipPAC Ltd.
    Inventors: HeeJo Chi, Soo Jung Park, Junwoo Myung
  • Patent number: 8409919
    Abstract: According to a manufacturing method of one embodiment, a first solder bump and a second solder bump are aligned and placed in contact with each other, and thereafter, the first and second solder bumps are heated to a temperature equal or higher than a melting point of the solder bumps and melted, whereby a partially connection body of the first solder bump and the second solder bump is formed. The partially connection body is cooled. The cooled partially connection body is heated to a temperature equal to or higher than the melting point of the solder bump in a reducing atmosphere, thereby to form a permanent connection body by melting the partially connection body while removing an oxide film existing on a surface of the partially connection body.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideo Aoki, Masatoshi Fukuda, Kanako Sawada, Yasuhiro Koshio
  • Patent number: 8399300
    Abstract: A semiconductor device has a flipchip or PoP semiconductor die mounted to a die attach area interior to a substrate. The substrate has a contact pad area around the die attach area and flow control area between the die attach area and contact pad area. A first channel is formed in a surface of the substrate within the flow control area. The first channel extends around a periphery of the die attach area. A first dam material is formed adjacent to the first channel within the flow control area. An underfill material is deposited between the die and substrate. The first channel and first dam material control outward flow of the underfill material to prevent excess underfill material from covering the contact pad area. A second channel can be formed adjacent to the first dam material. A second dam material can be formed adjacent to the first channel.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 19, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungHoon Lee, KiYoun Jang, JoonDong Kim
  • Patent number: 8399265
    Abstract: A device is disclosed for releasably receiving a singulated semiconductor chip having a first main surface and a second main surface opposite the first main surface. The device includes a support structure. At least one elastic element is arranged on the support structure. Electrical contact elements are arranged on the at least one elastic element and adapted to be contacted to the first main surface of the semiconductor chip. A foil is adapted to be arranged over the second main surface of the semiconductor chip.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: March 19, 2013
    Assignee: Infineon Technologies AG
    Inventor: Peter Ossimitz
  • Patent number: 8395269
    Abstract: A method of manufacturing a semiconductor device includes forming an interconnect member, mounting a first semiconductor chip having a semiconductor substrate in a face-down manner on the interconnect member, forming a resin layer on the interconnect member to cover a side surface of the first semiconductor chip, thinning the first semiconductor chip and the resin layer, forming an inorganic insulating layer on a back surface of the first semiconductor chip so as to be in contact with the back surface and to extend over the resin layer, and forming a through electrode so as to penetrate the inorganic insulating layer and the semiconductor substrate.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masaya Kawano, Koji Soejima, Nobuaki Takahashi, Yoichiro Kurita, Masahiro Komuro, Satoshi Matsui
  • Patent number: 8394673
    Abstract: A method of manufacturing a semiconductor device is disclosed. One embodiment includes placing multiple semiconductor chips onto a carrier, each of the semiconductor chips having a first face and a second face opposite to the first face. An encapsulation material is applied over the multiple semiconductor chips and the carrier to form an encapsulating body having a first face facing the carrier and a second face opposite to the first face. A redistribution layer is applied over the multiple semiconductor chips and the first face of the encapsulating body. An array of external contact elements are applied to the second face of the encapsulating body.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: March 12, 2013
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Josef Poeppel, Irmgard Escher-Poeppel
  • Patent number: 8389338
    Abstract: A multiple-chip package has top and bottom pre-molded leadframes formed prior to the flip-chip attachment of semiconductor die to the leadframes. After die attachment, underfill is used to encase all but one surface of the die, and the top and bottom leadframes are joined together by solder bump balls with the exposed surfaces of the semiconductor dice proximate to each other.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: March 5, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Yong Liu, Qiuxiao Qian
  • Patent number: 8384216
    Abstract: A manufacturing method of a package structure is provided. A metal substrate is provided. The metal substrate has a first surface where a first seed layer is formed. A patterned insulating layer is formed on the first seed layer and exposes a portion of the first seed layer. A patterned circuit layer is formed on the exposed portion of the first seed layer and covers a portion of the patterned insulating layer. A chip-bonding process is performed to electrically connect a chip to the patterned circuit layer. An encapsulant encapsulating the chip and the patterned circuit layer and covering a portion of the pattered insulating layer is formed. The metal substrate and the first seed layer are removed to expose a bottom surface of the patterned insulating layer and a lower surface of the patterned circuit layer. Solder balls are formed on the lower surface of the patterned circuit layer.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: February 26, 2013
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Shih-Hao Sun
  • Patent number: 8378501
    Abstract: A semiconductor package is provided with a functionally necessary minimum number of components with which stress concentrated on specific solder bumps is reduced and ruptures of the bumps are prevented even when stress caused by physical bending or a difference in thermal expansion coefficient is applied to the package. The semiconductor package includes a tabular die and bonding pads arranged on a mounting surface of the die. A passivation layer and a protective film are provided on the mounting surface such that central areas of the bonding pads are open. Under-bump metals (UBMs) connected to the bonding pads are provided in the openings, and solder bumps are provided on the surfaces of the UBMs. The diameter of the UBMs provided at corners of the die is less than that of the UBM provided at the approximate center of the die so that the elastic modulus of the UBMs provided at the corners is small.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 19, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kosuke Yamada, Noboru Kato
  • Patent number: 8378504
    Abstract: A microelectronic package is provided. The microelectronic package includes a substrate having a plurality of solder bumps disposed on a top side of the substrate and a die disposed adjacent to the top side of the substrate. The die includes a plurality of glassy metal bumps disposed on a bottom side of the die wherein the plurality of glassy metal bumps are to melt the plurality of solder bumps to form a liquid solder layer. The liquid solder layer is to attach the die with the substrate.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 19, 2013
    Assignee: Intel Corporation
    Inventor: Daewoong Suh