Introducing Both Types Of Electrical Active Impurities In Local Oxidation Region Solely For Forming Channel Stoppers, E.g., For Isolation Of Complementary Doped Regions (epo) Patents (Class 257/E21.558)
-
Patent number: 12210288Abstract: This application relates to a photoresist removal method, including: acquiring a target wafer, a photoresist being provided on a surface of the target wafer, a surface of a photoresist layer of the photoresist being plated with a metal overhead layer; immersing the target wafer in a first organic solvent at a first temperature in a water bath for a first duration; rinsing the target wafer with a new first organic solvent in response to an end of the first duration; performing, in the first organic solvent, ultrasonic cleaning on the rinsed target wafer for a second duration based on a target ultrasonic power; removing the residual first organic solvent on the surface of the target wafer in response to an end of the second duration; and drying the target wafer with the solvent removed by simultaneous centrifugal drying and gas purging to obtain the target wafer with the photoresist removed.Type: GrantFiled: January 14, 2022Date of Patent: January 28, 2025Assignee: TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITEDInventors: Zhongping Zhao, Wenlong Zhang, Maochun Dai, Sainan Huai, Yu Zhou
-
Patent number: 8785306Abstract: A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.Type: GrantFiled: September 27, 2011Date of Patent: July 22, 2014Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Yeeheng Lee, John Chen, Moses Ho
-
Patent number: 8441070Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.Type: GrantFiled: August 6, 2012Date of Patent: May 14, 2013Assignee: Renesas Electronics CorporationInventor: Hiroki Fujii
-
Patent number: 8120104Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.Type: GrantFiled: January 31, 2011Date of Patent: February 21, 2012Assignee: Renesas Electronics CorporationInventor: Hiroki Fujii
-
Patent number: 8030731Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.Type: GrantFiled: December 17, 2007Date of Patent: October 4, 2011Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) LimitedInventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
-
Patent number: 8013381Abstract: A semiconductor device has a semiconductor substrate of a first conductivity type; first to third high-voltage insulated-gate field effect transistors formed on a principal surface of the semiconductor substrate; a first device isolation insulating film that is formed in the semiconductor substrate and isolates the first high-voltage insulated-gate field effect transistor and the second high-voltage insulated-gate field effect transistor from each other; a second device isolation insulating film that is formed in the semiconductor substrate and isolates the first high-voltage insulated-gate field effect transistor and the third high-voltage insulated-gate field effect transistor from each other; a first impurity diffusion layer of the first conductivity type that is formed below the first device isolation insulating film; and a second impurity diffusion layer of the first conductivity type that is formed below the second device isolation insulating film.Type: GrantFiled: January 28, 2009Date of Patent: September 6, 2011Assignee: Kabushiki Kaisha ToshibaInventors: Norio Magome, Toshifumi Minami, Tomoaki Hatano, Norihisa Arai
-
Patent number: 7736963Abstract: In an embodiment, a method of forming a gate structure for a semiconductor device includes forming a preliminary gate structure on a semiconductor substrate. The preliminary gate structure includes a gate oxide pattern and a conductive pattern sequentially stacked on the substrate. Then, a re-oxidation process is performed to the substrate having the preliminary gate structure using an oxygen radical including at least one oxygen atom, so that an oxide layer is formed on a surface of the substrate and sidewalls of the preliminary gate structure to form the gate structure for a semiconductor device. The thickness of the gate oxide pattern is prevented from increasing, and the quality of the oxide layer is improved.Type: GrantFiled: July 5, 2005Date of Patent: June 15, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Woong Lee, Young-Sub You, Hun-Hyeoung Leam, Yong-Woo Hyung, Jai-Dong Lee, Ki-Su Na, Jung-Hwan Kim
-
Patent number: 7482220Abstract: In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers.Type: GrantFiled: October 19, 2006Date of Patent: January 27, 2009Assignee: Semiconductor Components Industries, L.L.C.Inventors: Gary H. Loechelt, John M. Parsey, Jr., Peter J. Zdebel, Gordon M. Grivna
-
Publication number: 20070278592Abstract: In one embodiment, a semiconductor device is formed having charge compensation trenches in proximity to channel regions of the device. The charge compensation trenches comprise at least two opposite conductivity type semiconductor layers. A channel connecting region electrically couples the channel region to one of the at least two opposite conductivity type semiconductor layers.Type: ApplicationFiled: May 30, 2006Publication date: December 6, 2007Inventors: Shanghui Larry Tu, Gordon M. Grivna
-
Patent number: 7235460Abstract: A process for forming isolation and active regions, wherein the patterning of an oxidation-barrier active stack is performed separately in the PMOS and NMOS regions. After the active stack is in place, two masking steps are used: one exposes the isolation areas on the NMOS side, for stack etch, channel-stop implant, and silicon recess etch (optional); the other masking step is exactly complementary, and performs the analogous operations on the PMOS side. After these two steps are performed (in either order), an additional nitride layer can optionally be deposited and etched to cover the sidewall of the active stack. Field oxide is then formed, and processing then proceeds in conventional fashion.Type: GrantFiled: March 9, 2001Date of Patent: June 26, 2007Assignee: STMicroelectronics, Inc.Inventor: Jia Li
-
Patent number: 6815762Abstract: In a process for manufacturing a semiconductor integrated circuit device having a MISFET, in order that a shallow junction between the source/drain of the MISFET and a semiconductor substrate may be realized by reducing the number of heat treatment steps, all conductive films to be deposited on the semiconductor substrate are deposited at a temperature of 500° C. or lower at a step after the MISFET has been formed. Moreover, all insulating films to be deposited over the semiconductor substrate are deposited at a temperature of 500° C. or lower at a step after the MISFET has been formed.Type: GrantFiled: October 13, 1999Date of Patent: November 9, 2004Assignee: Hitachi, Ltd.Inventors: Makoto Yoshida, Takahiro Kumauchi, Yoshitaka Tadaki, Kazuhiko Kajigaya, Hideo Aoki, Isamu Asano