Using Selective Deposition Of Single Crystal Silicon, E.g., Selective Epitaxial Growth (seg) (epo) Patents (Class 257/E21.562)
-
Patent number: 10121711Abstract: Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.Type: GrantFiled: August 3, 2015Date of Patent: November 6, 2018Assignee: GLOBALFOUNDRIES INC.Inventors: Sipeng Gu, Xiang Hu, Alok Vaid, Lokesh Subramany, Akshey Sehgal
-
Patent number: 9735057Abstract: Methods of fabricating field effect transistors having a source region and a drain region separated by a channel region are provided which include: using a single mask step in forming a first portion(s) and a second portion(s) of at least one of the source region or the drain region, the first portion(s) including a first material selected and configured to facilitate the first portion(s) stressing the channel region, and the second portion(s) including a second material selected and configured to facilitate the second portion(s) having a lower electrical resistance than the first portion(s). One embodiment includes: providing the first material with a crystal lattice structure; and forming the second material by disposing another material interstitially with respect to the crystal lattice structure. Another embodiment includes forming the first portion and the second portion within at least one of a source cavity or a drain cavity of the semiconductor substrate.Type: GrantFiled: April 28, 2014Date of Patent: August 15, 2017Assignee: GLOBALFOUNDRIES INC.Inventors: Shashidhar Shreeshail Shintri, Min-hwa Chi
-
Patent number: 9634127Abstract: Methods are disclosed herein for fabricating integrated circuit devices, such as fin-like field-effect transistors (FinFETs). An exemplary method includes forming a first semiconductor material layer over a fin portion of a substrate; forming a second semiconductor material layer over the first semiconductor material layer; and converting a portion of the first semiconductor material layer to a first semiconductor oxide layer. The fin portion of the substrate, the first semiconductor material layer, the first semiconductor oxide layer, and the second semiconductor material layer form a fin. The method further includes forming a gate stack overwrapping the fin.Type: GrantFiled: April 15, 2016Date of Patent: April 25, 2017Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Kuo-Cheng Ching, Gwan Sin Chang, Zhiqiang Wu, Chih-Hao Wang
-
Patent number: 9530777Abstract: Methods and structures for forming finFETs of different semiconductor composition and of different conductivity type on a same wafer are described. Some finFET structures may include strained channel regions. FinFETs of a first semiconductor composition may be grown in trenches formed in a second semiconductor composition. Material of the second semiconductor composition may be removed from around some of the fins at first regions of the wafer, and may remain around fins at second regions of the wafer. A chemical component from the second semiconductor composition may be driven into the fins by diffusion at the second regions to form finFETs of a different chemical composition from those of the first regions. The converted fins at the second regions may include strain.Type: GrantFiled: March 4, 2014Date of Patent: December 27, 2016Assignees: STMICROELECTRONICS, INC., INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Nicolas Loubet, Hong He, James Kuss
-
Patent number: 9449820Abstract: Techniques for reducing nanowire dimension and pitch are provided. In one aspect, a pitch multiplication method for nanowires includes the steps of: providing an SOI wafer having an SOI layer separated from a substrate by a BOX, wherein the SOI layer includes Si; patterning at least one nanowire in the SOI layer, wherein the at least one nanowire as-patterned has a square cross-sectional shape with flat sides; growing epitaxial SiGe on the outside of the at least one nanowire using an epitaxial process selective for growth of the epitaxial SiGe on the flat sides of the at least one nanowire; removing the at least one nanowire selective to the epitaxial SiGe, wherein the epitaxial SiGe that remains includes multiple epitaxial SiGe wires having been formed in place of the at least one nanowire that has been removed.Type: GrantFiled: December 22, 2014Date of Patent: September 20, 2016Assignee: International Business Machines CorporationInventors: Guy M. Cohen, Michael A. Guillorn, Isaac Lauer, Jeffrey W. Sleight
-
Patent number: 8927353Abstract: A fin field effect transistor and method of forming the same. The fin field effect transistor includes a semiconductor substrate having a fin structure and between two trenches with top portions and bottom portions. The fin field effect transistor further includes shallow trench isolations formed in the bottom portions of the trenches and a gate electrode over the fin structure and the shallow trench isolation, wherein the gate electrode is substantially perpendicular to the fin structure. The fin field effect transistor further includes a gate dielectric layer along sidewalls of the fin structure and source/drain electrode formed in the fin structure.Type: GrantFiled: May 7, 2007Date of Patent: January 6, 2015Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ju-Wang Hsu, Chih-Yuan Ting, Tang-Xuan Zhong, Yi-Nien Su, Jang-Shiang Tsai
-
Patent number: 8883578Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.Type: GrantFiled: September 19, 2013Date of Patent: November 11, 2014Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
-
Patent number: 8841178Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.Type: GrantFiled: March 13, 2013Date of Patent: September 23, 2014Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
-
Patent number: 8823146Abstract: A semiconductor structure having a silicon substrate having a <111> crystallographic orientation, an insulating layer disposed over a first portion of the silicon substrate, a silicon layer having a <100> orientation disposed over the insulating layer, and a non-nitride column III-V semiconductor layer or column II-VI semiconductor layer having the same <111> crystallographic orientation as the silicon substrate, the non-nitride column III-V semiconductor layer or column II-VI semiconductor layer being in direct contact with a second portion of the silicon substrate. A column III-nitride is disposed on the surface of the third portion of the substrate.Type: GrantFiled: February 19, 2013Date of Patent: September 2, 2014Assignee: Raytheon CompanyInventor: William E. Hoke
-
Patent number: 8759944Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.Type: GrantFiled: May 21, 2013Date of Patent: June 24, 2014Assignee: Micron Technology, Inc.Inventors: David H. Wells, Du Li
-
Patent number: 8741743Abstract: A method for making a semiconductor device is provided which comprises (a) creating a first mask for the epitaxial growth of features in a semiconductor device, said first mask defining a set of epitaxial tiles (219); (b) creating a second mask for defining the active region of the semiconductor device, said second mask defining a set of active tiles (229); and (c) using the first and second masks to create a semiconductor device.Type: GrantFiled: January 5, 2007Date of Patent: June 3, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Omar Zia, Nigel Cave, Venkat Kolagunta, Ruiqi Tian, Edward O. Travis
-
Patent number: 8709910Abstract: A semiconductor process includes the following steps. A semiconductor substrate is provided. The semiconductor substrate has a patterned isolation layer and the patterned isolation layer has an opening exposing a silicon area of the semiconductor substrate. A silicon rich layer is formed on the sidewalls of the opening. An epitaxial process is performed to form an epitaxial structure on the silicon area in the opening.Type: GrantFiled: April 30, 2012Date of Patent: April 29, 2014Assignee: United Microelectronics Corp.Inventors: Chin-I Liao, Chia-Lin Hsu, Yung-Lun Hsieh, Chien-Hao Chen, Bo-Syuan Lee, Min-Chung Cheng
-
Patent number: 8679925Abstract: Methods of manufacturing semiconductor devices and transistors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece comprising a plurality of fins, and forming a semiconductive material over a top surface of the plurality of fins. An etch stop layer is formed over the semiconductive material, and an insulating material is disposed over the etch stop layer. The insulating material and a portion of the etch stop layer are removed from over the plurality of fins. Forming the semiconductive material or forming the etch stop layer are controlled so that removing the portion of the etch stop layer does not remove the etch stop layer between a widest portion of the semiconductive material over the plurality of fins.Type: GrantFiled: December 28, 2012Date of Patent: March 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Yu-Ping Wang
-
Patent number: 8629024Abstract: Methods of manufacturing semiconductor devices and transistors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece comprising a plurality of fins, and forming a semiconductive material over a top surface of the plurality of fins. An etch stop layer is formed over the semiconductive material, and an insulating material is disposed over the etch stop layer. The insulating material and a portion of the etch stop layer are removed from over the plurality of fins. Forming the semiconductive material or forming the etch stop layer are controlled so that removing the portion of the etch stop layer does not remove the etch stop layer between a widest portion of the semiconductive material over the plurality of fins.Type: GrantFiled: December 28, 2012Date of Patent: January 14, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Yu-Ping Wang
-
Patent number: 8492273Abstract: A method is disclosed comprising providing a substrate comprising an insulating material and a second semiconductor material and pre-treating the substrate with a plasma produced from a gas selected from the group consisting of a carbon-containing gas, a halogen-containing gas, and a carbon-and-halogen containing gas. The method further comprises depositing a first semiconductor material on the pre-treated substrate by chemical vapor deposition, where the first semiconductor material is selectively deposited on the second semiconductor material. The method may be used to manufacture a semiconducting device, such as a microelectromechanical system device, or to manufacture a semiconducting device feature, such as an interconnect.Type: GrantFiled: August 1, 2011Date of Patent: July 23, 2013Assignee: IMECInventors: George Bryce, Simone Severi, Peter Verheyen
-
Patent number: 8481402Abstract: Methods and structures for semiconductor devices with STI regions in SOI substrates is provided. A semiconductor structure comprises an SOI epitaxy island formed over a substrate. The structure further comprises an STI structure surrounding the SOI island. The STI structure comprises a second epitaxial layer on the substrate, and a second dielectric layer on the second epitaxial layer. A semiconductor fabrication method comprises forming a dielectric layer over a substrate and surrounding a device fabrication region in the substrate with an isolation trench extending through the dielectric layer. The method also includes filling the isolation trench with a first epitaxial layer and forming a second epitaxial layer over the device fabrication region and over the first epitaxial layer. Then a portion of the first epitaxial layer is replaced with an isolation dielectric, and then a device such as a transistor is formed second epitaxial layer within the device fabrication region.Type: GrantFiled: October 31, 2011Date of Patent: July 9, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Hua Yu, Tze-Liang Lee, Pang-Yen Tsai
-
Patent number: 8445336Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 ? to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.Type: GrantFiled: September 27, 2010Date of Patent: May 21, 2013Assignee: Samsung Display Co., Ltd.Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
-
Patent number: 8445387Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.Type: GrantFiled: March 15, 2011Date of Patent: May 21, 2013Assignee: Micron Technology, Inc.Inventors: David H. Wells, Du Li
-
Patent number: 8377779Abstract: Methods of manufacturing semiconductor devices and transistors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes providing a workpiece comprising a plurality of fins, and forming a semiconductive material over a top surface of the plurality of fins. An etch stop layer is formed over the semiconductive material, and an insulating material is disposed over the etch stop layer. The insulating material and a portion of the etch stop layer are removed from over the plurality of fins. Forming the semiconductive material or forming the etch stop layer are controlled so that removing the portion of the etch stop layer does not remove the etch stop layer between a widest portion of the semiconductive material over the plurality of fins.Type: GrantFiled: January 3, 2012Date of Patent: February 19, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Yu-Ping Wang
-
Patent number: 8357562Abstract: A structure to diminish high voltage instability in a high voltage device when under stress includes an amorphous silicon layer over a field oxide on the high voltage device.Type: GrantFiled: January 28, 2011Date of Patent: January 22, 2013Assignee: Fairchild Semiconductor CorporationInventor: Jifa Hao
-
Patent number: 8344453Abstract: A method of forming a localized SOI structure in a substrate (10) wherein a trench (18) is formed in the substrate, and a dielectric layer (20) is formed on the base of the trench (18). The trench is filled with semiconductor material (22) by means of epitaxial growth.Type: GrantFiled: October 14, 2008Date of Patent: January 1, 2013Assignee: NXP B.V.Inventor: Markus Gerhard Andreas Muller
-
Patent number: 8309986Abstract: Semiconductor structures include a trench formed proximate a substrate including a first semiconductor material. A crystalline material including a second semiconductor material lattice mismatched to the first semiconductor material is formed in the trench. Process embodiments include removing a portion of the dielectric layer to expose a side portion of the crystalline material and defining a gate thereover. Defects are reduced by using an aspect ratio trapping approach.Type: GrantFiled: May 13, 2011Date of Patent: November 13, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Anthony J. Lochtefeld
-
Patent number: 8299535Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate.Type: GrantFiled: June 25, 2010Date of Patent: October 30, 2012Assignee: International Business Machines CorporationInventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jeffrey B. Johnson, Jinghong Li, Dae-Gyu Park, Zhengmao Zhu
-
Patent number: 8288757Abstract: A recess along a sidewall is formed in a pMOS region and an nMOS region. An SiC layer of which thickness is thicker than a depth of the recess is formed in the recess. A sidewall covering a part of the SiC layer is formed at both lateral sides of a gate electrode in the pMOS region. A recess is formed by selectively removing the SiC layer in the pMOS region. A side surface of the recess at the gate insulating film side is inclined so that the upper region of the side surface, the closer to the gate insulating film in a lateral direction at a region lower than the surface of the silicon substrate. An SiGe layer is formed in the recess in the pMOS region.Type: GrantFiled: September 29, 2010Date of Patent: October 16, 2012Assignee: Fujitsu Semiconductor LimitedInventors: Hiroyuki Ohta, Yosuke Shimamune
-
Patent number: 8273620Abstract: Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.Type: GrantFiled: June 4, 2010Date of Patent: September 25, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Young-pil Kim, Si-young Choi, Byeong-chan Lee, Jong-wook Lee
-
Patent number: 8268654Abstract: The number of photomasks is reduced in a method for manufacturing a liquid crystal display device which operates in a fringe field switching mode, whereby a manufacturing process is simplified and manufacturing cost is reduced. A first transparent conductive film and a first metal film are sequentially stacked over a light-transmitting insulating substrate; the first transparent conductive film and the first metal film are shaped using a multi-tone mask which is a first photomask; an insulating film, a first semiconductor film, a second semiconductor film, and a second metal film are sequentially stacked; the second metal film and the second semiconductor film are shaped using a multi-tone mask which is a second photomask; a protective film is formed; the protective film is shaped using a third photomask; a second transparent conductive film is formed; and the second transparent conductive film is shaped using a fourth photomask.Type: GrantFiled: December 1, 2008Date of Patent: September 18, 2012Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Saishi Fujikawa, Yoko Chiba
-
Patent number: 8247329Abstract: A method for forming a semiconductor device includes forming a nanotube region using a thin epitaxial layer formed on the sidewall of a trench in the semiconductor body. The thin epitaxial layer has uniform doping concentration. In another embodiment, a first thin epitaxial layer of the same conductivity type as the semiconductor body is formed on the sidewall of a trench in the semiconductor body and a second thin epitaxial layer of the opposite conductivity type is formed on the first epitaxial layer. The first and second epitaxial layers have uniform doping concentration. The thickness and doping concentrations of the first and second epitaxial layers and the semiconductor body are selected to achieve charge balance. In one embodiment, the semiconductor body is a lightly doped P-type substrate. A vertical trench MOSFET, an IGBT, a Schottky diode and a P-N junction diode can be formed using the same N-Epi/P-Epi nanotube structure.Type: GrantFiled: February 9, 2011Date of Patent: August 21, 2012Assignee: Alpha & Omega Semiconductor, Inc.Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
-
Patent number: 8236660Abstract: Semiconductor structures are disclosed that have embedded stressor elements therein. The disclosed structures include at least one FET gate stack located on an upper surface of a semiconductor substrate. The at least one FET gate stack includes source and drain extension regions located within the semiconductor substrate at a footprint of the at least one FET gate stack. A device channel is also present between the source and drain extension regions and beneath the at least one gate stack. The structure further includes embedded stressor elements located on opposite sides of the at least one FET gate stack and within the semiconductor substrate. Each of the embedded stressor elements includes a lower layer of a first epitaxy doped semiconductor material having a lattice constant that is different from a lattice constant of the semiconductor substrate and imparts a strain in the device channel, and an upper layer of a second epitaxy doped semiconductor material located atop the lower layer.Type: GrantFiled: April 21, 2010Date of Patent: August 7, 2012Assignee: International Business Machines CorporationInventors: Kevin K. Chan, Abhishek Dube, Judson R. Holt, Jinghong Li, Joseph S. Newbury, Viorel Ontalus, Dae-Gyu Park, Zhengmao Zhu
-
Patent number: 8232149Abstract: An SOI device includes an SOI substrate having a stacked structure including a buried oxide layer and a first silicon layer sequentially stacked on a silicon substrate. The SOI substrate possesses grooves having a depth that extends from an upper surface of the first silicon layer to a partial depth of the buried oxide layer. An insulation layer is formed on the lower surfaces of the grooves and a second silicon layer is formed filling the grooves having the insulation layer formed thereon. Gates are formed on the second silicon layer and junction regions are formed in the first silicon layer on both sides of the gates to contact the insulation layer.Type: GrantFiled: December 8, 2008Date of Patent: July 31, 2012Assignee: Hynix Semiconductor Inc.Inventor: Bo Youn Kim
-
Patent number: 8227304Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on a bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., a single-fin or multi-fin MUGFET or multiple series-connected single-fin or multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).Type: GrantFiled: February 23, 2010Date of Patent: July 24, 2012Assignee: International Business Machines CorporationInventors: Subramanian S. Iyer, Edward J. Nowak
-
Patent number: 8173524Abstract: Methods form epitaxial materials by forming at least two gate stacks on a silicon substrate and forming sidewall spacers on sides of the gate stacks. Such methods pattern a recess in the silicon substrate between adjacent ones of the gate stacks. The methods also provide a liner in a bottom of the recess, and epitaxially grow epitaxial material from sidewalls of the recess to fill the recess with the epitaxial material.Type: GrantFiled: January 11, 2011Date of Patent: May 8, 2012Assignee: International Business Machines CorporationInventors: Ashima B. Chakravarti, Anthony I. Chou, Abhishek Dube, Dominic J. Schepis
-
Patent number: 8158471Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.Type: GrantFiled: October 5, 2010Date of Patent: April 17, 2012Assignee: Micron Technology, Inc.Inventors: Suraj Mathew, Jigish D Trivedi
-
Patent number: 8154050Abstract: A semiconductor device in which semiconductor epitaxial layers are embedded in the source/drain regions includes an element formation region formed in the major surface of a semiconductor substrate, a gate electrode formed on a part of the element formation region, the semiconductor epitaxial layers formed in the source/drain regions of the element formation region so as to sandwich the channel region below the gate electrode, and silicide layers formed on the gate electrode and semiconductor epitaxial layers. Each semiconductor epitaxial layer has a three-layered structure in which first semiconductor films different in material or composition from the semiconductor substrate sandwich a second semiconductor film having a silicidation reactivity higher than that of the first semiconductor films. Each silicide layer extends to the second semiconductor film along the interface between the semiconductor substrate and semiconductor epitaxial layer.Type: GrantFiled: August 7, 2008Date of Patent: April 10, 2012Assignee: Kabushiki Kaisha ToshibaInventor: Gaku Sudo
-
Patent number: 8148722Abstract: Provided are a method of manufacturing a transparent N-doped p-type ZnO semiconductor layer using a surface chemical reaction between precursors containing elements constituting thin layers, and a thin film transistor (TFT) including the p-type ZnO semiconductor layer. The method includes the steps of: preparing a substrate and loading the substrate into a chamber; injecting a Zn precursor and an oxygen precursor into the chamber, and causing a surface chemical reaction between the Zn precursor and the oxygen precursor using an atomic layer deposition (ALD) technique to form a ZnO thin layer on the substrate; and injecting a Zn precursor and an nitrogen precursor into the chamber, and causing a surface chemical reaction between the Zn precursor and the nitrogen precursor to form a doping layer on the ZnO thin layer.Type: GrantFiled: December 14, 2010Date of Patent: April 3, 2012Assignee: Electronics and Telecommunications Research InstituteInventors: Sang Hee Park, Chi Sun Hwang, Hye Yong Chu, Jeong Ik Lee
-
Patent number: 8021936Abstract: A thin film transistor (TFT) and a method of manufacturing the same are provided. The TFT includes a transparent substrate, an insulating layer on a region of the transparent substrate, a monocrystalline silicon layer, which includes source, drain, and channel regions, on the insulating layer and a gate insulating film and a gate electrode on the channel region of the monocrystalline silicon layer.Type: GrantFiled: March 26, 2009Date of Patent: September 20, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Takashi Noguchi, Wenxu Xianyu, Hans S. Cho, Huaxiang Yin
-
Publication number: 20110204443Abstract: Disclosed is a method of forming a semiconductor-on-insulator (SOI) structure on a bulk semiconductor starting wafer. Parallel semiconductor bodies are formed at the top surface of the wafer. An insulator layer is deposited and recessed. Exposed upper portions of the semiconductor bodies are used as seed material for growing epitaxial layers of semiconductor material laterally over the insulator layer, thereby creating a semiconductor layer. This semiconductor layer can be used to form one or more SOI devices (e.g., a single-fin or multi-fin MUGFET or multiple series-connected single-fin or multi-fin MUGFETs). However, placement of SOI device components in and/or on portions of the semiconductor layer should be predetermined to avoid locations which might impact device performance (e.g., placement of any FET gate on a semiconductor fin formed from the semiconductor layer can be predetermined to avoid interfaces between joined epitaxial semiconductor material sections).Type: ApplicationFiled: February 23, 2010Publication date: August 25, 2011Applicant: International Business Machines CorporationInventors: Subramanian S. Iyer, Edward J. Nowak
-
Patent number: 7977200Abstract: A semiconductor device including at least one capacitor formed in wiring levels on a silicon-on-insulator (SOI) substrate, wherein the at least one capacitor is coupled to an active layer of the SOI substrate. A method of fabricating a semiconductor structure includes forming an SOI substrate, forming a BOX layer over the SOI substrate, and forming at least one capacitor in wiring levels on the BOX layer, wherein the at least one capacitor is coupled to an active layer of the SOI substrate.Type: GrantFiled: March 12, 2008Date of Patent: July 12, 2011Assignee: International Business Machines CorporationInventors: William F. Clark, Jr., Stephen E. Luce
-
Patent number: 7977706Abstract: Semiconductor structures include a trench formed proximate a substrate including a first semiconductor material. A crystalline material including a second semiconductor material lattice mismatched to the first semiconductor material is formed in the trench. Process embodiments include removing a portion of the dielectric layer to expose a side portion of the crystalline material and defining a gate thereover. Defects are reduced by using an aspect ratio trapping approach.Type: GrantFiled: August 13, 2010Date of Patent: July 12, 2011Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Anthony J. Lochtefeld
-
Patent number: 7956417Abstract: Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a <110> crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the <110> crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.Type: GrantFiled: July 20, 2010Date of Patent: June 7, 2011Assignee: International Business Machines CorporationInventors: Yun-Yu Wang, Christopher D. Sheraw, Anthony G. Domenicucci, Linda Black, Judson R. Holt, David M. Fried
-
Patent number: 7910486Abstract: A method for forming a semiconductor device includes forming a nanotube region using a thin epitaxial layer formed on the sidewall of a trench in the semiconductor body. The thin epitaxial layer has uniform doping concentration. In another embodiment, a first thin epitaxial layer of the same conductivity type as the semiconductor body is formed on the sidewall of a trench in the semiconductor body and a second thin epitaxial layer of the opposite conductivity type is formed on the first epitaxial layer. The first and second epitaxial layers have uniform doping concentration. The thickness and doping concentrations of the first and second epitaxial layers and the semiconductor body are selected to achieve charge balance. In one embodiment, the semiconductor body is a lightly doped P-type substrate. A vertical trench MOSFET, an IGBT, a Schottky diode and a P-N junction diode can be formed using the same N-Epi/P-Epi nanotube structure.Type: GrantFiled: June 12, 2009Date of Patent: March 22, 2011Assignee: Alpha & Omega Semiconductor, Inc.Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
-
Patent number: 7910395Abstract: An LED structure includes a first substrate; an adhering layer formed on the first substrate; first ohmic contact layers formed on the adhering layer; epi-layers formed on the first ohmic contact layers; a first isolation layer covering the first ohmic contact layers and the epi-layers at exposed surfaces thereof; and first electrically conducting plates and second electrically conducting plates, both formed in the first isolation layer and electrically connected to the first ohmic contact layers and the epi-layers, respectively. The trenches allow the LED structure to facilitate complex serial/parallel connection so as to achieve easy and various applications of the LED structure in the form of single structures under a high-voltage environment.Type: GrantFiled: September 13, 2006Date of Patent: March 22, 2011Assignee: Helio Optoelectronics CorporationInventors: Shih-Chang Shei, Ming-Hung Chen, Shih-Yi Wen, Chun-Che Lee
-
Patent number: 7906830Abstract: Memory cell structures, including PSOIs, NANDs, NORs, FinFETs, etc., and methods of fabrication have been described that include a method of epitaxial silicon growth. The method includes providing a silicon layer on a substrate. A dielectric layer is provided on the silicon layer. A trench is formed in the dielectric layer to expose the silicon layer, the trench having trench walls in the <100> direction. The method includes epitaxially growing silicon between trench walls formed in the dielectric layer.Type: GrantFiled: December 17, 2008Date of Patent: March 15, 2011Assignee: Micron Technology, Inc.Inventors: David H. Wells, Du Li
-
Patent number: 7871881Abstract: A method for fabrication of a monolithically integrated SOI substrate capacitor has the steps of: forming an insulating trench, which reaches down to the insulator and surrounds a region of the monocrystalline silicon of a SOI structure, doping the monocrystalline silicon region, forming an insulating, which can be nitride, layer region on a portion of the monocrystalline silicon region, forming a doped silicon layer region on the insulating layer region, and forming an insulating outside sidewall spacer on the monocrystalline silicon region, where the outside sidewall spacer surrounds the doped silicon layer region to provide an isolation between the doped silicon layer region and exposed portions of the monocrystalline silicon region. The monocrystalline silicon region, the insulating layer region, and the doped silicon layer region constitute a lower electrode, a dielectric, and an upper electrode of the capacitor.Type: GrantFiled: March 30, 2009Date of Patent: January 18, 2011Assignee: Infineon Technologies AGInventor: Ted Johansson
-
Patent number: 7829399Abstract: A method of forming capacitorless DRAM over localized silicon-on-insulator comprises the following steps: A silicon substrate is provided, and an array of silicon studs is defined within the silicon substrate. An insulator layer is defined atop at least a portion of the silicon substrate, and between the silicon studs. A silicon-over-insulator layer is defined surrounding the silicon studs atop the insulator layer, and a capacitorless DRAM is formed within and above the silicon-over-insulator layer.Type: GrantFiled: April 10, 2009Date of Patent: November 9, 2010Assignee: Micron Technology, Inc.Inventors: Suraj Mathew, Jigish D Trivedi
-
Patent number: 7825476Abstract: A method of fabricating a polycrystalline silicon (poly-Si) layer includes providing a substrate, forming an amorphous silicon (a-Si) layer on the substrate, forming a thermal oxide layer to a thickness of about 10 to 50 ? on the a-Si layer, forming a metal catalyst layer on the thermal oxide layer, and annealing the substrate to crystallize the a-Si layer into the poly-Si layer using a metal catalyst of the metal catalyst layer. Thus, the a-Si layer can be crystallized into a poly-Si layer by a super grain silicon (SGS) crystallization method. Also, the thermal oxide layer may be formed during the dehydrogenation of the a-Si layer so that an additional process of forming a capping layer required for the SGS crystallization method can be omitted, thereby simplifying the fabrication process.Type: GrantFiled: June 19, 2008Date of Patent: November 2, 2010Assignee: Samsung Mobile Display Co., Ltd.Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Kil-Won Lee
-
Patent number: 7799592Abstract: Semiconductor structures include a trench formed proximate a substrate including a first semiconductor material. A crystalline material including a second semiconductor material lattice mismatched to the first semiconductor material is formed in the trench. Process embodiments include removing a portion of the dielectric layer to expose a side portion of the crystalline material and defining a gate thereover. Defects are reduced by using an aspect ratio trapping approach.Type: GrantFiled: September 26, 2007Date of Patent: September 21, 2010Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Anthony J. Lochtefeld
-
Patent number: 7759213Abstract: Trenches are formed in a silicon substrate by etching exposed portions of the silicon substrate. After covering areas on which deposition of Si:C containing material is to be prevented, selective epitaxy is performed in a single wafer chamber at a temperature from about 550° C. to about 600° C. employing a limited carrier gas flow, i.e., at a flow rate less than 12 standard liters per minute to deposit Si:C containing regions at a pattern-independent uniform deposition rate. The inventive selective epitaxy process for Si:C deposition provides a relatively high net deposition rate a high quality Si:C crystal in which the carbon atoms are incorporated into substitutional sites as verified by X-ray diffraction.Type: GrantFiled: August 11, 2008Date of Patent: July 20, 2010Assignee: International Business Machines CorporationInventors: Abhishek Dube, Ashima B. Chakravarti, Dominic J. Schepis
-
Patent number: 7755133Abstract: Embodiments of the invention provide a semiconductor integrated circuit device and a method for fabricating the device. The semiconductor device includes a semiconductor substrate having a cell region and a peripheral region, a cell active region formed in the cell region, and a peripheral active region formed in the peripheral region, wherein the cell active region and the peripheral active region are defined by isolation regions. The semiconductor device further includes a first gate stack formed on the cell active region, a second gate stack formed on the peripheral active region, a cell epitaxial layer formed on an exposed portion of the cell active region, and a peripheral epitaxial layer formed on an exposed portion of the peripheral active region, wherein the height of the peripheral epitaxial layer is greater than the height of the cell epitaxial layer.Type: GrantFiled: September 14, 2007Date of Patent: July 13, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Jin-bum Kim, Young-pil Kim, Si-young Choi, Byeong-chan Lee, Jong-wook Lee
-
Patent number: 7754513Abstract: Latch-up resistant semiconductor structures formed on a hybrid substrate and methods of forming such latch-up resistant semiconductor structures. The hybrid substrate is characterized by first and second semiconductor regions that are formed on a bulk semiconductor region. The second semiconductor region is separated from the bulk semiconductor region by an insulating layer. The first semiconductor region is separated from the bulk semiconductor region by a conductive region of an opposite conductivity type from the bulk semiconductor region. The buried conductive region thereby the susceptibility of devices built using the first semiconductor region to latch-up.Type: GrantFiled: February 28, 2007Date of Patent: July 13, 2010Assignee: International Business Machines CorporationInventors: Jack Allan Mandelman, William Robert Tonti
-
Patent number: 7713828Abstract: A semiconductor device includes a semiconductor substrate, source and drain regions on the semiconductor substrate, and contact plugs connected to the source and drain regions. The contact plugs includes first impurity-diffused epitaxial layers that contact with the source and drain regions.Type: GrantFiled: November 15, 2007Date of Patent: May 11, 2010Assignee: Elpida Memory, Inc.Inventor: Kazuyoshi Yuki