Soi Together With Lateral Isolation, E.g., Using Local Oxidation Of Silicon, Or Dielectric Or Polycrystalline Material Refilled Trench Or Air Gap Isolation Regions, E.g., Completely Isolated Semiconductor Islands (epo) Patents (Class 257/E21.564)
  • Patent number: 8642405
    Abstract: A process for producing an adhered SOI substrate without causing cracking and peeling of a single-crystal silicon thin film. The process consists of selectively forming a porous silicon layer in a single-crystal semiconductor substrate, adding hydrogen into the single-crystal semiconductor substrate to form a hydrogen-added layer, adhering the single-crystal semiconductor substrate to a supporting substrate, separating the single-crystal semiconductor substrate at the hydrogen-added layer by thermal annealing, performing thermal annealing again to stabilize the adhering interface, and selectively removing the porous silicon layer to give single-crystal silicon layer divided into islands.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: February 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takeshi Fukunaga
  • Patent number: 8629501
    Abstract: A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Brian J. Greene, Dureseti Chidambarrao, Gregory G. Freeman
  • Patent number: 8623758
    Abstract: A method includes forming an adhesion barrier layer over a dielectric layer formed on a substrate. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. A metal layer is formed over the stress-reducing barrier layer. The metal layer, adhesion barrier layer, and stress-reducing barrier layer define an interconnect metal stack. Recesses are defined in the interconnect metal stack to expose the dielectric layer. The recesses are filled with a dielectric material, wherein a portion of the interconnect metal stack disposed between adjacent recessed filled with dielectric material defines an interconnect structure.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 7, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vivian W. Ryan, Xunyuan Zhang, Paul R. Besser
  • Patent number: 8609508
    Abstract: A shallow trench isolation is formed in a semiconductor substrate adjacent a MOS transistor. The shallow trench is filled with a fill material while other processing steps are performed. The fill material is later removed through a thin well etched into layers above the trench, leaving the trench hollow. A thin strain inducing layer is then formed on the sidewall of the hollow trench. The well is then plugged, leaving the trench substantially hollow except for the thin strain inducing layer on the sidewall of the trench. The strain inducing layer is configured to induce compressive or tensile strain on a channel region of the MOS transistor and thereby to enhance conduction properties of the transistor.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 17, 2013
    Assignee: STMicroelectronics, Inc.
    Inventor: Barry Dove
  • Patent number: 8574972
    Abstract: After a fin-semiconductor region (13) is formed on a substrate (11), impurity-containing gas and oxygen-containing gas are used to perform plasma doping on the fin-semiconductor region (13). This forms impurity-doped region (17) in at least side portions of the fin-semiconductor region (13).
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Yuichiro Sasaki, Masafumi Kubota, Shigenori Hayashi
  • Patent number: 8575699
    Abstract: SOI structures with silicon layers less than 20 nm thick are used to form ETSOI semiconductor devices. ETSOI devices are manufactured using a thin tungsten backgate encapsulated by thin nitride layers to prevent metal oxidation, the tungsten backgate being characterized by its low resistivity. The structure includes at least one FET having a gate stack formed by a high-K metal gate and a tungsten region superimposed thereon, the footprint of the gate stack utilizing the thin SOI layer as a channel. The SOI structure thus formed controls the Vt variation from the thin SOI thickness and dopants therein. The ETSOI high-K metal backgate fully depleted device in conjunction with the thin BOX provides an excellent short channel control and lowers the drain induced bias and sub-threshold swings. The structure supports the evidence of the stability of the wafer having a tungsten film during thermal processing, during STI and contact formation.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Zhibin Ren, Xinhui Wang
  • Patent number: 8551860
    Abstract: Provided are semiconductor devices having through electrodes and methods of fabricating the same. The method includes providing a substrate including top and bottom surfaces facing each other, forming a hole and a gap extending from the top surface of the substrate toward the bottom surface of the substrate, the gap surrounding the hole and being shallower than the hole, filling the hole with an insulating material, forming a metal interconnection line on the top surface of the substrate on the insulating material, recessing the bottom surface of the substrate to expose the insulating material, removing the insulating material to expose the metal interconnection line via the hole, filling the hole with a conductive material to form a through electrode connected to the metal interconnection line, recessing the bottom surface of the substrate again to expose the gap, and forming a lower insulating layer on the bottom surface of the substrate.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sukchul Bang, Kwangjin Moon, Byung Lyul Park, Dosun Lee, Deok-Young Jung, Gilheyun Choi
  • Patent number: 8546910
    Abstract: The present invention provides a semiconductor structure, which comprises a substrate, a semiconductor base, a cavity, a gate stack, sidewall spacers, source/drain regions and a contact layer; wherein, the gate stack is located on the semiconductor base, the sidewall spacers are located on sidewalls of the gate stack, the source/drain regions are embedded within the semiconductor base and located on both sides of the gate stack, the cavity is embedded within the substrate, and the semiconductor base is suspended over the cavity, the thickness in the middle portion of the semiconductor base is greater than the thicknesses at both ends of the semiconductor base in a direction along the gate length, and both ends of the semiconductor base are connected with the substrate in a direction along the gate width; the contact layer covers exposed surfaces of the source/drain regions.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 1, 2013
    Assignees: Institute of Microelectronics, Chinese Academy of Sciences, Beijing NMC Co., Ltd.
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8409974
    Abstract: A method of forming a semiconductor structure (and the resulting structure), includes straining a free-standing semiconductor, and fixing the strained, free-standing semiconductor to a substrate.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Moshe Cohen, Patricia May Mooney
  • Patent number: 8399349
    Abstract: The present invention is a process for forming an air gap within a substrate, the process comprising: providing a substrate; depositing a sacrificial material by deposition of at least one sacrificial material precursor; depositing a composite layer; removale of the porogen material in the composite layer to form a porous layer and contacting the layered substrate with a removal media to substantially remove the sacrificial material and provide the air gaps within the substrate; wherein the at least one sacrificial material precursor is selected from the group consisting of: an organic porogen; silicon, and a polar solvent soluble metal oxide and mixtures thereof.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: March 19, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Dingjun Wu, Mark Leonard O'Neill, Mark Daniel Bitner, Jean Louise Vincent, Eugene Joseph Karwacki, Jr., Aaron Scott Lukas
  • Patent number: 8395217
    Abstract: A semiconductor device structure having an isolation region and method of manufacturing the same are provided. The semiconductor device structure includes a silicon-on-insulator (SOI) substrate. A plurality of gates is formed on the SOI substrate. The semiconductor device structure further includes trenches having sidewalls, formed between each of the plurality of gates. The semiconductor device structure further includes an epitaxial lateral growth layer formed in the trenches. The epitaxial lateral growth layer is grown laterally from the opposing sidewalls of the trenches, so that the epitaxial lateral growth layer encloses a portion of the trenches extended into the SOI substrate. The epitaxial lateral growth layer is formed in such way that it includes an air gap region overlying a buried dielectric layer of the SOI substrate.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Joseph Ervin, Jeffrey B. Johnson, Pranita Kulkarni, Kevin McStay, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8395231
    Abstract: A semiconductor device supplying a charging current to a charging-target element includes: a semiconductor layer of a first conductivity type; a first semiconductor region of a second conductivity type formed on a main surface of the semiconductor layer and having a first node coupled to a first electrode of the charging-target element and a second node coupled to a power supply potential node supplied with a power supply voltage; a second semiconductor region of the first conductivity type formed in a surface of the first semiconductor region at a distance from the semiconductor layer and having a third node coupled to the power supply potential node; and a charge carrier drift restriction portion restricting drift of charge carrier from the third node to the semiconductor layer.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: March 12, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohide Terashima
  • Patent number: 8389412
    Abstract: The invention relates to a finishing method for a silicon-on-insulator (SOI) substrate that includes an oxide layer buried between an active silicon layer and a support layer of silicon. The method includes applying the following steps in succession: a first rapid thermal annealing (RTA) of the SOI substrate; a sacrificial oxidation of the active silicon layer of the substrate conducted to remove a first oxide thickness; a second RTA of the substrate; and a second sacrificial oxidation of the active silicon layer conducted to remove a second oxide thickness that is thinner than the first oxide thickness.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: March 5, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Sébastien Kerdiles, Patrick Reynaud, Ludovic Ecarnot, Eric Neyret
  • Patent number: 8362564
    Abstract: An isolated epitaxial modulation device comprises a substrate; a barrier structure formed on the substrate; an isolated epitaxial region formed above the substrate and electrically isolated from the substrate by the barrier structure; a semiconductor device, the semiconductor device located in the isolated epitaxial region; and a modulation network formed on the substrate and electrically coupled to the semiconductor device. The device also comprises a bond pad and a ground pad. The isolated epitaxial region is electrically coupled to at least one of the bond pad and the ground pad. The semiconductor device and the epitaxial modulation network are configured to modulate an input voltage.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 29, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Yu Li, Steven Howard Voldman
  • Patent number: 8357975
    Abstract: Embodiments of the present invention provide for the removal of excess carriers from the body of active devices in semiconductor-on-insulator (SOI) structures. In one embodiment, a method of fabricating an integrated circuit is disclosed. In one step, an active device is formed in an active layer of a semiconductor-on-insulator wafer. In another step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In another step, an insulator material is removed from a back side of the SOI wafer to form an excavated insulator region. In another step, a conductive layer is deposited on the excavated insulator region. Depositing the conductive layer puts it in physical contact with a body of an active device in a first portion of the excavated insulator region. The conductive layer then couples the body to a contact in a second detached portion of the excavated insulator region.
    Type: Grant
    Filed: April 28, 2012
    Date of Patent: January 22, 2013
    Assignee: IO Semiconductor, Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Paul A. Nygaard
  • Patent number: 8338909
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming a first isolation region in the semiconductor substrate; after the step of forming the first isolation region, forming a metal-oxide-semiconductor (MOS) device at a surface of the semiconductor substrate, wherein the step of forming the MOS device comprises forming a source/drain region; and after the step of forming the MOS device, forming a second isolation region in the semiconductor substrate.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: December 25, 2012
    Assignee: Taiwan Semiconductor Manufactuirng Company, Ltd.
    Inventor: Ka-Hing Fung
  • Patent number: 8293616
    Abstract: Semiconductor devices with low junction capacitances and methods of fabrication thereof are described. In one embodiment, a method of forming a semiconductor device includes forming isolation regions in a substrate to form active areas. The sidewalls of the active areas are enclosed by the isolation regions. The isolation regions are recessed to expose first parts of the sidewalls of the active areas. The first parts of the sidewalls of the active areas are covered with spacers. The isolation regions are etched to expose second parts of the sidewalls of the active area, the second parts being disposed below the first parts. The active areas are etched through the exposed second parts of the sidewalls to form lateral openings. The lateral openings are filled with a spin on dielectric.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: October 23, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Hung Chang, Yu-Rung Hsu, Chen-Hua Yu
  • Patent number: 8288185
    Abstract: Provided are a semiconductor device and a method of forming the same. According to the method, a first buried oxide layer is locally formed in a semiconductor substrate and a core semiconductor pattern of a line form, a pair of anchor-semiconductor patterns and a support-semiconductor pattern are formed by patterning a semiconductor layer on the first buried oxide layer to expose the first buried oxide layer. The pair of anchor-semiconductor patterns contact both ends of the core semiconductor pattern, respectively, and the support-semiconductor pattern contacts one sidewall of the core semiconductor pattern, the first buried oxide layer below the core semiconductor pattern is removed. At this time, a portion of the first buried oxide layer below each of the anchor-semiconductor patterns and a portion of the first buried oxide layer below the support-semiconductor pattern remain. A second buried oxide layer is formed to fill a region where the first buried oxide layer below the core semiconductor pattern.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: October 16, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo Kim, Dae Seo Park, Jun Taek Hong, Gyungock Kim
  • Patent number: 8269306
    Abstract: A dielectric liner is formed in first and second trenches respectively in first and second portions of a substrate. A layer of material is formed overlying the dielectric liner so as to substantially concurrently substantially fill the first trench and partially fill the second trench. The layer of material is removed substantially concurrently from the first and second trenches to expose substantially all of the dielectric liner within the second trench and to form a plug of the material in the one or more first trenches. A second layer of dielectric material is formed substantially concurrently on the plug in the first trench and on the exposed portion of the dielectric liner in the second trench. The second layer of dielectric material substantially fills a portion of the first trench above the plug and the second trench.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: September 18, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Sukesh Sandhu
  • Patent number: 8236638
    Abstract: A method for making a semiconductor device is provided which includes (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: August 7, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Konstantin V. Loiko, Toni D. Van Gompel, Rode R. Mora, Michael D. Turner, Brian A. Winstead, Mark D. Hall
  • Patent number: 8232597
    Abstract: Embodiments of the present invention provide for the removal of excess carriers from the body of active devices in semiconductor-on-insulator (SOI) structures. In one embodiment, a method of fabricating an integrated circuit is disclosed. In one step, an active device is formed in an active layer of a semiconductor-on-insulator wafer. In another step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In another step, an insulator material is removed from a back side of the SOI wafer to form an excavated insulator region. In another step, a conductive layer is deposited on the excavated insulator region. Depositing the conductive layer puts it in physical contact with a body of an active device in a first portion of the excavated insulator region. The conductive layer then couples the body to a contact in a second detached portion of the excavated insulator region.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: July 31, 2012
    Assignee: IO Semiconductor, Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Paul A. Nygaard
  • Patent number: 8173513
    Abstract: Method for manufacturing a semiconductor pressure sensor, wherein, in a silicon substrate, trenches are dug and delimit walls; a closing layer is epitaxially grown, that closes the trenches at the top and forms a suspended membrane; a heat treatment is performed so as to cause migration of the silicon of the walls and to form a closed cavity underneath the suspended membrane; and structures are formed for transducing the deflection of the suspended membrane into electrical signals.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 8, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Flavio Francesco Villa, Gabriele Barlocchi, Pietro Corona, Benedetto Vigna, Lorenzo Baldo
  • Patent number: 8148235
    Abstract: Methods of forming air gaps between interconnects of integrated circuits and structures thereof are disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 3, 2012
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Patent number: 8138063
    Abstract: An object of the present invention is to provide a semiconductor device having a structure which can realize not only suppressing a punch-through current but also reusing a silicon wafer which is used for bonding, in manufacturing a semiconductor device using an SOI technique, and a manufacturing method thereof. The semiconductor device can suppress the punch-through current by forming a semiconductor film in which an impurity imparting a conductivity type opposite to that of a source region and a drain region is implanted over a substrate having an insulating surface, and forming a channel formation region using a semiconductor film of stacked layers obtained by bonding a single crystal semiconductor film to the semiconductor film by an SOI technique.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 20, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hiromichi Godo
  • Patent number: 8129252
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 6, 2012
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8115254
    Abstract: A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Brian J. Greene, Dureseti Chidambarrao, Gregory G. Freeman
  • Patent number: 8097519
    Abstract: By removing material during the formation of trench openings of isolation structures in an SOI device, the subsequent implantation process for defining the well region for a substrate diode may be performed on the basis of moderately low implantation energies, thereby increasing process uniformity and significantly reducing cycle time of the implantation process. Thus, enhanced reliability and stability of the substrate diode may be accomplished while also providing a high degree of compatibility with conventional manufacturing techniques.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: January 17, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Maciej Wiatr, Markus Forsberg, Roman Boschke
  • Patent number: 8097949
    Abstract: The present invention relates to a method for fabricating an interconnect stack of an integrated-circuit device. Air gaps are fabricated in the interconnect stack on one or more interconnect levels. The method comprises forming local etch vias (216, 218) between a lower etch-barrier layer (236) and an upper etch-barrier layer (211) on top of an upper-intermediate interconnect level (224). Lateral inhomogeneities of the dielectric constant on the upper-intermediate interconnect level are removed in comparison with prior-art devices. For in the finished interconnect stack local variations in the dielectric permittivity can only occur at the (former) etch vias, which are either visible by the presence of air cavities or hardly visible due to a later filling with the dielectric material of the next interlevel dielectric layer.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 17, 2012
    Assignees: NXP B.V., Commissariat a l'Energie Atomique
    Inventors: Laurent Gosset, Jean Raymond Jacques Marie Pontcharra, Frederic Gaillard
  • Publication number: 20110316055
    Abstract: A support substrate comprises first and second counter-electrodes arranged in the same plane at the level of a surface of the support substrate. An electrically insulating area separates the first and second counter-electrodes. A semi-conducting area with first and second portions is separated from the support substrate by an electrically insulating material. The electrically insulating material is different from the material forming the support substrate. The first portion of the semi-conducting area is facing the first counter-electrode. The second portion of the semi-conducting area is facing the second counter-electrode.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 29, 2011
    Applicants: STMICROELECTRONICS (CROLLES 2) SAS, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Philippe CORONEL, Claire FENOUILLET-BÉRANGER, Stéphane DENORME, Olivier THOMAS
  • Patent number: 8071454
    Abstract: A method for manufacturing a dielectric isolation type semiconductor device comprises: forming a plurality of trenches in a first region on a major surface of a semiconductor substrate; forming a first dielectric layer on the major surface of the semiconductor substrate and a first thick dielectric layer in the first region by oxidizing a surface of the semiconductor substrate; bonding a semiconductor layer of a first conductive type to the semiconductor substrate via the first dielectric layer; forming a first semiconductor region by implanting an impurity into a part of the semiconductor layer above the first thick dielectric layer; forming a second semiconductor region by implanting an impurity of a second conductive type into a part of the semiconductor layer so as to surround the first semiconductor region separating from the first semiconductor region.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: December 6, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hajime Akiyama
  • Patent number: 8058689
    Abstract: An integrated circuit has a buried insulation layer formed over a semiconductor substrate, and a semiconductor mesa formed over the buried insulation layer. A low resistivity guard ring substantially surrounds the semiconductor mesa and is in contact with the semiconductor substrate. The low resistivity guard ring is grounded and isolates the semiconductor mesa from RF signals.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: November 15, 2011
    Inventors: Cheisan J. Yue, James D. Seefeldt
  • Patent number: 8043973
    Abstract: A method of forming IC devices includes providing a substrate and forming a patterned masking layer including at least one masked region having at least one masking layer, and a feature region bounded by the masking layer. Etching forms an etched feature in the substrate, wherein undercutting during the etching forms at least one mask overhang region over a surface portion of the etched feature that is recessed relative to an outer edge of the masking layer. A pullback etch process exclusive of any additional patterning step laterally etches the masking layer. The conditions for the pullback etch retain at least a portion of the masking layer and reduce a length of the mask overhang region by at least 50%, or eliminate the mask overhang region entirely. The etched feature is then filled after the pullback etch process to form a filled etched feature.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: October 25, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Brian Goodlin, Thomas D Bonifield
  • Patent number: 8030731
    Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 4, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 8021992
    Abstract: A high density plasma chemical vapor deposition process including exciting gas mixture to create a plasma including ions, and directing the plasma into a dense region above the upper surface of the semiconductor wafer, heating the wafer using an additional heat source, and allowing a material from the plasma to deposit onto the semiconductor wafer.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: September 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Joung-Wei Liou, Tsang-Yu Liu, Chien-Feng Lin, Cheng-Liang Chang, Ming-Te Chen, Chia-Hui Lin, Ying-Hsiu Tsai, Szu-An Wu, Yin-Ping Lee
  • Patent number: 8013364
    Abstract: A structure having air gaps between interconnects is disclosed. A first insulating material is deposited over a workpiece, and a second insulating material having a sacrificial portion is deposited over the first insulating material. Conductive lines are formed in the first and second insulating layers. The second insulating material is treated to remove the sacrificial portion, and at least a portion of the first insulating material is removed, forming air gaps between the conductive lines. The second insulating material is impermeable as deposited and permeable after treating it to remove the sacrificial portion. A first region of the workpiece may be masked during the treatment, so that the second insulating material becomes permeable in a second region of the workpiece yet remains impermeable in the first region, thus allowing the formation of the air gaps in the second region, but not the first region.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Markus Naujok, Hermann Wendt, Alois Gutmann, Muhammed Shafi Pallachalil
  • Patent number: 7998829
    Abstract: In various embodiments, semiconductor structures and methods to manufacture these structures are disclosed. In one embodiment, a method includes removing a portion of a semiconductor material using an electrochemical etch to form a first cavity, a second cavity, wherein the first cavity is isolated from the second cavity, a first protrusion is between the first cavity and the second cavity, and the semiconductor material comprises silicon. The method further includes performing a thermal oxidation to convert a portion of the silicon of the semiconductor material to silicon dioxide and forming a first dielectric material over the first cavity, over the second cavity, over at least a portion of the semiconductor material, and over at least a portion of the first protrusion. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: August 16, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Michael Albert Tischler
  • Patent number: 7993990
    Abstract: A semiconductor structure includes an epitaxial surface semiconductor layer having a first dopant polarity and a first crystallographic orientation, and a laterally adjacent semiconductor-on-insulator surface semiconductor layer having a different second dopant polarity and different second crystallographic orientation. The epitaxial surface semiconductor layer has a first edge that has a defect and an adjoining second edge absent a defect. Located within the epitaxial surface semiconductor layer is a first device having a first gate perpendicular to the first edge and a second device having a second gate perpendicular to the second edge. The first device may include a performance sensitive logic device and the second device may include a yield sensitive memory device.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Shreesh Narasimha, Paul David Agnello, Xiaomeng Chen, Judson R. Holt, Mukesh Vijay Khare, Byeong Y. Kim, Devendra K. Sadana
  • Patent number: 7955909
    Abstract: A semiconductor structure is described. The structure includes a transistor formed in a semiconductor substrate, the semiconductor substrate having a semiconductor-on-insulator (SOI) layer; a channel associated with the transistor and formed on a first portion of the SOI layer; and a source/drain region associated with the transistor and formed in a second portion of the SOI layer and in a recess at each end of the channel, where the second portion of the SOI layer is substantially thicker than the first portion of the SOI layer. A method of fabricating the semiconductor structure is also described.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Junedong Lee
  • Patent number: 7947569
    Abstract: A method for producing a semiconductor including a material layer. In one embodiment a trench is produced having two opposite sidewalls and a bottom, in a semiconductor body. A foreign material layer is produced on a first one of the two sidewalls of the trench. The trench is filled by epitaxially depositing a semiconductor material onto the second one of the two sidewalls and the bottom of the trench.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: May 24, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Frank Pfirsch, Rudolf Berger, Stefan Sedlmaier, Wolfgang Lehnert, Raimund Foerg
  • Patent number: 7947566
    Abstract: A semiconductor processing method includes providing a substrate, forming a plurality of semiconductor layers in the substrate, each of the semiconductor layers being distinct and selected from different groups of semiconductor element types. The semiconductor layers include a first, second, and third semiconductor layers. The method further includes forming a plurality of lateral void gap isolation regions for isolating portions of each of the semiconductor layers from portions of the other semiconductor layers.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 24, 2011
    Assignee: International Business Machines Corporation
    Inventors: Howard Hao Chen, Louis Lu-Chen Hsu, Jack Allan Mandelman
  • Patent number: 7943414
    Abstract: An object of an embodiment of the present invention to be disclosed is to prevent oxygen from being taken in a single crystal semiconductor layer in laser irradiation even when crystallinity of the single crystal semiconductor layer is repaired by irradiation with a laser beam; and to make substantially equal or reduce an oxygen concentration in the semiconductor layer after the laser irradiation comparing before the laser irradiation. A single crystal semiconductor layer which is provided over a base substrate by bonding is irradiated with a laser beam, whereby the crystallinity of the single crystal semiconductor layer is repaired. The laser irradiation is performed under a reducing atmosphere or an inert atmosphere.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 17, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hideto Ohnuma, Junpei Momo, Shunpei Yamazaki
  • Patent number: 7944018
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: May 17, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 7923786
    Abstract: A first aspect of the present invention is a method of forming an isolation structure including: (a) providing a semiconductor substrate; (b) forming a buried N-doped region in the substrate; (c) forming a vertical trench in the substrate, the trench extending into the N-doped region; (d) removing the N-doped region to form a lateral trench communicating with and extending perpendicular to the vertical trench; and (e) at least partially filling the lateral trench and filling the vertical trench with one or more insulating materials.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: An L. Steegen, Maheswaran Surendra, Hsing-Jen Wann, Ying Zhang, Franz Zach, Robert Wong
  • Patent number: 7919829
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 5, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7910962
    Abstract: To enable driving at a high withstand voltage and a large current, increase latchup immunity, and reduce ON resistance per unit area in an IGBT, a trench constituted by an upper stage trench and a lower stage trench is formed over an entire wafer surface between an n+ emitter region and a p+ collector region, and the trench is filled with a trench-filling insulating film. Thus, a drift region for supporting the withstand voltage is folded in the depth direction of the wafer, thereby lengthening the effective drift length. An emitter-side field plate is buried in the trench-filling insulating film to block a lateral electric field generated on the emitter side of the trench-filling insulating film, and as a result, an electric field generated at a PN junction between an n? drift region and a p base region is reduced.
    Type: Grant
    Filed: April 13, 2008
    Date of Patent: March 22, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventor: Hong-fei Lu
  • Patent number: 7910423
    Abstract: A semiconductor device includes an SOI substrate, a first STI-type isolation region, a second STI-type isolation region, and an alignment mark region. The SOI substrate includes a support substrate, an insulating layer deposited on the support substrate, and a semiconductor layer which includes a thin film region and a thick film region. The thin film region includes a first semiconductor layer deposited on the support substrate, and the thick film region includes the first semiconductor layer and a second semiconductor layer deposited on a part of the first semiconductor layer. The first STI-type isolation region is disposed at the thin film region. The second STI-type isolation region is disposed at the thick film region. The alignment mark region is disposed at the thick film region. An alignment mark to be used for alignment of the second STI-type isolation region is disposed at the alignment mark region.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: March 22, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Shinji Ohara
  • Patent number: 7906829
    Abstract: A semiconductor device includes: a semiconductor substrate having a first surface and a second surface; a first insulation separation region disposed on the first surface of the semiconductor substrate; a second insulation separation region surrounded with the first insulation separation region and electrically isolated from the first insulation separation region; a semiconductor element disposed in the second insulation separation region; and an electrode connecting to the first insulation separation region for energizing and generating heat in the first insulation separation region. The first insulation separation region functions as a heater so that the semiconductor element in the second insulation separation region is locally heated.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: March 15, 2011
    Assignee: Denso Corporation
    Inventor: Akira Tai
  • Patent number: 7898052
    Abstract: A component comprising a semiconductor junction (HU) is proposed which is formed from crystalline doped semiconductor layers. A semiconductor circuit (IC) is formed on the surface of the component, and a diode is formed internally and directly below the circuit. Integrated circuit and diode are connected to one another and formed and integrated diode component, in particular a photodiode array.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: March 1, 2011
    Assignee: Austriamicrosystems AG
    Inventors: Anton Prantl, Franz Schrank, Rainer Stowasser
  • Patent number: 7892901
    Abstract: A silicon-on-insulator semiconductor device which includes a substrate; an insulator layer overlying the substrate; a plurality of strained silicon islands overlying the insulator layer, the strained silicon islands are isolated from each other by mesa isolation; and a plurality of transistors formed on the strained silicon islands. A method for fabricating the silicon-on-insulator semiconductor device is further disclosed.
    Type: Grant
    Filed: November 25, 2006
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yee-Chia Yeo, Chenming Hu
  • Patent number: 7888197
    Abstract: A method is provided for fabricating a semiconductor-on-insulator (“SOI”) substrate. In such method an SOI substrate is formed to include (i) an SOI layer of monocrystalline silicon separated from (ii) a bulk semiconductor layer by (iii) a buried oxide (“BOX”) layer including a layer of doped silicate glass. A sacrificial stressed layer is deposited onto the SOI substrate to overlie the SOI layer. Trenches are then etched through the sacrificial stressed layer and into the SOI layer. The SOI substrate is heated with the sacrificial stressed layer sufficiently to cause the glass layer to soften and the sacrificial stressed layer to relax, to thereby apply a stress to the SOI layer to form a stressed SOI layer. The trenches in the stressed SOI layer are then filled with a dielectric material to form trench isolation regions contacting peripheral edges of the stressed SOI layer, the trench isolation regions extending downwardly from a major surface of the stressed SOI layer towards the BOX layer.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: February 15, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, William K. Henson, Yaocheng Liu