Three-dimensional Integrated Circuits Stacked In Different Levels (epo) Patents (Class 257/E21.614)
  • Patent number: 7589375
    Abstract: A non-volatile memory device includes a semiconductor substrate including a cell array region and a peripheral circuit region. A first cell unit is on the semiconductor substrate in the cell array region, and a cell insulating layer is on the first cell unit. A first active body layer is in the cell insulating layer and over the first cell unit, and a second cell unit is on the first active body layer. The device further includes a peripheral transistor on the semiconductor substrate in the peripheral circuit region. The peripheral transistor has a gate pattern and source/drain regions, and a metal silicide layer is on the gate pattern and/or on the source/drain regions of the peripheral transistor. A peripheral insulating layer is on the metal silicide layer and the peripheral transistor, and an etching protection layer is between the cell insulating layer and the peripheral insulating layer and between the metal silicide layer and the peripheral insulating layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Jang, Soon-Moon Jung, Jong-Hyuk Kim, Young-Seop Rah, Han-Byung Park
  • Patent number: 7563645
    Abstract: An electronic package of the kind having a folded substrate is provided. The substrate is configured so that a stress concentration is created where folding is desired. In the present example, the stress concentration is created with first a resilient metal ground layer that resists bending and has an edge that promotes the creation of a stress concentration in a flexible layer at or near the edge. A second metal ground layer resists bending in another portion of the substrate, and also has an edge creating a stress concentration in a different area of the flexible layer. The portions of the substrate having the first and second resilient metal ground layers can be folded over one another with substantially no bending in these portions, while a fold portion between the edges bends to allow for folding of the substrate.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: July 21, 2009
    Assignee: Intel Corporation
    Inventor: Edward W. Jaeck
  • Patent number: 7545049
    Abstract: An electronic parts packaging structure of the present invention includes a wiring substrate having a wiring pattern, a first insulating film which is formed on the wiring substrate and which has an opening portion in a packaging area where an electronic parts is mounted, the electronic parts having a connection terminal flip-chip mounted on the wiring pattern exposed in the opening portion of the first insulating film, a second insulating film for covering the electronic parts, a via hole formed in a predetermined portion of the first and second insulating films on the wiring pattern, and an upper wiring pattern formed on the second insulating film and connected to the wiring pattern through the via hole.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: June 9, 2009
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Masahiro Sunohara, Kei Murayama, Toshinori Koyama, Kazutaka Kobayashi, Mitsutoshi Higashi
  • Patent number: 7545029
    Abstract: A stacked microelectronic assembly includes a base substrate having conductive elements projecting from a bottom surface thereof and a first microelectronic subassembly underlying a bottom surface of the base substrate. The first microelectronic subassembly includes a first dielectric substrate, a first microelectronic element connected with the first dielectric substrate and first conductive posts projecting from the first dielectric substrate toward the bottom surface of the base substrate for electrically interconnecting the first microelectronic element and the base substrate. The assembly also has a second microelectronic subassembly overlying the base substrate. The second microelectronic subassembly includes a second dielectric substrate, a second microelectronic element connected with the second dielectric substrate and second conductive posts projecting toward the top surface of the base substrate for electrically interconnecting the second microelectronic element and the base substrate.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: June 9, 2009
    Assignee: Tessera, Inc.
    Inventors: Stuart E. Wilson, Ronald Green, Richard Dewitt Crisp, Giles Humpston
  • Patent number: 7528477
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7507614
    Abstract: The present invention relates to an image sensor applied with a device isolation technique for reducing dark signals and a fabrication method thereof. The image sensor includes: a logic unit; and a light collection unit in which a plurality of photodiodes is formed, wherein the photodiodes are isolated from each other by a field ion-implantation region formed under a surface of a substrate and an insulation layer formed on the surface of the substrate.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: March 24, 2009
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Jae-Young Rim, Ho-Soon Ko
  • Patent number: 7494846
    Abstract: A semiconductor structure includes a first semiconductor die and a second semiconductor die identical to the first semiconductor die. The first semiconductor die includes a first identification circuit; and a first plurality of input/output (I/O) pads on the surface of the first semiconductor die. The second semiconductor die includes a second identification circuit, wherein the first and the second identification circuits are programmed differently from each other; and a second plurality of I/O pads on the surface of the second semiconductor die. Each of the first plurality of I/O pads is vertically aligned to and connected to one of the respective second plurality of I/O pads. The second semiconductor die is vertically aligned to and bonded on the first semiconductor die.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: February 24, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Shun Hsu, Louis Liu, Clinton Chao, Mark Shane Peng
  • Patent number: 7495276
    Abstract: A radio frequency arrangement is disclosed, having a first semiconductor body with an integrated circuit formed therein and also with first and second terminal locations. A second semiconductor body with a charge store integrated therein and with a first and second contact locations is arranged with its contact locations mutually facing the terminal locations of the first semiconductor body. The first terminal and the first contact location and also the second terminal and the second contact location are coupled to one another in order thus to form an integrated circuit and also a charge store for supplying the integrated circuit. Realizing the integrated circuit and the charge store separately enables a simple and cost-effective manufacturing procedure for the individual components.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: February 24, 2009
    Assignee: Infineon Technologies AG
    Inventor: Josef Fenk
  • Patent number: 7473581
    Abstract: A method of wafer stacking packaging. The method comprises providing a die array including a plurality of singulated first dies cut from a first wafer; providing a second wafer with inseparate the second dies and an adhesive layer on an active surface thereof; pre-cutting the second wafer to a specified depth from the active surface thereof; stacking the active surface of second wafer onto a backside of the first dies, wherein each of the second dies only stack on one of the first dies; thinning the second wafer from the backside thereof to form a plurality of singulated the second dies stacked on the first dies simultaneously.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: January 6, 2009
    Assignee: Advanced Semiconductor Engineering Inc.
    Inventor: Su Tao
  • Publication number: 20080280416
    Abstract: Techniques for the fabrication of semiconductor devices are provided. In one aspect, a layer transfer structure is provided. The layer transfer structure comprises a carrier substrate having a porous region with a tuned porosity in combination with an implanted species defining a separation plane therein. In another aspect, a method of forming a layer transfer structure is provided. In yet another aspect, a method of forming a three dimensional integrated structure is provided.
    Type: Application
    Filed: July 28, 2008
    Publication date: November 13, 2008
    Inventors: Stephen W. Bedell, Keith Edward Fogel, Bruce Kenneth Furman, Sampath Purushothaman, Devendra K. Sadana, Anna Wanda Topol
  • Patent number: 7439594
    Abstract: A stacked non-volatile memory device uses amorphous silicon based thin film transistors stacked vertically. Each layer of transistors or cells is formed from a deposited a-Si channel region layer having a predetermined concentration of carbon to form a carbon rich silicon film or silicon carbide film, depending on the carbon content. The dielectric stack is formed over the channel region layer. In one embodiment, the dielectric stack is an ONO structure. The control gate is formed over the dielectric stack. This structure is repeated vertically to form the stacked structure. In one embodiment, the carbon content of the channel region layer is reduced for each subsequently formed layer.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: October 21, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 7410884
    Abstract: Backside connections for 3D integrated circuits and methods to fabricate thereof are described. A stack of a first wafer over a second wafer that has a substrate of the first wafer on top of the stack, is formed. The substrate of the first wafer is thinned. A first dielectric layer is deposited on the thinned substrate. First vias extending through the substrate to the first wafer are formed in the first dielectric layer. A conductive layer is deposited in the first vias and on the first dielectric layer to form thick conductive lines. Second dielectric layer is formed on the conductive layer. Second vias extending to the conductive lines are formed in the second dielectric layer. Conductive bumps extending into the second vias and offsetting the first vias are formed on the second dielectric layer.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: August 12, 2008
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Sarah E. Kim, Patrick R. Morrow
  • Publication number: 20080145994
    Abstract: A method is described for isotropic or nearly isotropic shallow doping of a non-planar surface exposed in a void. The results of ion implantation, a common doping method, are inherently planar. Some fabrication methods and devices may require doping a surface of a non-planar feature exposed in a void, such as a trench. The feature is doped by flowing a gas which will provide the dopant over the exposed surfaces, or by exposing the surfaces to a plasma including the dopant. The feature may be a patterned feature, including a top surface and a sidewall. In a preferred embodiment, a semiconductor feature having a top surface and a sidewall is exposed in a trench formed in a dielectric, and a gas providing a p-type or n-type dopant is flowed in the trench, providing a p-type or n-type dopant to the semiconductor.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 19, 2008
    Inventor: S. Brad Herner
  • Publication number: 20080119027
    Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 22, 2008
    Inventors: Vivek Subramanian, James M. Cleeves
  • Patent number: 7375420
    Abstract: A large area transducer array comprising a substrate having a front side and a backside, a plurality of transducers disposed on the front side of the substrate and patterned in the form of a two-dimensional transducer array in the X-Y plane, a plurality of connectors disposed on the backside of the substrate where the connectors are electrically coupled to the transducer elements. Further, a stacked transducer array comprising an electronic device disposed in a first layer, a substrate including a front side and a backside, an electrical interconnect layer disposed on the substrate and a plurality of transducers disposed in a third layer where the transducers are electrically coupled to the electronic device disposed in the first layer.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: May 20, 2008
    Assignee: General Electric Company
    Inventors: Rayette Ann Fisher, William Edward Burdick, Jr., James Wilson Rose
  • Patent number: 7375419
    Abstract: A stacked multiple offset chip device is formed of two or more dice of similar dimensions and bond pad arrangement, in which bond pads are located in fields along less than three edges of the active surface of each die. A first die is attached to a substrate and subsequent die or dice are attached in a vertical sequence atop the first die, each in an offset configuration from the next lower die to expose the bond pads thereof for conductive bonding to metallization of the substrate. The stacked multiple offset chip device permits a plurality of dice to be stacked in a maximum density low profile device. A particularly useful application is the formation of stacked mass storage flash memory package.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: May 20, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Leonard E. Mess, Jerry M. Brooks, David J. Corisis
  • Patent number: 7368337
    Abstract: A semiconductor device and method of manufacturing the same are disclosed. An example semiconductor device includes a semiconductor substrate having a first well, a first source electrode, a drain electrode, and a first gate insulation layer formed on the semiconductor substrate, and a gate electrode formed on the first gate insulation layer. The example device also includes a second gate insulation layer formed on the gate electrode, a first source region formed on the semiconductor substrate between the first source electrode and the first gate insulation layer, a first drain region formed on the semiconductor substrate between the drain electrode and the first gate insulation layer, an insulating layer formed on the first source electrode, on the first source region, and on the first drain region, and a second source electrode formed on the insulating layer over the first source electrode.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: May 6, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang-Hyun Ban
  • Patent number: 7355271
    Abstract: A three-dimensional package consisting of a plurality of folded integrated circuit chips (100, 110, 120) is described wherein at least one chip provides interconnect pathways for electrical connection to additional chips of the stack, and at least one chip (130) is provided with additional interconnect wiring to a substrate (500), package or printed circuit board. Further described, is a method of providing a flexible arrangement of interconnected chips that are folded over into a three-dimensional arrangements to consume less aerial space when mounted on a substrate, second-level package or printed circuit board.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Richard P. Volant, Kevin S. Petrarca, George F. Walker
  • Patent number: 7355273
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy
  • Patent number: 7354809
    Abstract: This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: April 8, 2008
    Assignee: Wisconsin Alumi Research Foundation
    Inventors: Hao-Chih Yuan, Guogong Wang, Mark A. Eriksson, Paul G. Evans, Max G. Lagally, Zhenqiang Ma
  • Patent number: 7345370
    Abstract: Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: March 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Patent number: 7335974
    Abstract: A multi stack packaging chip and a method of manufacturing the chip are provided. The method includes forming at least one second circuit element on a first wafer; forming a second wafer having a cavity and a one third circuit element formed opposite to the cavity; forming a solder on the second wafer; and combining the second wafer with the first wafer so that the second circuit element and the cavity correspond. The chip includes a flip-chip packaged chip in which a first circuit element is packaged using a first wafer; a second circuit element formed on the first wafer; a second wafer having a cavity and combined with the first wafer so that the cavity and the second circuit element correspond; a third circuit element formed on the second wafer; and a solder formed on the second wafer, the solder electrically coupling the second wafer to a packaging substrate.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 26, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-sik Hwang, Woon-bae Kim, Chang-youl Moon, Moon-chul Lee, Kyu-dong Jung
  • Patent number: 7335558
    Abstract: A method of manufacturing a NAND flash memory device, including the steps of providing a semiconductor substrate in which a cell region and a select transistor region are defined; simultaneously forming a plurality of cell gates on the semiconductor substrate of the cell region and forming selection gates on the semiconductor substrate of the select transistor region; forming an oxide film on the entire structure and then forming a nitride film; etching the nitride film so that the nitride film remains only between the selection gates and adjacent edge cell gates; and, blanket etching the oxide film to form spacers on sidewalls of the selection gates. Accordingly, uniform threshold voltage distributions can be secured, and process margins for a spacer etch target can be secured when etching the spacers. Furthermore, the nitride film partially remains between the edge cell gates and the selection gates even after the gate spacers are etched.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 26, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Patent number: 7312487
    Abstract: A three dimensional (3D) integrated circuit (IC), 3D IC chip and method of fabricating a 3D IC chip. The chip includes multiple layers of circuits, e.g., silicon insulator (SOI) CMOS IC layers, each including circuit elements. The layers may be formed in parallel and one layer attached to another to form a laminated 3D chip.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: December 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Syed M. Alam, Ibrahim M. Elfadel, Kathryn W. Guarini, Meikei Ieong, Prabhakar N. Kudva, David S. Kung, Mark A. Lavin, Arifur Rahman
  • Publication number: 20070290300
    Abstract: Herein disclosed a semiconductor device in which a semiconductor chip is mounted over a substrate, the device including a plurality of through-interconnects configured to be formed inside each of through-holes that penetrate the substrate and be led from the semiconductor chip to a face of the substrate on an opposite side of the semiconductor chip.
    Type: Application
    Filed: April 2, 2007
    Publication date: December 20, 2007
    Inventor: Masaru Kawakami
  • Patent number: 7304375
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 4, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Suan Jeung Boon, Yong Poo Chia, Siu Waf Low, Meow Koon Eng, Swee Kwang Chua, Shuang Wu Huang, Yong Loo Neo, Wei Zhou
  • Patent number: 7298038
    Abstract: An integrated circuit package system including a leadframe having an aperture provided therein and an integrated circuit package mounted to the leadframe over or under the aperture. A die is mounted within the aperture to the integrated circuit package and the die includes a plurality of the die.
    Type: Grant
    Filed: February 25, 2006
    Date of Patent: November 20, 2007
    Assignee: Stats Chippac Ltd.
    Inventors: Dario S. Filoteo, Jr., Tsz Yin Ho
  • Patent number: 7298037
    Abstract: A stacked integrated circuit package-in-package system is provided forming a first integrated circuit spacer package including a mold compound with a recess provided therein, stacking the first integrated circuit spacer package on an integrated circuit die on a substrate with the recess positioned therebetween, and attaching a first electrical interconnect extending from the recess and connected between the integrated circuit die and the substrate.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: November 20, 2007
    Assignee: Stats Chippac Ltd.
    Inventors: Choong Bin Yim, Sungmin Song, SeongMin Lee, Jaehyun Lim, Joungin Yang, DongSam Park
  • Patent number: 7262506
    Abstract: A stacked multiple offset chip device is formed of two or more dice of similar dimensions and bond pad arrangement, in which bond pads are located in fields along less than three edges of the active surface of each die. A first die is attached to a substrate and subsequent die or dice are attached in a vertical sequence atop the first die, each in an offset configuration from the next lower die to expose the bond pads thereof for conductive bonding to metallization of the substrate. The multiple chip device permits a plurality of dice to be stacked in a maximum density low profile device. A particularly useful application is the formation of stacked mass storage flash memory package.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: August 28, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Leonard E. Mess, Jerry M. Brooks, David J. Corisis
  • Patent number: 7247933
    Abstract: A method and apparatus for forming a multiple semiconductor die assembly (200, 300, 400) having a thin profile are presented. The semiconductor die assembly (200, 300, 400) comprises a plurality of die packages (100), with each die package (100) including a lead frame (10) having a plurality of leads (11) each having a down set portion (101) extending from (14). A semiconductor die (30) is disposed in a central region (12) of the lead frame (10) and is electrically connected (11). An encapsulant (50) is disposed in the central region (12) and covers to the semiconductor die (30) and a portion (11). The first surface (14) of the leads (11) and a first surface (34) of the semiconductor die (30) are substanial exposed from the encapsulant (50). The first surface (34) of the semiconductor die (30) and the down set portions (101) form a cavity (102).
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: July 24, 2007
    Assignee: Advanced Interconnect Technologies Limited
    Inventors: Frank J. Juskey, Daniel K. Lau
  • Patent number: 7211488
    Abstract: The present invention relates to a method of forming an interlayer dielectric film in a semiconductor device. More particularly, the present invention selectively forms an insulating film spacer only at a region where a plug is formed between metal lines and removes the insulating film spacer at a region where the plug is not formed to lower the aspect ratio between the metal lines, in a process of burying an insulating material between the metal lines to electrically insulate them. Therefore, the present invention can easily bury the insulating material even between the metal lines having a narrow gap without voids.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 1, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ga Won Lee
  • Patent number: 7211472
    Abstract: A method for producing a multi-chip module having application of at least one contact elevation onto a substrate, application and patterning of a rewiring device onto the substrate and the at least one contact elevation with provision of a contact device on the at least one contact elevation, application of a semiconductor chip onto the substrate with electrical contact-connection of the rewiring device; application of an encapsulating device that is not electrically conductive onto the semiconductor chip, the substrate, the rewiring device and the at least one contact elevation, the contact device on the at least one contact elevation at least touching a first surface of the encapsulating device; and repetition at least once of at least the first two steps, the first surface of the encapsulating device serving as a substrate and the correspondingly produced rewiring device making electrical contact with the contact device of the at least one contact elevation of the underlying plane.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: May 1, 2007
    Assignee: Infineon Technologies AG
    Inventors: Harry Hedler, Roland Irsigler
  • Patent number: 7157787
    Abstract: A method of vertically stacking wafers is provided to form three-dimensional (3D) wafer stack. Such method comprising: selectively depositing a plurality of metallic lines on opposing surfaces of adjacent wafers; bonding the adjacent wafers, via the metallic lines, to establish electrical connections between active devices on vertically stacked wafers; and forming one or more vias to establish electrical connections between the active devices on the vertically stacked wafers and an external interconnect. Metal bonding areas on opposing surfaces of the adjacent wafers can be increased by using one or more dummy vias, tapered vias, or incorporating an existing copper (Cu) dual damascene process.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: January 2, 2007
    Assignee: Intel Corporation
    Inventors: Sarah E. Kim, R. Scott List, Scot A. Kellar
  • Publication number: 20060249735
    Abstract: There is provided a monolithic three dimensional TFT mask ROM array. The array includes a plurality of device levels. Each of the plurality of device levels contains a first set of enabled TFTs and a second set of partially or totally disabled TFTs.
    Type: Application
    Filed: July 12, 2006
    Publication date: November 9, 2006
    Inventors: Andrew Walker, Christopher Petti
  • Patent number: 7126212
    Abstract: A device integration method and integrated device. The method may include the steps of directly bonding a semiconductor device having a substrate to an element; and removing a portion of the substrate to expose a remaining portion of the semiconductor device after bonding. The element may include one of a substrate used for thermal spreading, impedance matching or for RF isolation, an antenna, and a matching network comprised of passive elements. A second thermal spreading substrate may be bonded to the remaining portion of the semiconductor device. Interconnections may be made through the first or second substrates. The method may also include bonding a plurality of semiconductor devices to an element, and the element may have recesses in which the semiconductor devices are disposed.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: October 24, 2006
    Assignee: Ziptronix, Inc.
    Inventors: Paul M. Enquist, Gaius Fountain