With Particular Manufacturing Method Of Gate Sidewall Spacers, E.g., Double Spacers, Particular Spacer Material Or Shape (epo) Patents (Class 257/E21.626)
-
Patent number: 10762502Abstract: Example methods and systems describe transaction cards with one or more light sources to provide a status of a transaction to a cardholder. For example, a transaction card may determine whether a transaction is a duplicate of a prior transaction, and, if the transaction card determines that the transaction is a duplicate of a prior transaction, the transaction card may provide an alert to the cardholder that indicates that the cardholder has been charged twice for a single transaction.Type: GrantFiled: October 10, 2019Date of Patent: September 1, 2020Assignee: Capital One Services, LLCInventors: Shena Yoshida, Christopher Ribetti
-
Patent number: 10395995Abstract: A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.Type: GrantFiled: April 18, 2018Date of Patent: August 27, 2019Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.Inventors: Balasubramanian Pranatharthiharan, Ruilong Xie, Chun-Chen Yeh
-
Patent number: 10090397Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a gate stack positioned over the semiconductor substrate. The semiconductor device structure includes spacers positioned over sidewalls of the gate stack. The semiconductor device structure includes a first protective layer positioned between the gate stack and the spacers and between the spacers and the semiconductor substrate. The semiconductor device structure includes a second protective layer positioned between the spacers and the first protective layer. The first protective layer and the second protective layer include different materials.Type: GrantFiled: August 29, 2014Date of Patent: October 2, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTDInventors: Ming-Chang Lee, Chia-Der Chang, Chih-Hung Lu, Chung-Tsun Sun, Chung-Wei Hung
-
Patent number: 10026818Abstract: Disclosed are a field effect transistor (FET) and a FET formation method. In the FET, an interlayer dielectric (ILD) layer is positioned laterally adjacent to a sidewall spacer of a replacement metal gate and a cap layer covers the ILD layer, the sidewall spacer and the gate. However, during processing after the gate is formed but before the cap layer is formed, the ILD layer is polished and then recessed such that the top surface of the ILD layer is lower than the top surfaces of the sidewall spacer and the gate. The cap layer is then deposited such that the cap layer is, not only above the top surfaces of the ILD layer, sidewall spacer and gate, but also positioned laterally adjacent to a vertical surface of the sidewall spacer. Recessing the ILD layer prevents shorts between the gate and subsequently formed contacts to the FET source/drain regions.Type: GrantFiled: January 19, 2017Date of Patent: July 17, 2018Assignee: GLOBALFOUNDRIES INC.Inventors: Sipeng Gu, Xusheng Wu, Wenhe Lin, Jeffrey Chee
-
Patent number: 9997418Abstract: A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.Type: GrantFiled: August 18, 2016Date of Patent: June 12, 2018Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.Inventors: Balasubramanian Pranatharthiharan, Ruilong Xie, Chun-Chen Yeh
-
Patent number: 9984934Abstract: An insulating film and another insulating film are formed over a semiconductor substrate in that order to cover first, second, and third gate electrodes. The another insulating film is etched back to form sidewall spacers over side surfaces of the insulating film. Then, the sidewall spacers over the side surfaces of the insulating films corresponding to the sidewalls of the first and second gate electrodes are removed to leave the sidewall spacers over the side surfaces of the insulating film corresponding to the sidewalls of the third gate electrode. Then, the sidewall spacers and the insulating films are etched back, so that the sidewall spacers are formed of the insulating film over the sidewalls of the first, second, and third gate electrodes.Type: GrantFiled: March 30, 2017Date of Patent: May 29, 2018Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Koji Maekawa, Tatsuyoshi Mihara
-
Patent number: 9640440Abstract: An insulating film and another insulating film are formed over a semiconductor substrate in that order to cover first, second, and third gate electrodes. The another insulating film is etched back to form sidewall spacers over side surfaces of the insulating film. Then, the sidewall spacers over the side surfaces of the insulating films corresponding to the sidewalls of the first and second gate electrodes are removed to leave the sidewall spacers over the side surfaces of the insulating film corresponding to the sidewalls of the third gate electrode. Then, the sidewall spacers and the insulating films are etched back, so that the sidewall spacers are formed of the insulating film over the sidewalls of the first, second, and third gate electrodes.Type: GrantFiled: April 4, 2016Date of Patent: May 2, 2017Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Koji Maekawa, Tatsuyoshi Mihara
-
Patent number: 9368598Abstract: An insulating film and another insulating film are formed over a semiconductor substrate in that order to cover first, second, and third gate electrodes. The another insulating film is etched back to form sidewall spacers over side surfaces of the insulating film. Then, the sidewall spacers over the side surfaces of the insulating films corresponding to the sidewalls of the first and second gate electrodes are removed to leave the sidewall spacers over the side surfaces of the insulating film corresponding to the sidewalls of the third gate electrode. Then, the sidewall spacers and the insulating films are etched back, so that the sidewall spacers are formed of the insulating film over the sidewalls of the first, second, and third gate electrodes.Type: GrantFiled: December 4, 2014Date of Patent: June 14, 2016Assignee: RENESAS ELECTRONICS CORPORATIONInventors: Koji Maekawa, Tatsuyoshi Mihara
-
Patent number: 9356014Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.Type: GrantFiled: October 24, 2014Date of Patent: May 31, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
-
Patent number: 9029214Abstract: Integrated circuits and methods for fabricating integrated circuits are provided herein. In an embodiment, a method for fabricating an integrated circuit includes forming over a semiconductor substrate a gate structure. The method further includes depositing a non-conformal spacer material around the gate structure. A protection mask is formed over the non-conformal spacer material. The method etches the non-conformal spacer material and protection mask to form a salicidation spacer. Further, a self-aligned silicide contact is formed adjacent the salicidation spacer.Type: GrantFiled: January 14, 2013Date of Patent: May 12, 2015Assignee: GLOBALFOUNDRIES, Inc.Inventors: Jan Hoentschel, Stefan Flachowsky, Nicolas Sassiat, Ran Yan
-
Patent number: 8987103Abstract: In advanced semiconductor devices, spacer elements may be formed on the basis of a multi-station deposition technique, wherein a certain degree of variability of the various sub-layers of the spacer materials, such as a different thickness, may be applied in order to enhance etch conditions during the subsequent anisotropic etch process. Consequently, spacer elements of improved shape may result in superior deposition conditions when using a stress-inducing dielectric material. Consequently, yield losses due to contact failures in densely packed device areas, such as static RAM areas, may be reduced.Type: GrantFiled: May 10, 2010Date of Patent: March 24, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Markus Lenski, Kerstin Ruttloff, Volker Jaschke, Frank Seliger, Ralf Otterbach
-
Patent number: 8975704Abstract: A HKMG device with PMOS eSiGe source/drain regions is provided. Embodiments include forming first and second HKMG gate stacks on a substrate, each including a SiO2 cap, forming extension regions at opposite sides of the first HKMG gate stack, forming a nitride liner and oxide spacers on each side of HKMG gate stack; forming a hardmask over the second HKMG gate stack; forming eSiGe at opposite sides of the first HKMG gate stack, removing the hardmask, forming a conformal liner and nitride spacers on the oxide spacers of each of the first and second HKMG gate stacks, and forming deep source/drain regions at opposite sides of the second HKMG gate stack.Type: GrantFiled: March 4, 2014Date of Patent: March 10, 2015Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.Inventors: Jan Hoentschel, Shiang Yang Ong, Stefan Flachowsky, Thilo Scheiper
-
Patent number: 8946908Abstract: Disclosed is a semiconductor structure which includes a semiconductor substrate and a wiring layer on the semiconductor substrate. The wiring layer includes a plurality of fin-like structures comprising a first metal; a first layer of a second metal on each of the plurality of fin-like structures wherein the first metal is different from the second metal, the first layer of the second metal having a height less than each of the plurality of fin-like structures; and an interlayer dielectric (ILD) covering the plurality of fin-like structures and the first layer of the second metal except for exposed edges of the plurality of fin-like structures at predetermined locations, and at locations other than the predetermined locations, the height of the plurality of fin-like structures has been reduced so as to be covered by the ILD.Type: GrantFiled: August 7, 2013Date of Patent: February 3, 2015Assignee: International Business Machines CorporationInventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
-
Patent number: 8916428Abstract: A semiconductor device having dislocations and a method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having an isolation feature therein and two gate stacks overlying the substrate, wherein one of the gate stacks is atop the isolation feature. The method further includes performing a pre-amorphous implantation process on the substrate. The method further includes forming spacers adjoining sidewalls of the gate stacks, wherein at least one of the spacers extends beyond an edge the isolation feature. The method further includes forming a stress film over the substrate. The method also includes performing an annealing process on the substrate and the stress film.Type: GrantFiled: January 5, 2012Date of Patent: December 23, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Tsan-Chun Wang, Chun Hsiung Tsai
-
Patent number: 8890214Abstract: The present invention relates to a method of manufacturing sidewall spacers on a memory device. The method comprises forming sidewall spacers on a memory device having a memory array region and at least one peripheral circuit region by forming a first sidewall spacer adjacent to a word line in the memory array region and a second sidewall spacer adjacent to a transistor in the peripheral circuit region. The first sidewall spacer has a first thickness and the second sidewall spacer has a second thickness, wherein the second thickness is greater than the first thickness.Type: GrantFiled: December 22, 2011Date of Patent: November 18, 2014Assignee: Nan Ya Technology CorporationInventors: Panda Durga, Jaydip Guha, Robert Kerr
-
Patent number: 8871648Abstract: In one or more embodiments, a method is provided for forming an integrated circuit with a pattern of isolated features having a final density of isolated features that is greater than a starting density of isolated features in an integrated circuit by a multiple of two or more. The method can include forming a pattern of pillars having a density X, and forming a pattern of holes amongst the pillars, the holes having a density at least X. The pillars can be selectively removed to form a pattern of holes having a density at least 2X. In some embodiments, plugs can be formed in the pattern of holes, such as by epitaxial deposition on the substrate, in order to provide a pattern of pillars having a density 2X. In other embodiments, the pattern of holes can be transferred to the substrate by etching.Type: GrantFiled: November 30, 2012Date of Patent: October 28, 2014Assignee: Micron Technology, Inc.Inventors: Baosuo Zhou, Gurtej S. Sandhu, Ardavan Niroomand
-
Patent number: 8871625Abstract: A method of fabricating a spacer structure which includes forming a dummy gate structure comprising a top surface and sidewall surfaces over a substrate and forming a spacer structure over the sidewall surfaces. Forming the spacer structure includes depositing a first oxygen-sealing layer on the dummy gate structure and removing a portion of the first oxygen-sealing layer on the top surface of the dummy gate structure, whereby the first oxygen-sealing layer remains on the sidewall surfaces. Forming the spacer structure further includes depositing an oxygen-containing layer on the first oxygen-sealing layer and the top surface of the dummy gate structure. Forming the spacer structure further includes depositing a second oxygen-sealing layer on the oxygen-containing layer and removing a portion of the second oxygen-sealing layer over the top surface of the dummy gate structure. Forming the spacer structure further includes thinning the second oxygen-sealing layer.Type: GrantFiled: May 2, 2013Date of Patent: October 28, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jin-Aun Ng, Bao-Ru Young, Harry-Hak-Lay Chuang, Ryan Chia-Jen Chen
-
Patent number: 8841193Abstract: A semiconductor structure including a substrate and a gate structure disposed on the substrate is disclosed. The gate structure includes a gate dielectric layer disposed on the substrate, a gate material layer disposed on the gate dielectric layer and an outer spacer with a rectangular cross section. The top surface of the outer spacer is lower than the top surface of the gate material layer.Type: GrantFiled: June 26, 2013Date of Patent: September 23, 2014Assignee: United Microelectronics Corp.Inventors: Ted Ming-Lang Guo, Chin-Cheng Chien, Shu-Yen Chan, Ling-Chun Chou, Tsung-Hung Chang, Chun-Yuan Wu
-
Patent number: 8828817Abstract: A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.Type: GrantFiled: January 23, 2012Date of Patent: September 9, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Yuan Lu, Li-Ping Huang, Han-Ting Tsai, Wei-Ching Wang, Ming-Shuan Li, Hsueh-Jen Yang, Kuan-Chung Chen
-
Patent number: 8822299Abstract: A method of fabricating a semiconductor device includes forming a gate dielectric layer comprising an oxide, and at least one conductive layer on a substrate, forming a mask on the conductive layer and patterning the at least one conductive layer by etching the at least one conductive layer using the mask as an etch mask to thereby form a gate electrode, wherein the oxide of the gate dielectric layer and the material of the at least one conductive layer are selected such that a byproduct of the etching of the at least one conductive layer, formed on the mask during the etching of the at least one conductive layer, comprises an oxide having a higher etch rate with respect to an etchant than the oxide of the gate dielectric layer.Type: GrantFiled: March 2, 2011Date of Patent: September 2, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Kwangwook Lee, Inseak Hwang
-
Patent number: 8765559Abstract: When forming sophisticated gate electrode structures, such as high-k metal gate electrode structures, an appropriate encapsulation may be achieved, while also undue material loss of a strain-inducing semiconductor material that is provided in one type of transistor may be avoided. To this end, the patterning of the protective spacer structure prior to depositing the strain-inducing semiconductor material may be achieved for each type of transistor on the basis of the same process flow, while, after the deposition of the strain-inducing semiconductor material, an etch stop layer may be provided so as to preserve integrity of the active regions.Type: GrantFiled: January 25, 2012Date of Patent: July 1, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stephan Kronholz, Gunda Beernink, Markus Lenski, Frank Seliger, Frank Richter
-
Patent number: 8754464Abstract: Non-volatile memory devices and methods of manufacturing the same are disclosed. In a non-volatile memory device, widths of a metal gate and an upper portion of a base gate in a gate electrode are less than the width of a hard mask pattern disposed on the metal gate. First and second protection spacers are disposed on opposing sidewalls of the metal gate and on opposing sidewalls of the upper portion of the base gate, respectively.Type: GrantFiled: May 10, 2012Date of Patent: June 17, 2014Assignee: Samsung Electronics Co., Ltd.Inventor: Jae-Hwang Sim
-
Patent number: 8716095Abstract: A manufacturing method of a gate stack with sacrificial oxygen-scavenging metal spacers includes: forming a gate stack structure consisting of an interfacial oxide layer, a high-K dielectric layer and a metal gate electrode, on a semiconductor substrate; conformally depositing a metal layer covering the semiconductor substrate and the gate stack structure; and selectively etching the metal layer to remove the portions of the metal layer covering the top surface of the gate stack structure and the semiconductor substrate, so as to only keep the sacrificial oxygen-scavenging metal spacers surrounding the gate stack structure in the outer periphery of the gate stack structure. A semiconductor device manufactured by this process.Type: GrantFiled: September 19, 2010Date of Patent: May 6, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huicai Zhong, Zhijiong Luo, Qingqing Liang
-
Patent number: 8716117Abstract: A semiconductor device and a method of forming the semiconductor device includes: forming gate electrodes on a semiconductor substrate and forming spacers on both side surfaces of the gate electrodes; forming capping patterns on the gate electrodes; and forming a metal contact between the gate electrodes. Each of the capping patterns is formed to have a width greater than a width of each of the gate electrodes.Type: GrantFiled: May 13, 2011Date of Patent: May 6, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Myeongcheol Kim, Sooyeon Jeong, Joon Goo Hong, Dohyoung Kim, Yongjin Kim, Jin Wook Lee, Yoonhae Kim
-
Patent number: 8697557Abstract: Disclosed herein is a method of forming a semiconductor device. In one example, the method includes forming a gate electrode structure above a semiconducting substrate, wherein the gate electrode structure includes a gate insulation layer, a gate electrode, a first sidewall spacer positioned proximate the gate electrode, and a gate cap layer, and forming an etch stop layer above the gate cap layer and above the substrate proximate the gate electrode structure. The method further includes forming a layer of spacer material above the etch stop layer, and performing at least one first planarization process to remove the portion of said layer of spacer material positioned above the gate electrode, the portion of the etch stop layer positioned above the gate electrode and the gate cap layer.Type: GrantFiled: June 7, 2011Date of Patent: April 15, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Peter Baars, Till Schloesser, Frank Jakubowski
-
Patent number: 8698216Abstract: The present disclosure provides a fabricating method of a semiconductor chip which includes the following steps. First, a substrate is provided. The substrate defines a memory unit region and a peripheral logic region. Then, a first spacer is formed around a stack structure of the memory unit region. The first space includes a first silicon oxide layer and the first silicon oxide layer directly contacts with the stack structure. After that, a silicon nitride layer is formed on both the first spacer and the peripheral logic region. Finally, the additional silicon nitride layer on the first spacer is removed but portions of the additional silicon nitride layer around gate structures in the peripheral logic region are remained.Type: GrantFiled: April 20, 2012Date of Patent: April 15, 2014Assignee: United Microelectronics CorporationInventor: Ching-Hung Kao
-
Patent number: 8680602Abstract: A semiconductor device includes a substrate including a first region and a second region, a gate group disposed in the first region of the substrate, the gate group including a plurality of cell gate patterns and at least one selection gate pattern, a first gate pattern disposed in the second region of the substrate, a group spacer covering a top surface and a side surface of the gate group, the group spacer having a first inflection point, and a first pattern spacer covering a top surface and a side surface of the first gate pattern, the first pattern spacer having a second inflection point.Type: GrantFiled: March 6, 2012Date of Patent: March 25, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jae-Hwang Sim, Jae-Bok Baek
-
Patent number: 8673725Abstract: A semiconducting device with a multilayer sidewall spacer and method of forming are described. In one embodiment, the method includes providing a substrate containing a patterned structure on a surface of the substrate and depositing a first spacer layer over the patterned structure at a first substrate temperature, where the first spacer layer contains a first material. The method further includes depositing a second spacer layer over the patterned substrate at a second substrate temperature that is different from the first substrate temperature, where the first and second materials contain the same chemical elements, and the depositing steps are performed in any order. The first and second spacer layers are then etched to form the multilayer sidewall spacer on the patterned structure.Type: GrantFiled: March 31, 2010Date of Patent: March 18, 2014Assignees: Tokyo Electron Limited, International Business Machines CorporationInventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A Conti
-
Patent number: 8664102Abstract: A semiconducting device with a dual sidewall spacer and method of forming are provided. The method includes: depositing a first spacer layer over a patterned structure, the first spacer layer having a seam propagating through a thickness of the first spacer layer near an interface region of a surface of the substrate and a sidewall of the patterned structure, etching the first spacer layer to form a residual spacer at the interface region, where the residual spacer coats less than the entirety of the sidewall of the patterned structure, depositing a second spacer layer on the residual spacer and on the sidewall of the patterned structure not coated by the residual spacer, the second spacer layer being seam-free on the seam of the residual spacer, and etching the second spacer layer to form a second spacer coating the residual spacer and coating the sidewall of the patterned structure not coated by the residual spacer.Type: GrantFiled: March 31, 2010Date of Patent: March 4, 2014Assignees: Tokyo Electron Limited, International Business Machines CorporationInventors: David L. O'Meara, Anthony Dip, Aelan Mosden, Pao-Hwa Chou, Richard A Conti
-
Patent number: 8664709Abstract: A non-volatile memory including a substrate, a stacked gate structure, two doped regions and a plurality of spacers is provided. The stacked gate structure is disposed on the substrate, wherein the stacked gate structure includes a first dielectric layer, a charge storage layer, a second dielectric layer and a conductive layer in sequence from bottom to top relative to the substrate. The doped regions are disposed in the substrate at two sides of the stacked gate structure, respectively, and bottom portions of the doped regions contact with the substrate under the doped regions. The spacers are respectively disposed between each side of each of the doped regions and the substrate, and top portions of the spacers are lower than top portions of the doped regions.Type: GrantFiled: July 20, 2010Date of Patent: March 4, 2014Assignee: MACRONIX International Co., Ltd.Inventors: Shih-Guei Yan, Wen-Jer Tsai, Jyun-Siang Huang
-
Publication number: 20140042550Abstract: Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes simultaneously shielding a shielded region of a semiconductor substrate and exposing a surface of the shielded region of the semiconductor substrate. An ion implantation is performed to form implant areas in a non-shielded region of the semiconductor substrate adjacent the shielded region. Also, the semiconductor substrate is silicided to form a silicided area in the shielded region of the semiconductor substrate.Type: ApplicationFiled: August 10, 2012Publication date: February 13, 2014Applicant: GLOBALFOUNDRIES INC.Inventors: Stefan Flachowsky, Jan Hoentschel
-
Patent number: 8614469Abstract: A semiconductor device capable of improving the driving power and a manufacturing method therefor are provided. In a semiconductor device, a gate structure formed by successively stacking a gate oxide film and a silicon layer is arranged over a semiconductor substrate. An oxide film is arranged long the lateral side of the gate structure and another oxide film is arranged along the lateral side of the oxide film and the upper surface of the substrate. In the side wall oxide film comprising these oxide films, the minimum value of the thickness of the first layer along the lateral side of the gate structure is less than the thickness of the second layer along the upper surface of the substrate.Type: GrantFiled: September 6, 2012Date of Patent: December 24, 2013Assignee: Renesas Electronics CorporationInventors: Toshifumi Iwasaki, Yoshihiko Kusakabe
-
Patent number: 8603882Abstract: A method for making a dual silicide or germanide semiconductor comprises steps of providing a semiconductor substrate, forming a gate, forming source/drain regions, forming a first silicide, reducing spacers thickness and forming a second silicide. Forming a gate comprises forming an insulating layer over the semiconductor substrate, and forming the gate over the insulating layer. Forming source/drain regions comprises forming lightly doped source/drain regions in the semiconductor substrate adjacent to the insulating layer, forming spacers adjacent to the gate and over part of the lightly doped source/drain regions, and forming heavily doped source/drain regions in the semiconductor substrate. The first silicide is formed on an exposed surface of lightly and heavily doped source/drain regions. The second silicide is formed on an exposed surface of lightly doped source/drain regions. A first germanide and second germanide may replace the first silicide and the second silicide.Type: GrantFiled: May 13, 2011Date of Patent: December 10, 2013Assignee: National Applied Research LaboratoriesInventors: Szu-Hung Chen, Hung-Min Chen, Yu-Sheng Lai, Wen-Fa Wu, Fu-Liang Yang
-
Patent number: 8598005Abstract: A method and manufacture for memory device fabrication is provided. Spacer formation and junction formation is performed on both: a memory cell region in a core section of a memory device in fabrication, and a high-voltage device region in a periphery section of the memory device in fabrication. The spacer formation and junction formation on both the memory cell region and the high-voltage device region includes performing a rapid thermal anneal. After performing the spacer formation and junction formation on both the memory cell region and the high-voltage device region, spacer formation and junction formation is performed on a low-voltage device region in the periphery section.Type: GrantFiled: July 18, 2011Date of Patent: December 3, 2013Assignee: Spansion LLCInventors: Simon Siu-Sing Chan, Hidehiko Shiraiwa, Chuan Lin, Lei Xue, Kenichi Ohtsuka, Angela Tai Hui
-
Patent number: 8569168Abstract: Method of forming a semiconductor structure which includes forming first conductive spacers on a semiconductor substrate; forming second conductive spacers with respect to the first conductive spacers, at least one of the second conductive spacers adjacent to and in contact with each of the first conductive spacers to form combined conductive spacers; recessing the second conductive spacers with respect to the first conductive spacers so that the first conductive spacers extend beyond the second conductive spacers; depositing an ILD to cover the first and second spacers except for an exposed edge of the first conductive spacers; patterning the exposed edges of the first conductive spacers to recess the edges of the first conductive spacers in predetermined locations to form recesses with respect to the ILD; and filling the recesses with an insulating material to leave unrecessed edges of the first conductive spacers as vias to subsequent wiring features.Type: GrantFiled: February 13, 2012Date of Patent: October 29, 2013Assignee: International Business Machines CorporationInventors: Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
-
Patent number: 8551849Abstract: Aimed at providing a highly reliable semiconductor device appropriately increased in stress at the channel region so as to improve carrier injection rate, thereby dramatically improved in transistor characteristics, and made adaptable also to recent narrower channel width, and a method of manufacturing the same, and a method of manufacturing the same, a first sidewall composed of a stress film having expandability is formed on the side faces of a gate electrode, a second sidewall composed of a film having smaller stress is formed on the first sidewall, and a semiconductor, which is a SiC layer for example, is formed as being positioned apart from the first sidewall while placing the second sidewall in between.Type: GrantFiled: February 6, 2012Date of Patent: October 8, 2013Assignee: Fujitsu Semiconductor LimitedInventor: Naoyoshi Tamura
-
Patent number: 8530315Abstract: A method is provided for fabricating a finFET device. Multiple fin structures are formed over a BOX layer, and a gate stack is formed on the BOX layer. The fin structures each include a semiconductor layer and extend in a first direction, and the gate stack is formed over the fin structures and extends in a second direction. The gate stack includes dielectric and polysilicon layers. Gate spacers are formed on vertical sidewalls of the gate stack, and an epi layer is deposited over the fin structures. Ions are implanted to form source and drain regions, and the gate spacers are etched so that their upper surface is below an upper surface of the gate stack. After etching the gate spacers, silicidation is performed to fully silicide the polysilicon layer of the gate stack and to form silicide regions in an upper surface of the source and drain regions.Type: GrantFiled: September 13, 2012Date of Patent: September 10, 2013Assignee: International Business Machines CorporationInventors: Ming Cai, Dechao Guo, Chun-chen Yeh
-
Patent number: 8502325Abstract: A method forms a metal high dielectric constant (MHK) transistor and includes: providing a MHK stack disposed on a substrate, the MHK stack including a first layer of high dielectric constant material, a second overlying layer, and a third overlying layer, selectively removing only the second and third layers, without removing the first layer, to form an upstanding portion of a MHK gate structure; forming a first sidewall layer on sidewalls of the upstanding portion of the MHK gate structure; forming a second sidewall layer on sidewalls of the first sidewall layer; removing a portion of the first layer to form exposed surfaces; forming an offset spacer layer over the second sidewall layer and over the first layer, and forming in the substrate extensions that underlie the first and second sidewall layers and that extend under a portion but not all of the upstanding portion of the MHK gate structure.Type: GrantFiled: March 28, 2012Date of Patent: August 6, 2013Assignee: International Business Machines CorporationInventors: Leland Chang, Jeffrey W. Sleight, Isaac Lauer, Renee T. Mo
-
Patent number: 8492227Abstract: An etching stopper film is formed over a first insulating film. Then, a second insulating film is formed with a thickness that allows concave and convex portions formed due to a first gate electrode to remain. Then, anisotropic etching is performed using the etching stopper film as a stopper to remove the second insulating film over a second gate electrode and form a first side wall spacer of the first gate electrode. Then, the etching stopper film is removed. Then, anisotropic etching is performed on the first insulating film to form a second side wall spacer over the second gate electrode and form a third side wall spacer which is disposed inside the first side wall spacer over the first gate electrode.Type: GrantFiled: July 16, 2010Date of Patent: July 23, 2013Assignee: Renesas Electronics CorporationInventors: Akira Mitsuiki, Atsuro Inada
-
Patent number: 8486778Abstract: A gate dielectric is patterned after formation of a first gate spacer by anisotropic etch of a conformal dielectric layer to minimize overetching into a semiconductor layer. In one embodiment, selective epitaxy is performed to sequentially form raised epitaxial semiconductor portions, a disposable gate spacer, and raised source and drain regions. The disposable gate spacer is removed and ion implantation is performed into exposed portions of the raised epitaxial semiconductor portions to form source and drain extension regions. In another embodiment, ion implantation for source and drain extension formation is performed through the conformal dielectric layer prior to an anisotropic etch that forms the first gate spacer. The presence of the raised epitaxial semiconductor portions or the conformation dielectric layer prevents complete amorphization of the semiconductor material in the source and drain extension regions, thereby enabling regrowth of crystalline source and drain extension regions.Type: GrantFiled: July 15, 2011Date of Patent: July 16, 2013Assignee: International Business Machines CorporationInventors: Balasubramanian S. Haran, Hemanth Jagannathan, Sivananda K. Kanakasabapathy, Sanjay Mehta
-
Publication number: 20130178029Abstract: A semiconductor device having dislocations and a method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having an isolation feature therein and two gate stacks overlying the substrate, wherein one of the gate stacks is atop the isolation feature. The method further includes performing a pre-amorphous implantation process on the substrate. The method further includes forming spacers adjoining sidewalls of the gate stacks, wherein at least one of the spacers extends beyond an edge the isolation feature. The method further includes forming a stress film over the substrate. The method also includes performing an annealing process on the substrate and the stress film.Type: ApplicationFiled: January 5, 2012Publication date: July 11, 2013Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Tsan-Chun WANG, Chun Hsiung TSAI
-
Patent number: 8476680Abstract: A semiconductor device includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate with a gate insulating film interposed therebetween; a side wall spacer formed on a side wall of the gate electrode; source/drain regions formed in opposing portions of the semiconductor substrate with the gate electrode and the side wall spacer interposed therebetween; and a stress-applying insulating film covering the gate electrode, the side wall spacer, and an upper surface of the semiconductor substrate. A gate-length-direction thickness of an upper portion of the side wall spacer is at least larger than a gate-length-direction thickness of a middle portion thereof.Type: GrantFiled: February 17, 2011Date of Patent: July 2, 2013Assignee: Panasonic CorporationInventor: Takayuki Yamada
-
Patent number: 8466023Abstract: A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.Type: GrantFiled: August 30, 2010Date of Patent: June 18, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Chongkwang Chang, Youngjoon Moon, Duck-nam Kim, Yeong-Jong Jeong
-
Patent number: 8461049Abstract: A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a gate structure thereon; forming a first cap layer on a surface of the substrate and sidewall of the gate structure; forming a second cap layer on the first cap layer; forming a third cap layer on the second cap layer; performing an etching process to partially remove the third cap layer, the second cap layer, and the first cap layer to form a first spacer and a second spacer on the sidewall of the gate structure; and forming a contact etch stop layer (CESL) on the substrate to cover the second spacer, wherein the third cap layer and the CESL comprise same deposition condition.Type: GrantFiled: October 11, 2011Date of Patent: June 11, 2013Assignee: United Microelectronics Corp.Inventors: Chu-Chun Chang, Chun-Mao Chiou, Chiu-Te Lee
-
Patent number: 8440534Abstract: Different threshold voltages of transistors of the same conductivity type in a complex integrated circuit may be adjusted on the basis of different Miller capacitances, which may be accomplished by appropriately adapting a spacer width and/or performing a tilted extension implantation. Thus, efficient process strategies may be available to controllably adjust the Miller capacitance, thereby providing enhanced transistor performance of low threshold transistors while not unduly contributing to process complexity compared to conventional approaches in which threshold voltage values may be adjusted on the basis of complex halo and well doping regimes.Type: GrantFiled: May 10, 2011Date of Patent: May 14, 2013Assignee: Advanced Micro Devices, Inc.Inventors: Uwe Griebenow, Jan Hoentschel, Kai Frohberg, Heike Berthold, Katrin Reiche, Frank Feustel, Kerstin Ruttloff
-
Patent number: 8431461Abstract: A method for forming devices with silicon gates over a substrate is provided. Silicon nitride spacers are formed on sides of the silicon gates. An ion implant is provided using the silicon nitride spacers as masks to form ion implant regions. A nonconformal layer is selectively deposited over the spacers and gates that selectively deposits a thicker layer on tops of the gates and spacers and between spacers than on sidewalls of the silicon nitride spacers. Sidewalls of the nonconformal layer are etched away on sidewalls of the silicon nitride spacers. The silicon nitride spacers are trimmed.Type: GrantFiled: December 16, 2011Date of Patent: April 30, 2013Assignee: Lam Research CorporationInventors: Qinghua Zhong, Yoshie Kimura, Tae Won Kim, Qian Fu, Gladys Lo, Ganesh Upadhyaya, Yoko Yamaguchi
-
Patent number: 8426266Abstract: In sophisticated semiconductor devices, stress memorization techniques may be applied on the basis of a silicon nitride material, which may be subsequently modified into a low-k dielectric material in order to obtain low-k spacer elements, thereby enhancing performance of sophisticated semiconductor devices. The modification of the initial silicon nitride-based spacer material may be accomplished on the basis of an oxygen implantation process.Type: GrantFiled: December 9, 2010Date of Patent: April 23, 2013Assignee: GLOBALFOUNDRIES Inc.Inventors: Jan Hoentschel, Andreas Kurz, Uwe Griebenow, Thilo Scheiper
-
Patent number: 8421166Abstract: A method for forming a semiconductor device is disclosed. A substrate including a gate dielectric layer and a gate electrode layer sequentially formed thereon is provided. An offset spacer is formed on sidewalls of the gate dielectric layer and the gate electrode layer. A carbon spacer is formed on a sidewall of the offset spacer, and the carbon spacer is then removed. The substrate is implanted to form a lightly doped region using the gate electrode layer and the offset spacer as a mask. The method may also include providing a substrate having a gate dielectric layer and a gate electrode layer sequentially formed thereon. A liner layer is formed on sidewalls of the gate electrode layer and on the substrate. A carbon spacer is formed on a portion of the liner layer adjacent the sidewall of the gate electrode layer. A main spacer is formed on a sidewall of the carbon spacer. The carbon spacer is removed to form an opening between the liner layer and the main spacer.Type: GrantFiled: July 1, 2011Date of Patent: April 16, 2013Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Min-Hwa Chi, Wen-Chuan Chiang, Mu-Chi Chiang, Cheng-Ku Chen
-
Patent number: 8389371Abstract: A method for fabricating an integrated device is disclosed. A sacrificial gate stack is provided with a line width narrower than the target width of the final gate structure. After performing a tilt-angle implantation process, L-shape spacers are formed over the sidewalls of the sacrificial gate stack, and offset spacers are formed over the sidewalls of the L-shape spacers. An insulating layer is formed over the offset spacers and the substrate. Then, the sacrificial gate stack and the L-shape spacers are removed to form a trench in the insulating layer. A metal gate is then filled in the trench to form the final gate structure.Type: GrantFiled: June 30, 2010Date of Patent: March 5, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Shiang-Bau Wang
-
Patent number: 8384165Abstract: A method to maintain a well-defined gate stack profile, deposit or grow a uniform gate dielectric, and maintain gate length CD control by means of an inert insulating liner deposited after dummy gate etch and before the spacer process. The liner material is selective to wet chemicals used to remove the dummy gate oxide thereby preventing undercut in the spacer region. The method is aimed at making the metal gate electrode technology a feasible technology with maximum compatibility with the existing fabrication environment for multiple generations of CMOS transistors, including those belonging to the 65 nm, 45 nm and 25 nm technology nodes, that are being used in analog, digital or mixed signal integrated circuit for various applications such as communication, entertainment, education and security products.Type: GrantFiled: June 17, 2008Date of Patent: February 26, 2013Assignee: LSI CorporationInventors: Richard J. Carter, Wai Lo, Sey-Shing Sun, Hong Lin, Verne Hornback