Mis Technology (epo) Patents (Class 257/E21.616)

  • Patent number: 12113107
    Abstract: A method for fabricating a semiconductor device includes: forming an insulating layer over a substrate including a cell region and a peripheral region; forming an opening in the insulating layer by selectively etching the insulating layer in the cell region; forming a plug conductive layer to fill the opening and cover the insulating film; etching the plug conductive layer and the insulating layer in the peripheral region by using a peri-open mask covering the cell region; trimming the peri-open mask to expose the plug conductive layer in a boundary region where the cell region and the peripheral region contact each other; etching the plug conductive layer in the boundary region by using the trimmed peri-open mask; forming a peri-gate conductive layer over the entire surface of the substrate; and etching the peri-gate conductive layer by using a cell open mask.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: October 8, 2024
    Assignee: SK hynix Inc.
    Inventors: Dae Won Kim, Tae Kyun Kim, Dong Goo Choi
  • Patent number: 12002527
    Abstract: Programmable resistive memory can be integrated with wide-bandgap semiconductor devices on a wide-bandgap semiconductor, silicon, or insulator substrate. The wide-bandgap semiconductor can be group IV-IV, III-V, or II-VI crystal or compound semiconductor, such as silicon carbide or gallium nitride. The programmable resistive memory can be PCRAM, RRAM, MRAM, or OTP. The OTP element can be a metal, silicon, polysilicon, silicided polysilicon, or thermally insulated wide-bandgap semiconductor. The selector in a programmable resistive memory can be a MOS or diode fabricated by wide-bandgap semiconductor.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: June 4, 2024
    Assignee: Attopsemi Technology Co., LTD
    Inventor: Shine C. Chung
  • Patent number: 11949030
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor with a passivation layer for dark current reduction. A device layer overlies a substrate. Further, a cap layer overlies the device layer. The cap and device layers and the substrate are semiconductor materials, and the device layer has a smaller bandgap than the cap layer and the substrate. For example, the cap layer and the substrate may be silicon, whereas the device layer may be or comprise germanium. A photodetector is in the device and cap layers, and the passivation layer overlies the cap layer. The passivation layer comprises a high k dielectric material and induces formation of a dipole moment along a top surface of the cap layer.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hao Chiang, Eugene I-Chun Chen, Chih-Ming Chen
  • Patent number: 11910682
    Abstract: A display apparatus includes a first substrate including a plurality of pixels provided in a display portion, a second substrate coupled to the first substrate, and a routing portion disposed on an outer surface of the first substrate and an outer surface of the second substrate. The second substrate includes a metal pattern layer connected to the routing portion and a rear insulation layer insulating the metal pattern layer and including an isolation pattern area.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: February 20, 2024
    Assignee: LG Display Co., Ltd.
    Inventors: YoungHo Jeon, JongHyun Park, DongHee Yoo
  • Patent number: 11901218
    Abstract: A method includes forming a first plurality of fins in a first region of a substrate, a first recess being interposed between adjacent fins in the first region of the substrate, the first recess having a first depth and a first width, forming a second plurality of fins in a second region of the substrate, a second recess being interposed between adjacent fins in the second region of the substrate, the second recess having a second depth and a second width, the second width of the second recess being less than the first width of the first recess, the second depth of the second recess being less than the first depth of the first recess, forming a first dielectric layer in the first recess and the second recess, and converting the first dielectric layer in the first recess and the second recess to a treated dielectric layer.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11744111
    Abstract: A plurality of thin film transistors provided in a peripheral region are first staggered thin film transistors where a first channel layer configured of low-temperature polysilicon is included, and the first channel layer is not interposed between a first source electrode and a first gate electrode, and between a first drain electrode and the first gate electrode. A plurality of thin film transistors provided in a display region are second staggered thin film transistors where a second channel layer configured of an oxide semiconductor is included, and the second channel layer is not interposed between a second source electrode and a second gate electrode, and between a second drain electrode and the second gate electrode. The first thin film transistor is located below the second thin film transistor.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: August 29, 2023
    Assignee: Japan Display Inc.
    Inventor: Satoshi Maruyama
  • Patent number: 11616139
    Abstract: An LDMOS includes a semiconductor substrate. A well is disposed within the semiconductor substrate. A body region is disposed within the well. A first gate electrode is disposed on the semiconductor substrate. A source electrode is disposed at one side of the first gate electrode. The source electrode includes a source contact area and numerous vias. The vias connect to the source contact area. The vias extend into the semiconductor substrate. A first drain electrode is disposed at another side of the first gate electrode and is opposed to the source electrode.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: March 28, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yen Feng, Chen-An Kuo, Ching-Wei Teng, Po-Chun Lai
  • Patent number: 11532643
    Abstract: An array substrate, a manufacturing method thereof, and a display panel are provided. The array substrate comprises a base substrate, a plurality of gate lines and gate electrodes on the base substrate, each gate electrode being corresponding to and separate from a respective gate line, a gate insulating layer over the gate electrode and the gate line, the gate insulating layer having a first via hole and a second via hole, the first via hole exposing the gate electrode, the second via hole exposing the gate line, a conductive connection layer and a polysilicon semiconductor layer on the gate insulating layer, the conductive connection layer filling the first via hole and the second via hole to connect the gate line with the gate electrode.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: December 20, 2022
    Assignees: BEIJING BOE TECHNOLOGY DEVELOPMENT CO., LTD., HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Binbin Cao, Yinhu Huang, Chengshao Yang, Haijiao Qian
  • Patent number: 11362085
    Abstract: A high-voltage semiconductor device includes a substrate, a body region, a well region, a bulk region, a source, a drain, an isolation region, a gate structure, and a resistor. The body region and the well region are disposed in the substrate. The bulk region and the source are disposed in the body region. The drain is disposed in the well region. The isolation region is disposed on the well region. The isolation region is disposed between the drain and the source. The gate structure is disposed on the substrate. The gate structure extends onto a portion of the isolation region. The resistor is disposed on the isolation region. The resistor is electrically connected to the bulk region and the drain, or the resistor is electrically connected to the drain and/or the source.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 14, 2022
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yu-Hao Ho, Hsiao-Ling Chiang, Yueh-Chu Chiang, Yi-Hsiang Huang
  • Patent number: 11257922
    Abstract: A method for forming a self-aligned contact includes providing a substrate with a plurality of gate structures formed on the substrate. The method also includes forming a spacer liner on the gate structures and the substrate. The method also includes forming a sacrificial layer between the gate structures and on the gate structures. The method also includes forming a plurality of dielectric plugs through the sacrificial layer above the gate structures. The method also includes removing the sacrificial layer to form a plurality of contact openings between the gate structures. The method also includes forming an etch resistant layer conformally covering the sidewall and the bottom of the contact openings. The method also includes forming a plurality of contact plugs in the contact openings.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: February 22, 2022
    Assignee: WINBOND ELECTRONICS CORP.
    Inventors: Sih-Han Chen, Chien-Ting Chen, Yao-Ting Tsai, Hsiu-Han Liao
  • Patent number: 10840149
    Abstract: A method of manufacturing a semiconductor structure includes forming a first dummy strip over a first active region and an isolation region of a substrate, removing a first portion of the first dummy strip from the first active region to form a first opening, filling the first opening with a first metal composition, removing a second portion of the first dummy strip from the isolation region to form a second opening, and filling the second opening with a second metal composition.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 17, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Bao-Ru Young, Harry Hak-Lay Chuang
  • Patent number: 10468410
    Abstract: In some embodiments, the present disclosure, relates to an integrated chip. The integrated chip has an isolation structure arranged within a substrate. The isolation structure has interior surfaces defining one or more divots recessed below an uppermost surface of the isolation structure and sidewalls defining an opening exposing the substrate. A source region is disposed within the opening. A drain region is also disposed within the opening and is separated from the source region by a channel region along a first direction. A gate structure extends over the channel region. The gate structure includes a first gate electrode region having a first composition of one or more materials and a second gate electrode region disposed over the one or more divots and having a second composition of one or more materials different than the first composition of one or more materials.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: November 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Han Lin, Te-Hsin Chiu, Wei Cheng Wu
  • Patent number: 9496144
    Abstract: A method of fabricating a memory device is described. Generally, the method includes: forming on a surface of a substrate a dielectric stack including a tunneling dielectric and a charge-trapping layer overlying the tunneling dielectric; depositing a first cap layer comprising an oxide over the dielectric stack; forming a second cap layer comprising a nitride over the first cap layer; patterning the first and second cap layers and the dielectric stack to form a gate stack of a memory device; removing the second cap layer; and performing an oxidation process to form a blocking oxide over the charge-trapping layer, wherein the oxidation process consumes the first cap layer. Other embodiments are also described.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 15, 2016
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Hui-Mei Shih
  • Patent number: 8981530
    Abstract: A semiconductor device includes a first NMOS device with a first threshold voltage and a second NMOS device with a second threshold voltage. The first NMOS device includes a first gate structure over a semiconductor substrate, first source/drain (S/D) regions in the semiconductor substrate and adjacent to opposite edges of the first gate structure. The first S/D regions are free of dislocation. The second NMOS device includes a second gate structure over the semiconductor substrate, second S/D regions in the semiconductor substrate and adjacent to opposite edges of the second gate structure, and a dislocation in the second S/D regions.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Ming Zhu
  • Patent number: 8975133
    Abstract: One illustrative integrated circuit product disclosed herein includes a metal-1 metallization layer positioned above a semiconducting substrate, a capacitor positioned between a surface of the substrate and a bottom of the metal-1 metallization layer, wherein the capacitor includes a plurality of conductive plates that are oriented in a direction that is substantially normal relative to the surface of the substrate, and at least one region of insulating material positioned between the plurality of conductive plates.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kok Yong Yiang, Patrick R. Justison
  • Patent number: 8975712
    Abstract: One method disclosed herein includes forming first and second transistor devices in and above adjacent active regions that are separated by an isolation region, wherein the transistors comprise a source/drain region and a shared gate structure, forming a continuous conductive line that spans across the isolation region and contacts the source/drain regions of the transistors and etching the continuous conductive line to form separated first and second unitary conductive source/drain contact structures that contact the source/drain regions of the first and second transistors, respectively. A device disclosed herein includes a gate structure, source/drain regions, first and second unitary conductive source/drain contact structures, each of which contacts one of the source/drain regions, and first and second conductive vias that contact the first and second unitary conductive source/drain contact structures, respectively.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Mahbub Rashed, Juhan Kim, Yunfei Deng, Suresh Venkatesan
  • Patent number: 8921181
    Abstract: Methods for forming an electronic device having a fluorine-stabilized semiconductor substrate surface are disclosed. In an exemplary embodiment, a layer of a high-? dielectric material is formed together with a layer containing fluorine on a semiconductor substrate. Subsequent annealing causes the fluorine to migrate to the surface of the semiconductor (for example, silicon, germanium, or silicon-germanium). A thin interlayer of a semiconductor oxide may also be present at the semiconductor surface. The fluorine-containing layer can comprise F-containing WSix formed by ALD from WF6 and SiH4 precursor gases. A precise amount of F can be provided, sufficient to bind to substantially all of the dangling semiconductor atoms at the surface of the semiconductor substrate and sufficient to displace substantially all of the hydrogen atoms present at the surface of the semiconductor substrate.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 30, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Dipankar Pramanik
  • Patent number: 8865540
    Abstract: A method for forming a Schottky diode including forming first and second trenches in a semiconductor layer, forming a thin dielectric layer lining sidewalls of the first and second trenches; forming a trench conductor layer in the first and second trenches where the trench conductor layer fills a portion of each of the first and second trenches and being the only one trench conductor layer in the first and second trenches; forming a first dielectric layer in the first and second trenches to fill the remaining portions of the first and second trenches; and forming a Schottky metal layer on a top surface of the lightly doped semiconductor layer between the first trench and the second trench to form a Schottky junction. The Schottky diode is formed with the Schottky metal layer as the anode and the lightly doped semiconductor layer between the first and second trenches as the cathode.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 21, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Daniel Calafut, Yi Su, Jongoh Kim, Hong Chang, Hamza Yilmaz, Daniel S. Ng
  • Patent number: 8841723
    Abstract: The present invention discloses an LDMOS device having an increased punch-through voltage and a method for making same. The LDMOS device includes: a substrate; a well of a first conductive type formed in the substrate; an isolation region formed in the substrate; a body region of a second conductive type in the well; a source in the body region; a drain in the well; a gate structure on the substrate; and a first conductive type dopant region beneath the body region, for increasing a punch-through voltage.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: September 23, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Tsung-Yi Huang, Huan-Ping Chu, Ching-Yao Yang, Hung-Der Su
  • Patent number: 8765549
    Abstract: Capacitor designs for substrates, such as interposers, and methods of manufacture thereof are disclosed. In an embodiment, a capacitor is formed between a through via and a lower level metallization layer. The capacitor may be, for example, a planar capacitor formed on the substrate or on a dielectric layer formed over the substrate.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hua Chang, Shin-Puu Jeng, Der-Chyang Yeh, Shang-Yun Hou, Wen-Chih Chiou
  • Patent number: 8766348
    Abstract: A non-volatile semiconductor memory device comprises a semiconductor substrate and a plurality of gate structures formed on a cell region of the semiconductor substrate. The plurality of gate structures include a first select-gate and a second select-gate disposed on the cell region, the first select-gate and the second select-gate spaced apart from each other. A plurality of cell gate structures are disposed between the first select-gate and the second select-gate. The first select-gate and an adjacent cell gate structure have no air gap defined therebetween. At least a pair of adjacent cell gate structures have an air gap defined therebetween.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Kyung Kim, Woosung Choi
  • Patent number: 8753941
    Abstract: An integrated circuit with a LV transistor and a high performance asymmetric transistor. A power amplifier integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming an integrated circuit with a core transistor and a high performance asymmetric transistor. A method of forming a power amplifier integrated circuit with an nmos core transistor and an nmos high performance asymmetric transistor, a resistor, and an inductor.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Vijay K. Reddy, Samuel Martin, T Krishnaswamy
  • Patent number: 8697523
    Abstract: A method of fabricating a FINFET includes the following steps. A plurality of fins is patterned in a wafer. A dummy gate is formed covering a portion of the fins which serves as a channel region. Spacers are formed on opposite sides of the dummy gate. The dummy gate is removed thus forming a trench between the spacers that exposes the fins in the channel region. A nitride material is deposited into the trench so as to cover a top and sidewalls of each of the fins in the channel region. The wafer is annealed to induce strain in the nitride material thus forming a stressed nitride film that covers and induces strain in the top and the sidewalls of each of the fins in the channel region of the device. The stressed nitride film is removed. A replacement gate is formed covering the fins in the channel region.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ming Cai, Dechao Guo, Chun-Chen Yeh
  • Patent number: 8674458
    Abstract: When forming sophisticated semiconductor devices including transistors with sophisticated high-k metal gate electrode structures and a strain-inducing semiconductor alloy, transistor uniformity and performance may be enhanced by providing superior growth conditions during the selective epitaxial growth process. To this end, a semiconductor material may be preserved at the isolation regions in order to avoid the formation of pronounced shoulders. Furthermore, in some illustrative embodiments, additional mechanisms are implemented in order to avoid undue material loss, for instance upon removing a dielectric cap material and the like.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Stephan-Detlef Kronholz, Rohit Pal, Gunda Beernink
  • Publication number: 20140070328
    Abstract: Semiconductor devices and methods of fabricating semiconductor devices are provided. Two or more layers can be formed on a silicon substrate, wherein one or more of the layers are used for controlling an isolation recess. A first layer can comprise a first material and a second layer can comprise a second material.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.
    Inventors: Masakazu Goto, Akira Hokazono
  • Patent number: 8664716
    Abstract: In a lateral-type power MOSFET, high breakdown voltage is achieved with suppressing to increase a cell pitch, and a feedback capacity and an ON resistance are decreased. An n? type silicon region having a high resistance to be a region of maintaining a breakdown voltage is vertically provided with respect to a main surface of an n+ type silicon substrate, and the n? type silicon region having the high resistance is connected to the n+ type silicon substrate. Also, a conductive substance is filled through an insulating substance inside a trench formed to reach the n+ type silicon substrate from the main surface of the n+ type silicon substrate so as to contact with the n? type silicon region having the high resistance, and the conductive substance is electrically connected to a source electrode.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: March 4, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Takayuki Hashimoto, Takashi Hirao, Noboru Akiyama
  • Patent number: 8653601
    Abstract: This invention provides a current control semiconductor element in which dependence of a sense ratio on a temperature distribution is eliminated and the accuracy of current detection using a sense MOSFET can be improved, and to provide a control device using the current control semiconductor element. The current control semiconductor element 1 includes a main MOSFET 7 that drives a current and a sense MOSFET 8 that is connected to the main MOSFET in parallel and detects a current shunted from a current of the main MOSFET. The main MOSFET is formed using a multi-finger MOSFET that has a plurality of channels and is arranged in a row. When a distance between the center of the multi-finger MOSFET 7 and a channel located farthest from the center of the multi-finger MOSFET 7 is indicated by L, a channel that is located closest to a position distant by a distance of (L/(?3)) from the center of the multi-finger MOSFET is used as a channel for the sense MOSFET 8.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: February 18, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Teppei Hirotsu, Nobuyasu Kanekawa, Itaru Tanabe
  • Publication number: 20140042510
    Abstract: One illustrative integrated circuit product disclosed herein includes a metal-1 metallization layer positioned above a semiconducting substrate, a capacitor positioned between a surface of the substrate and a bottom of the metal-1 metallization layer, wherein the capacitor includes a plurality of conductive plates that are oriented in a direction that is substantially normal relative to the surface of the substrate, and at least one region of insulating material positioned between the plurality of conductive plates.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 13, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Kok Yong Yiang, Patrick R. Justison
  • Patent number: 8643071
    Abstract: A MOSFET device includes one or more active device structures and one or more dummy structures formed from semiconductor drift region and body regions. The dummy structures are electrically connected in parallel to the active device structures. Each dummy structure includes an electrically insulated snubber electrode formed proximate the body region and the drift region, an insulator portion formed over the snubber electrode and a top surface of the body region, and one or more electrical connections between the snubber electrode and portions of the body region and a source electrode. It is emphasized that this abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Ji Pan, Daniel Ng, Anup Bhalla
  • Publication number: 20140021560
    Abstract: Provided is a high voltage semiconductor device. The high voltage semiconductor device includes a transistor having a gate, a source, and a drain. The source and the drain are formed in a doped substrate and are separated by a drift region of the substrate. The gate is formed over the drift region and between the source and the drain. The transistor is configured to handle high voltage conditions that are at least a few hundred volts. The high voltage semiconductor device includes a dielectric structure formed between the source and the drain of the transistor. The dielectric structure protrudes into and out of the substrate. Different parts of the dielectric structure have uneven thicknesses. The high voltage semiconductor device includes a resistor formed over the dielectric structure. The resistor has a plurality of winding segments that are substantially evenly spaced apart.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Ker Hsiao Huo, Jen-Hao Yeh, Chun-Wei Hsu
  • Patent number: 8633549
    Abstract: A semiconductor device comprises a metal gate electrode, a passive device and a hard mask layer. The passive device has a poly-silicon element layer. The hard mask layer is disposed on the metal gate electrode and the passive electrode and has a first opening and a second opening substantially coplanar with each other, wherein the metal gate electrode and the poly-silicon element layer are respectively exposed via the first opening and the second opening; and there is a distance between the first opening and the metal gate electrode substantially less than the distance between the second opening and the poly-silicon element layer.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: January 21, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chieh-Te Chen, Shih-Fang Tzou, Jiunn-Hsiung Liao, Yi-Po Lin
  • Publication number: 20140001526
    Abstract: An analog floating-gate electrode in an integrated circuit, and method of fabricating the same, in which trapped charge can be stored for long durations. The analog floating-gate electrode is formed in a polycrystalline silicon gate level, and includes portions serving as a transistor gate electrode, a plate of a metal-to-poly storage capacitor, and a plate of poly-to-active tunneling capacitors. A silicide-block film comprised of a layer of silicon dioxide underlying a top layer of silicon nitride blocks the formation of silicide cladding on the electrode, while other polysilicon structures in the integrated circuit, such as polysilicon-to-metal capacitors, are silicide-clad. Following silicidation, a capacitor dielectric is deposited over the remaining polysilicon structures, followed by formation of an upper metal plate.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kaiping Liu, Amitava Chatterjee, Imran Mahmood Khan
  • Publication number: 20140001562
    Abstract: An integrated circuit is provided. The integrated circuit includes a substrate, a first FinFET device supported by the substrate, the first FinFET device having a first fin with a non-tiered fin profile, and a second FinFET supported by the substrate, the second FinFET having a second fin with a tiered fin profile.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon-Jhy Liaw
  • Publication number: 20130341724
    Abstract: A semiconductor device has a FinFET with at least two independently controllable FETs on a single fin. The fin may have a body area with a width between two vertical sides, each side has a single FET. The fin also may have a top fin area that is wider than the body area and is electrically independent from the two FETs. The top fin area may be capable of receiving a body contact structure which may be connected to an electrical conductor as to regulate the voltage in the body area of the fin.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, Gregory J. Uhlmann, Kelly L. Williams
  • Publication number: 20130313647
    Abstract: A method of forming a semiconductor structure on a substrate is provided. The method may include preparing a continuous active layer on a region of the substrate and depositing a first raised epitaxial layer on a first region of the continuous active layer. A second raised epitaxial layer is also deposited on a second region of the continuous active layer such that the first raised epitaxial layer is in close proximity to the second raised epitaxial layer. A mask may be used to etch a trench structure into the continuous active layer at both the first and the second raised epitaxial layer, whereby the etched trench structure is filled with isolation material for electrically isolating the first raised epitaxial layer from the second raised epitaxial layer.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Vincent Aquilino, Byeong Yeol Kim, Ying Li, Carl John Radens
  • Patent number: 8587224
    Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun-Tak Kim, Bongjun Kim
  • Patent number: 8580652
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate having first and second main surfaces, and a through hole passing through between the first and second main surfaces, a pad on the first main surface, a through electrode in the through hole, and a connection structure including a connection portion to directly connect the pad and the through electrode, and another connection portion to indirectly connect the pad and the through electrode. The method includes forming an isolation region in the first main surface, the isolation region being in a region where the through electrode is to be formed and being in a region other than the region where the through hole is to be formed, forming the pad, and forming the through hole by processing the substrate to expose a part of the pad.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Kawasaki, Kenichiro Hagiwara, Ikuko Inoue, Kazutaka Akiyama, Itsuko Sakai, Mie Matsuo, Masahiro Sekiguchi, Yoshiteru Koseki, Hiroki Neko, Koushi Tozuka, Kazuhiko Nakadate, Takuto Inoue
  • Patent number: 8580632
    Abstract: To provide a semiconductor device and a method of manufacturing the same capable of suppressing, when a plurality of MIS transistors having different absolute values of threshold voltage is used, the reduction of the drive current of a MIS transistor having a greater absolute value of threshold voltage. The threshold voltage of a second nMIS transistor is greater than the threshold voltage of a first nMIS transistor and the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a second nMIS high-k film included in the second nMIS transistor is lower than the sum of the concentration of lanthanum atom and the concentration of magnesium atom in a first nMIS high-k film included in the first nMIS transistor.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuhiro Onishi, Kazuhiro Tsukamoto
  • Patent number: 8574982
    Abstract: A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Karl Robert Erickson, David Paul Paulsen, John Edward Sheets, II, Kelly L. Williams
  • Publication number: 20130277758
    Abstract: A method of fabricating a FET device is provided that includes the following steps. A wafer is provided. At least one active area is formed in the wafer. A plurality of dummy gates is formed over the active area. Spaces between the dummy gates are filled with a dielectric gap fill material such that one or more keyholes are formed in the dielectric gap fill material between the dummy gates. The dummy gates are removed to reveal a plurality of gate canyons in the dielectric gap fill material. A mask is formed that divides at least one of the gate canyons, blocks off one or more of the keyholes and leaves one or more of the keyholes un-blocked. At least one gate stack material is deposited onto the wafer filling the gate canyons and the un-blocked keyholes. A FET device is also provided.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Publication number: 20130264653
    Abstract: A method of forming a complementary metal oxide semiconductor (CMOS) device including an n-type field effect transistor (NFET) and an p-type field effect transistor (PFET) having fully silicided gates electrode in which an improved dual stress buried insulator is employed to incorporate and advantageous mechanical stress into the device channel of the NFET and PFET. The method can be imposed on a bulk substrate or extremely thin silicon on insulator (ETSOI) substrate. The device includes a semiconductor substrate, a plurality of shallow trench isolations structures formed in the ETSOI layer, NFET having a source and drain region and a gate formation, a PFET having a source and drain region, and a gate formation, an insulator layer, including a stressed oxide or nitride, deposited inside the substrate of the NFET, and a second insulator layer, including either an stressed oxide or nitride, deposited inside the substrate of the PFET.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ming Cai, Dechao Guo, Liyang Song, Chun-Chen Yeh
  • Publication number: 20130228866
    Abstract: Semiconductor devices and manufacturing and design methods thereof are disclosed. In one embodiment, a semiconductor device includes an active FinFET disposed over a workpiece comprising a first semiconductive material, the active FinFET comprising a first fin. An electrically inactive FinFET structure is disposed over the workpiece proximate the active FinFET, the electrically inactive FinFET comprising a second fin. A second semiconductive material is disposed between the first fin and the second fin.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung Ying Lee, Wen-Huie Guo, Chih-Hao Chang, Shou-Zen Chang
  • Publication number: 20130222950
    Abstract: A device is presented. The device includes a first circuit coupled to first and second power rails of the device. The first circuit is subject to a latch up event in the presence of a latch up condition. The latch up event includes a low resistance path created between the first and second power rails. The device also includes a latch up sensing (LUS) circuit coupled to the first circuit. The LUS circuit is configured to receive a LUS input signal from the first circuit and generates a LUS output signal to the first circuit. When the input signal is an active latch up signal which indicates the presence of a latch up condition, the LUS circuit generates an active LUS output signal which creates a break in the low resistance path to terminate the latch up event.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Da-Wei LAI, Mahadeva Iyer NATARAJAN
  • Patent number: 8513058
    Abstract: a method for producing a semiconductor device provided in such a manner that a first layer and a second layer are laminated to ensure that their TSVs are arranged in almost a straight line, including: first layer production steps including steps of preparing a substrate, forming a transistor of an input/output circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; second layer production steps including steps of preparing a substrate, forming a transistor of a logic circuit on an upper surface of the substrate, forming an insulation layer so as to cover the transistor, and forming a TSV in the insulation layer; a connection step of connecting surfaces of the first layer and the second layer on a side opposite to substrates of the first layer and the second layer to ensure that the TSV of the first layer and the TSV of the second layer are arranged in almost a straight line; and a step of removing the substrate of the
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: August 20, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Toshiaki Iwamatsu, Yuichi Hirano
  • Publication number: 20130210201
    Abstract: A method for manufacturing an active array substrate is provided herein. The active array substrate can be manufactured by using only two photolithography process steps. The photolithography process step using a first photomask may be provided for forming a drain electrode, a source electrode, a data line and/or a data line connecting pad and a patterned transparent conductive layer, etc. The photolithography process step using a second photomask may be utilized for forming a gate electrode, a gate line, a gate insulating layer, a channel layer and/or a gate line connecting pad, and so forth.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 15, 2013
    Applicant: E INK HOLDINGS INC.
    Inventors: Wen-Chung TANG, Fang-An SHU, Yao-Chou TSAI, Ted-Hong SHINN
  • Patent number: 8507994
    Abstract: In a memory cell including CMOS inverters, an increase in an area of the memory cell caused by restrictions on a gate wiring due to a leakage current and restrictions due to design rules is suppressed. A first wiring and a second wiring are laid out as a first metal layer in the memory cell that includes a first inverter and a second inverter. The first wiring is connected with two drains in the first inverter and a second gate wiring in the second inverter. The second wiring is connected with two drains in the second inverter and a first gate wiring in the first inverter. The first wiring is laid out to overlap with the second gate wiring, and the second wiring is laid out to overlap with the first gate wiring. A second metal layer is laid out above the first metal layer, and a third metal layer is laid out above the second metal layer.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 13, 2013
    Assignee: ON Semiconductor Trading, Ltd.
    Inventor: Kouichi Yamada
  • Publication number: 20130200448
    Abstract: A meander line resistor structure comprises a first resistor formed on a first active region, wherein the first resistor is formed by a plurality of first vias connected in series, a second resistor formed on a second active region, wherein the second resistor is formed by a plurality of second vias connected in series and a third resistor formed on the second active region, wherein the third resistor is formed by a plurality of third vias connected in series. The meander line resistor further comprises a first connector coupled between the first resistor and the second resistor.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin
  • Publication number: 20130200466
    Abstract: A method for forming an integrated circuit (IC) including a silicide block poly resistor (SIBLK poly resistor) includes forming a dielectric isolation region in a top semiconductor surface of a substrate. A polysilicon layer is formed including patterned resistor polysilicon on the dielectric isolation region and gate polysilicon on the top semiconductor surface. Implanting is performed using a first shared metal-oxide-semiconductor (MOS)/resistor polysilicon implant level for simultaneously implanting the patterned resistor polysilicon and gate polysilicon of a MOS transistor with at least a first dopant. Implanting is then performed using a second shared MOS/resistor polysilicon implant level for simultaneously implanting the patterned resistor polysilicon, gate polysilicon and source and drain regions of the MOS transistor with at least a second dopant. A metal silicide is formed on a first and second portion of a top surface of the patterned resistor polysilicon to form the SIBLK poly resistor.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: SONG ZHAO, GREGORY CHARLES BALDWIN, SHASHANK S. EKBOTE, YOUN SUNG CHOI
  • Publication number: 20130200468
    Abstract: A method of fabricating a FINFET includes the following steps. A plurality of fins is patterned in a wafer. A dummy gate is formed covering a portion of the fins which serves as a channel region. Spacers are formed on opposite sides of the dummy gate. The dummy gate is removed thus forming a trench between the spacers that exposes the fins in the channel region. A nitride material is deposited into the trench so as to cover a top and sidewalls of each of the fins in the channel region. The wafer is annealed to induce strain in the nitride material thus forming a stressed nitride film that covers and induces strain in the top and the sidewalls of each of the fins in the channel region of the device. The stressed nitride film is removed. A replacement gate is formed covering the fins in the channel region.
    Type: Application
    Filed: February 6, 2012
    Publication date: August 8, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ming Cai, Dechao Guo, Chun-Chen Yeh
  • Publication number: 20130203226
    Abstract: A semiconductor process is provided, including following steps. A polysilicon layer is formed on a substrate. An asymmetric dual-side heating treatment is performed to the polysilicon layer, wherein a power for a forntside heating is different from a power for a backside heating.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chan-Lon Yang, Ching-Nan Hwang, Chi-Heng Lin, Chun-Yao Yang, Ger-Pin Lin, Ching-I Li