With Capacitor Higher Than Bit Line Level (epo) Patents (Class 257/E27.088)
  • Patent number: 7800153
    Abstract: The present invention relates to a structure of a capacitor, in particular using niobium pentoxide, of a semiconductor capacitor memory device. Since niobium pentoxide has a low crystallization temperature of 600° C. or less, niobium pentoxide can suppress the oxidation of a bottom electrode and a barrier metal by heat treatment. However, according to heat treatment at low temperature, carbon incorporated from CVD sources into the film is not easily oxidized or removed. Therefore, a problem that leakage current increases arises. As an insulator film of a capacitor, a layered film composed of niobium pentoxide film and a tantalum pentoxide film, or a layered film composed of niobium pentoxide films is used. By the use of the niobium pentoxide film, the dielectric constant of the capacitor can be made high and the crystallization temperature can be made low. By multiple-stage formation of the dielectric film, leakage current can be decreased.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 21, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichi Matsui, Masahiko Hiratani
  • Patent number: 7795648
    Abstract: A semiconductor device, having a memory cell region and a peripheral circuit region, includes an insulating film, having an upper surface, formed on a major surface of a semiconductor substrate to extend from the memory cell region to the peripheral circuit region. A capacitor lower electrode assembly is formed in the memory cell region to upwardly extend to substantially the same height as the upper surface of the insulating film on the major surface of the semiconductor substrate. Additionally, the lower electrode assembly includes first and second lower electrodes that are adjacent through the insulating film. A capacitor upper electrode is formed on the capacitor lower electrode through a dielectric film, to extend onto the upper surface of the insulating film. The capacitor lower electrode includes a capacitor lower electrode part having a top surface and a bottom surface.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: September 14, 2010
    Assignee: Renesas Technology Corporation
    Inventors: Yoshinori Tanaka, Masahiro Shimizu, Hideaki Arima
  • Patent number: 7763926
    Abstract: A technique is provided which makes it possible to achieve both of a reduction in contact resistance in a memory device and a reduction in contact resistance in a logic device even when oxidation is performed during formation of dielectric films of capacitors. Conductive barrier layers (82) are provided in the top ends of contact plugs (83b) electrically connected to ones of source/drain regions (59). Lower electrodes (70) of capacitors (73) are formed in contact with the conductive barrier layers (82) of the contact plugs (83b) and then dielectric films (71) and upper electrodes (72) of the capacitors (73) are sequentially formed. In the logic region, contact plugs (25) are formed in an upper layer so that they are in contact respectively with contact plugs (33) electrically connected to source/drain regions (9).
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: July 27, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Masahiko Takeuchi
  • Patent number: 7763542
    Abstract: A semiconductor memory device includes a semiconductor substrate. An inter-layer dielectric is disposed on the semiconductor substrate. A bit line is disposed on the inter-layer dielectric. A bit line spacer is fabricated of a nitride layer containing boron and/or carbon and covers sidewalls of the bit line. A method of fabricating the semiconductor memory device is also provided.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: July 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Ki-Sun Kim, Jae-Young Ahn
  • Patent number: 7749846
    Abstract: A method of forming a contact structure includes forming an isolation region defining active regions in a semiconductor substrate. Gate patterns extending to the isolation region while crossing the active regions are formed. A sacrificial layer is formed on the semiconductor substrate having the gate patterns. Sacrificial patterns remaining on the active regions are formed by patterning the sacrificial layer. Molding patterns are formed on the isolation region. Contact holes exposing the active regions at both sides of the gate patterns are formed by etching the sacrificial patterns using the molding patterns and the gate patterns as an etching mask. Contact patterns respectively filling the contact holes are formed. The disclosed method of forming a contact structure may be used in fabricating a semiconductor device.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Sun-Hoo Park, Soo-Ho Shin
  • Patent number: 7732279
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 8, 2010
    Assignee: Samsung Electronics, Co., Ltd
    Inventor: Joon-Soo Park
  • Patent number: 7714372
    Abstract: Dynamic random access memory (DRAM) devices include first node pads and second node pads alternately arranged in a first direction on a substrate to form a first pad column. A width of the second node pads in a second direction, perpendicular to the first direction, is greater than a width of the first node pads in the second direction. Storage electrodes are electrically connected to the first node pads and the second node pads. Bit line pads may be arranged in the first direction on the substrate to form a second pad column. The second pad column is adjacent the first pad column and displaced therefrom in the second direction.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: May 11, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Hyun Kim
  • Patent number: 7659567
    Abstract: In a semiconductor device, a semiconductor substrate is sectioned into a logic-circuit formation section in which a plurality of logic circuits are formed, and a memory formation section in which a plurality of memory cells are formed. A multi-layered insulating layer is formed on the substrate, and a conductive structure is formed in the insulating layer at the logic-circuit formation section. Capacitors are formed in the insulating layer at the memory formation section. Each of the capacitors includes a lower capacitor electrode, a capacitor dielectric layer formed on the lower capacitor electrode, and an upper capacitor electrode formed on the capacitor dielectric layer, with upper is end faces of the upper capacitor electrodes being coplanar with an upper end face of the conductive structure. Bit-line layers are formed in the insulating layer below the lower capacitor electrodes at the memory formation section.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yasuyuki Aoki
  • Patent number: 7632744
    Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 15, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
  • Patent number: 7615480
    Abstract: Presented are methods of fabricating three-dimensional integrated circuits that include post-contact back end of line through-hole via integration for the three-dimensional integrated circuits. In one embodiment, the method comprises forming metal plug contacts through a hard mask and a premetal dielectric to transistors in the semiconductor. The method also includes etching a hole for a through-hole via through the hard mask to the semiconductor using a patterned photoresist process, removing the patterned photoresist and using a hard mask process to etch the hole to an amount into the semiconductor. The method further includes depositing a dielectric liner to isolate the hole from the semiconductor, depositing a gapfill metal to fill the hole, and planarizing the surface of the substrate to the hard mask. Another aspect of the present invention includes three-dimensional integrated circuits fabricated according to methods of the present invention.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: November 10, 2009
    Assignee: Lam Research Corporation
    Inventors: John Boyd, Fritz Redeker, Yezdi Dordi, Hyungsuk Alexander Yoon, Shijian Li
  • Patent number: 7602002
    Abstract: The present invention provides a semiconductor device comprising: a semiconductor substrate having a DRAM portion and a Logic portion; a first transistor in said DRAM portion; a second transistor in said Logic portion; a first insulating layer covering said DRAM portion and said Logic portion; a first contact plug formed in said first insulating layer in electrically contact with said first transistor in said DRAM portion; a first bit line for said DRAM portion formed on said first insulating layer in electrically contact with said first contact plug; a nitride film formed in contact with said first insulating layer to cover said DRAM portion and said Logic portion, wherein said first bit line locating between said first insulating layer and said nitride film.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: October 13, 2009
    Assignee: NEC Electronics Corporation
    Inventors: Tomoko Inoue, Ken Inoue
  • Publication number: 20090218609
    Abstract: A semiconductor memory device may include a substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns of active regions in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair. A plurality of bitlines on the substrate may cross the plurality of wordline pairs, with each bitline being electrically coupled to a respective drain portion of an active region of each column, and with each bitline being arranged between the respective drain portion and another drain portion of an adjacent active region of the same column.
    Type: Application
    Filed: May 13, 2009
    Publication date: September 3, 2009
    Inventors: Doo-Hoon Goo, Han-Ku Cho, Joo-Tae Moon, Sang-Gyun Woo, Gi-Sung Yeo, Kyoung-Yun Baek
  • Publication number: 20090218610
    Abstract: A semiconductor memory device may include a semiconductor substrate having a plurality of active regions wherein each active region has a length in a direction of a first axis and a width in a direction of a second axis. The length may be greater than the width, and the plurality of active regions may be provided in a plurality of columns in the direction of the second axis. A plurality of wordline pairs may be provided on the substrate, with each wordline pair crossing active regions of a respective column of active regions defining a drain portion of each active region between wordlines of the respective wordline pair.
    Type: Application
    Filed: May 13, 2009
    Publication date: September 3, 2009
    Inventors: Don-Hoon Goo, Han-Ku Cho, Joo-Tac Moon, Sang-Gyun Woo, Gi-Sung Yeo, Kyoung-Yun Baek
  • Patent number: 7575992
    Abstract: A method of forming a micro pattern in a semiconductor device is disclosed. An oxide film mask is divided into a cell oxide film mask and a peri oxide film mask. Therefore, a connection between the cell and the peri region can be facilitated. A portion of a top surface of a first oxide film pattern between a region in which a word line will be formed and a region in which a select source line will be formed is removed. Accordingly, the space can be increased and program disturbance in the region in which the word line will be formed can be prevented. Furthermore, a pattern having a line of 50 nm and a space of 100 nm or a pattern having a line of 100 nm and a space of 50 nm, which exceeds the limitation of the ArF exposure equipment, can be formed using a pattern, which has a line of 100 nm and a space of 200 nm and therefore has a good process margin and a good critical dimension regularity.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 18, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Woo Yung Jung, Jong Hoon Kim
  • Patent number: 7531863
    Abstract: A protective insulating film is deposited over first and second field-effect transistors formed on a semiconductor substrate. A capacitor composed of a capacitor lower electrode, a capacitor insulating film composed of an insulating metal oxide film, and a capacitor upper electrode is formed on the protective insulating film. A first contact plug formed in the protective insulating film provides a direct connection between the capacitor lower electrode and an impurity diffusion layer of the first field-effect transistor. A second contact plug formed in the protective insulating film provides a direct connection between the capacitor upper electrode and an impurity diffusion layer of the second field-effect transistor.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: May 12, 2009
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihisa Nagano, Yasuhiro Uemoto
  • Patent number: 7524724
    Abstract: A method of fabricating a storage capacitor includes depositing a first titanium nitride layer on a dielectric layer using a chemical vapor deposition technique or an atomic layer deposition technique performed at a first temperature with reactant gases of titanium chloride (TiCl4) gas and ammonia (NH3) gas at a predetermined flow ratio and depositing a second titanium nitride layer on the first titanium nitride layer using a chemical vapor deposition process performed at a second temperature that is greater than the first temperature with reactant gases of titanium chloride (TiCl4) gas and ammonia (NH3) gas.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: April 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Rak-Hwan Kim, Hyun-Seok Lim, Young-Joo Cho, In-Sun Park, Hyeon-Deok Lee, Hyun-Suk Lee
  • Patent number: 7495276
    Abstract: A radio frequency arrangement is disclosed, having a first semiconductor body with an integrated circuit formed therein and also with first and second terminal locations. A second semiconductor body with a charge store integrated therein and with a first and second contact locations is arranged with its contact locations mutually facing the terminal locations of the first semiconductor body. The first terminal and the first contact location and also the second terminal and the second contact location are coupled to one another in order thus to form an integrated circuit and also a charge store for supplying the integrated circuit. Realizing the integrated circuit and the charge store separately enables a simple and cost-effective manufacturing procedure for the individual components.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: February 24, 2009
    Assignee: Infineon Technologies AG
    Inventor: Josef Fenk
  • Publication number: 20090032857
    Abstract: A technique is provided which makes it possible to achieve both of a reduction in contact resistance in a memory device and a reduction in contact resistance in a logic device even when oxidation is performed during formation of dielectric films of capacitors. Conductive barrier layers (82) are provided in the top ends of contact plugs (83b) electrically connected to ones of source/drain regions (59). Lower electrodes (70) of capacitors (73) are formed in contact with the conductive barrier layers (82) of the contact plugs (83b) and then dielectric films (71) and upper electrodes (72) of the capacitors (73) are sequentially formed. In the logic region, contact plugs (25) are formed in an upper layer so that they are in contact respectively with contact plugs (33) electrically connected to source/drain regions (9).
    Type: Application
    Filed: October 7, 2008
    Publication date: February 5, 2009
    Applicant: Renesas Technology Corp.
    Inventor: Masahiko TAKEUCHI
  • Patent number: 7470598
    Abstract: A method of forming a circuit includes providing a first substrate; positioning an interconnect region on a surface of the first substrate; providing a second substrate; positioning a device structure on a surface of the second substrate, the device structure including a stack of at least three doped semiconductor material layers; and bonding the device structure to the interconnect region.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: December 30, 2008
    Inventor: Sang-Yun Lee
  • Patent number: 7439569
    Abstract: A technique is provided which makes it possible to achieve both of a reduction in contact resistance in a memory device and a reduction in contact resistance in a logic device even when oxidation is performed during formation of dielectric films of capacitors. Conductive barrier layers (82) are provided in the top ends of contact plugs (83b) electrically connected to ones of source/drain regions (59). Lower electrodes (70) of capacitors (73) are formed in contact with the conductive barrier layers (82) of the contact plugs (83b) and then dielectric films (71) and upper electrodes (72) of the capacitors (73) are sequentially formed. In the logic region, contact plugs (25) are formed in an upper layer so that they are in contact respectively with contact plugs (33) electrically connected to source/drain regions (9).
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: October 21, 2008
    Assignee: Renesas Technology Corp.
    Inventor: Masahiko Takeuchi
  • Publication number: 20080227251
    Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.
    Type: Application
    Filed: April 14, 2008
    Publication date: September 18, 2008
    Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
  • Publication number: 20080203456
    Abstract: Dynamic random access memory (DRAM) devices include first node pads and second node pads alternately arranged in a first direction on a substrate to form a first pad column. A width of the second node pads in a second direction, perpendicular to the first direction, is greater than a width of the first node pads in the second direction. Storage electrodes are electrically connected to the first node pads and the second node pads. Bit line pads may be arranged in the first direction on the substrate to form a second pad column. The second pad column is adjacent the first pad column and displaced therefrom in the second direction.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 28, 2008
    Inventor: Dong-Hyun Kim
  • Patent number: 7413950
    Abstract: A capacitor is provided including a storage node contact pad and a storage electrode. The storage electrode includes at least two cylindrical conductive patterns. The at least two cylindrical conductive patterns are electrically coupled to a portion of a surface of the storage node contact pad. Related methods are also provided.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: August 19, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hee-Sung Kim
  • Publication number: 20080149978
    Abstract: A memory device, comprising a semiconductor substrate with at least one storage cell, the storage cell comprising a storage element and a selection transistor, wherein the memory device further comprises a storage element contact assigned to the storage cell, the storage element contact extending from the selection transistor to the storage element along an axis that at least partially runs obliquely with respect to a direction perpendicular to the substrate surface.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventor: Till Schloesser
  • Publication number: 20080111171
    Abstract: In a node structure under a capacitor in a ferroelectric random access memory device and a method of forming the same, top surfaces of the node structures are disposed at substantially the same level as a top surface of an interlayer insulating layer surrounding the node structures, and thus crystal growth of a ferroelectric in the capacitor can be stabilized. To this end, a node insulating pattern is formed on a semiconductor substrate. A node defining pattern surrounding the node insulating pattern is disposed under the node insulating pattern. A node conductive pattern is disposed between the node defining pattern and the node insulating pattern.
    Type: Application
    Filed: June 12, 2007
    Publication date: May 15, 2008
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Heung-Jin Joo, Yoon-Jong Song, Ki-Nam Kim
  • Publication number: 20080084731
    Abstract: A dynamic random access memory (DRAM) device may include: a semiconductor substrate including an active fin, an active region, and an isolation layer; one or more cell gate structures on a central portion of the active fin; one or more dummy gate structures on a peripheral portion of the active fin; one or more source/drain regions at an upper portion of the active fin adjacent to the one or more cell gate structures; a first insulating interlayer on the semiconductor substrate; a bit line structure electrically connected to the at least one source region; a second insulating interlayer on the first insulating interlayer; one or more capacitors electrically connected to the at least one drain region; a third insulating interlayer on the second insulating interlayer; and a wire connected to the active region and at least one of the one or more dummy gate structures.
    Type: Application
    Filed: August 29, 2007
    Publication date: April 10, 2008
    Inventors: Chul Lee, Dong-Gun Park, Woun-Suck Yang, Makoto Yoshida
  • Patent number: 7345333
    Abstract: A method used during the formation of a semiconductor device comprises providing a wafer substrate assembly comprising a plurality of digit line plug contact pads and capacitor storage cell contact pads which contact a semiconductor wafer. A dielectric layer is provided over the wafer substrate assembly and etched to expose the digit line plug contact pads, and a liner is provided in the opening. A portion of the digit line plug is formed, then the dielectric layer is etched again to expose the capacitor storage cell contact pads. A capacitor bottom plate is formed to contact the storage cell contact pads, then the dielectric layer is etched a third time using the liner and the bottom plate as an etch stop layer. A capacitor cell dielectric layer and capacitor top plate are formed which provide a double-sided container cell. An additional dielectric layer is formed, then the additional dielectric layer, cell top plate, and the cell dielectric are etched to expose the digit line plug portion.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Scott J. DeBoer, Ronald A. Weimer, John T. Moore
  • Patent number: 7332395
    Abstract: A method of manufacturing a stack capacitance type capacitor is provided, which prevents the problem that the capacitor cannot be formed because a lower electrode collapses with the external wall thereof exposed in forming the lower electrode of the capacitor in a deep hole formed in silicon oxide, and removing silicon oxide that is a support base material for the lower electrode using a solution containing hydrogen fluoride to expose the external wall of the lower electrode. According to the invention, the support base material in which a deep hole is formed is formed with an amorphous carbon film, the amorphous carbon film used as the support base material for the lower electrode is removed by dry etching after forming the lower electrode, and it is thereby possible to prevent the lower electrode from collapsing.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: February 19, 2008
    Assignee: Elpida Memory Inc.
    Inventor: Naoki Yokoi
  • Patent number: 7329918
    Abstract: A semiconductor memory device according to embodiments of the invention includes storage nodes and resistors. A method of manufacturing the semiconductor memory device according to some embodiments of the invention includes forming an interlayer insulation layer on a semiconductor substrate including a memory cell array area and a core/perimeter area; forming a first etch stop layer thereon; forming a plurality of contact plugs arranged linearly in at least one direction on the memory cell array area; forming a first conductive layer on the resultant structure; forming a second etch stop layer thereon; etching the second etch stop layer and the first conductive layer and forming landing pads and resistors arranged non-linearly in at least one direction; and forming storage nodes on the entire outer lateral surfaces of which are exposed, on the landing pads.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: February 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Hyun Cho, Tae-Young Chung, Yong-Seok Ahn
  • Patent number: 7304341
    Abstract: A semiconductor device comprises: an insulating film formed over a semiconductor substrate and having a first recess; a plurality of capacitor elements each of which is composed of a capacitor lower electrode formed on wall and bottom portions of the first recess and having a second recess, a capacitor insulating film of a dielectric film formed on wall and bottom portions of the second recess and having a third recess, and a capacitor upper electrode formed on wall and bottom portions of the third recess; and a conductive layer (referred hereinafter to as a low-resistance conductive layer) which is formed to cover at least portions of the respective capacitor upper electrodes constituting the plurality of capacitor elements and to extend across the plurality of capacitor elements and which has a lower resistance than the capacitor upper electrode.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: December 4, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takumi Mikawa, Toru Nasu
  • Patent number: 7288806
    Abstract: The invention includes memory arrays, and methods which can be utilized for forming memory arrays. A patterned etch stop can be used during memory array fabrication, with the etch stop covering storage node contact locations while leaving openings to bitline contact locations. An insulative material can be formed over the etch stop and over the bitline contact locations, and trenches can be formed through the insulative material. Conductive material can be provided within the trenches to form bitline interconnect lines which are in electrical contact with the bitline contact locations, and which are electrically isolated from the storage node contact locations by the etch stop. In subsequent processing, openings can be formed through the etch stop to the storage node contact locations. Memory storage devices can then be formed within the openings and in electrical contact with the storage node contact locations.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 30, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Fred D. Fishburn
  • Publication number: 20070218682
    Abstract: Bit lines having first conductive patterns and bit line mask patterns are formed on a first insulating layer between capacitor contact regions of a substrate. An oxide second insulating layer is formed on the bit lines and contact patterns are formed to open storage node contact hole regions corresponding to portions of the second insulating layer. First spacers are formed on sidewalls of the etched portions. The second and first insulating layers are etched to form storage node contact holes exposing the capacitor contact regions. Simultaneously, second spacers of the second insulating layer are formed beneath the first spacers. A second conductive layer fills the storage node contact holes to form storage node contact pads. A loss of the bit line mask pattern decreases due to the reduced thickness of the bit line mask pattern and a bit line loading capacitance decreases due to the second spacers.
    Type: Application
    Filed: May 21, 2007
    Publication date: September 20, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-Goo LEE, Cheol-Ju YUN
  • Patent number: 7187027
    Abstract: First and second wirings are formed on a first insulating film. Each of the wirings is arranged so that a conductive film, a silicon oxide film and a silicon nitride film are laminated. Thereafter, a silicon oxide insulating film is formed on the whole surface. The silicon oxide insulating film is etched so that a contact hole is formed between the first and second wirings. Since the silicon oxide film and the silicon nitride film exist on the conductive film of each wiring, the conductive film is not exposed at the time of etching. Thereafter, an insulating film is formed on a side wall of the contact hole, and the conductive film exposed through the contact hole is covered by the insulating film.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: March 6, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusuke Kohyama, Takashi Ohsawa, Shizuo Sawada
  • Patent number: 7176552
    Abstract: A semiconductor memory device comprises a cell capacitor having a first buried contact connected with a semiconductor substrate of a cell region and a first storage node connected with the first buried contact, and a decoupling capacitor for reducing a coupling noise, having a plurality of second buried contacts formed on a semiconductor substrate portion adjacent in the cell region and extended in parallel with each other and a plurality of second storage nodes connected with the second buried contacts.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: February 13, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je-Min Park, Yoo-Sang Hwang
  • Patent number: 7145193
    Abstract: In a peripheral circuit region of a DRAM, two connection holes, for connecting a first layer line and a second layer line electrically are opened separately in two processes. After forming the connection holes, plugs are formed in the respective connection holes.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: December 5, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Nakamura, Isamu Asano, Keizou Kawakita, Satoru Yamada
  • Patent number: 7045846
    Abstract: Disclosed are a memory device and a method for fabricating the same. The memory device includes: a substrate provided with a trench; a bit line contact junction formed beneath the trench; a plurality of storage node contact junctions formed outside the trench; and a plurality of gate structures each being formed on the substrate disposed between the bit line contact junction and one of the storage node contact junctions. Each sidewall of the trench becomes a part of the individual channels and thus, channel lengths of the transistors in the cell region become elongated. Accordingly, the storage node contact junctions have a decreased level of leakage currents, thereby increasing data retention time.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: May 16, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventors: Se-Aug Jang, Tae-Woo Jung, Seo-Min Kim, Woo-Jin Kim, Hyung-Soon Park, Young-Bog Kim, Hong-Seon Yang, Hyun-Chul Sohn, Eung-Rim Hwang