Electrically Programmable Rom (epo) Patents (Class 257/E27.103)
  • Patent number: 8017989
    Abstract: A nonvolatile semiconductor memory device including a semiconductor substrate having a semiconductor layer and an insulating material provided on a surface thereof, a surface of the insulating material is covered with the semiconductor layer, and a plurality of memory cells provided on the semiconductor layer, the memory cells includes a first dielectric film provided by covering the surface of the semiconductor layer, a plurality of charge storage layers provided above the insulating material and on the first dielectric film, a plurality of second dielectric films provided on the each charge storage layer, a plurality of conductive layers provided on the each second dielectric film, and an impurity diffusion layer formed partially or overall at least above the insulating material and inside the semiconductor layer and at least a portion of a bottom end thereof being provided by an upper surface of the insulating material.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Ichiro Mizushima, Takashi Nakao, Akihito Yamamoto, Takashi Suzuki, Masahiro Kiyotoshi
  • Patent number: 8013363
    Abstract: Under one aspect, a nonvolatile nanotube diode includes: a substrate; a semiconductor element disposed over the substrate, the semiconductor element having an anode and a cathode and capable of forming an electrically conductive pathway between the anode and the cathode; a nanotube switching element disposed over the semiconductor element, the nanotube switching element including a conductive contact and a nanotube fabric element capable of a plurality of resistance states; and a conductive terminal disposed in spaced relation to the conductive contact, wherein the nanotube fabric element is interposed between and in electrical communication with the conductive contact and the conductive contact is in electrical communication with the cathode, and wherein in response to electrical stimuli applied to the anode and the conductive terminal, the nonvolatile nanotube diode is capable of forming an electrically conductive pathway between the anode and the conductive terminal.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, X. M. Henry Huang, Ramesh Sivarajan, Eliodor G. Ghenciu, Steven L. Konsek, Mitchell Meinhold, Jonathan W. Ward, Darren K. Brock
  • Patent number: 8008704
    Abstract: To reduce capacitance between each adjacent two word lines in a semiconductor memory device, a first insulating film is formed, with a first gate insulating film thereunder, in an interstice between gates respectively of each adjacent two memory transistors, and in an interstice between a gate of a selective transistor and a gate of a memory transistor adjacent thereto. Additionally, a second insulating film is formed on the first insulating film, sides of the gate of each memory transistor, and a side, facing the memory transistor, of the gate of the selective transistor. A third insulating film is formed parallel to a semiconductor substrate so as to cover a metal silicide film, the first and second insulating films and fourth and fifth insulating films. A void part is provided in the interstice between each adjacent two gates of the memory transistors, and in the interstice between the gate of the selective transistor and the gate of the memory transistor adjacent thereto.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nitta
  • Patent number: 8008732
    Abstract: A semiconductor memory includes a plurality of stripe-like active areas formed by stacking, in a direction perpendicular to a substrate, a plurality of layers extending parallel to the substrate, a first gate electrode formed on first side surfaces of the active areas, the first side surfaces being perpendicular to the substrate, a second gate electrode formed on second side surfaces of the active areas, the second side surfaces being perpendicular to the substrate. The layers are patterned in self-alignment with each other, intersections of the active areas and the first gate electrode form a plurality of memory cells, and the plurality of memory cells in an intersecting plane share the first gate electrode.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 30, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kiyotoshi, Akihito Yamamoto, Yoshio Ozawa, Fumitaka Arai, Riichiro Shirota
  • Patent number: 8008146
    Abstract: A method (that produces a structure) patterns at least two wires of semiconductor material such that a first wire of the wires has a larger perimeter than a second wire of the wires. The method performs an oxidation process simultaneously on the wires to form a first gate oxide on the first wire and a second gate oxide on the second wire. The first gate oxide is thicker than the second gate oxide. The method also forms gate conductors over the first gate oxide and the second gate oxide, forms sidewall spacers on the gate conductors, and dopes portions of the first wire and the second wire not covered by the sidewall spacers and the gate conductors to form source and drain regions within the first wire and the second wire.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: August 30, 2011
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Andres Bryant, Guy Cohen, Jeffrey W. Sleight
  • Patent number: 8004031
    Abstract: Method and device embodiments are described for fabricating MOSFET transistors in a semiconductor also containing non-volatile floating gate transistors. MOSFET transistor gate dielectric smiling, or bird's beaks, are adjustable by re-oxidation processing. An additional re-oxidation process is performed by opening a poly-silicon layer prior to forming an inter-poly oxide dielectric provided for the floating gate transistors.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: August 23, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 7999303
    Abstract: The present invention provides a high-performance MONOS-type NAND-type nonvolatile semiconductor memory device using an aluminum oxide film as a part of gate insulating film in a select transistor and as a block insulating film in a memory transistor. The NAND-type nonvolatile semiconductor memory device has, on a semiconductor substrate, a plurality of memory cell transistors connected to each other in series and a select transistor. The memory cell transistor includes a first insulating film on the semiconductor substrate, a charge trapping layer, a second insulating film made of aluminum oxide, a first control gate electrode, and a first source/drain region. The select transistor includes a third insulating film on the semiconductor substrate, a fourth insulating film made of an aluminum oxide containing at least one of a tetravalent cationic element, a pentavalent cationic element, and N (nitrogen), a second control gate electrode, and a second source/drain region.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoko Kikuchi, Yasushi Nakasaki, Koichi Muraoka
  • Patent number: 7999307
    Abstract: A nonvolatile memory device and method of making the same are provided. Memory cells may be provided in a cell area wherein each memory cell has an insulative structure including a tunnel insulating layer, a floating trap layer and a blocking layer, and a conductive structure including an energy barrier layer, a barrier metal layer and a low resistance gate electrode. A material having a lower resistivity may be used as the gate electrode so as to avoid problems associated with increased resistance and to allow the gate electrode to be made relatively thin. The memory device may further include transistors in the peripheral area, which may have a gate dielectric layer, a lower gate electrode of poly-silicon and an upper gate electrode made of metal silicide, allowing an improved interface with the lower gate electrode without diffusion or reaction while providing a lower resistance.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Hyung Kim, Jung-Dal Choi, Jang-Hyun You
  • Publication number: 20110193152
    Abstract: A semiconductor device includes a plurality of high-voltage insulated-gate field-effect transistors arranged in a matrix form on the main surface of a semiconductor substrate and each having a gate electrode, a gate electrode contact formed on the gate electrode, and a wiring layer which is formed on the gate electrode contacts adjacent in a gate-width direction to electrically connect the gate electrodes arranged in the gate-width direction. And the device includes shielding gates provided on portions of an element isolation region which lie between the transistors adjacent in the gate-width direction and gate-length direction and used to apply reference potential or potential of a polarity different from that of potential applied to the gate of the transistor to turn on the current path of the transistor to the element isolation region.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 11, 2011
    Inventors: Hiroyuki Kutsukake, Kikuko Sugimae, Takeshi Kamigaichi
  • Publication number: 20110180864
    Abstract: A memory device is provided, including a substrate, a conductive layer, a charge storage layer, a plurality of isolation structures, a plurality of first doped regions, and a plurality of second doped regions. The substrate has a plurality of trenches. The conductive layer is disposed on the substrate and fills the trenches. The charge storage layer is disposed between the substrate and the conductive layer. The isolation structures are disposed in the substrate between two adjacent trenches, respectively. The first doped regions are disposed in an upper portion of the substrate between each isolation structure and each trench, respectively. The second doped regions are disposed in the substrate under a bottom portion of the trenches, in which each isolation structure is disposed between two adjacent second doped regions.
    Type: Application
    Filed: January 22, 2010
    Publication date: July 28, 2011
    Applicant: MACRONIX International Co., Ltd.
    Inventors: YU-FONG HUANG, Miao-Chih Hsu, Kuan-Fu Chen, Tzung-Ting Han
  • Patent number: 7982257
    Abstract: A semiconductor device according to an embodiment of the present invention has a bit line and a word line. The device includes a substrate which is provided with first trenches extending in a bit-line direction and has side surfaces forming sidewalls of the first trenches, the substrate being provided with bird's beaks at upper edges of the side surfaces, a first gate insulator formed on the substrate between the first trenches, a floating gate formed on the first gate insulator between the first trenches and located between second trenches extending in a word-line direction, the floating gate not being provided with bird's beaks at lower edges of side surfaces facing the first trenches, a second gate insulator formed on the floating gate between the second trenches, and a control gate formed on the second gate insulator between the second trenches.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: July 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nobuhito Kawada, Hiroshi Akahori
  • Patent number: 7982259
    Abstract: A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: July 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Ichige, Fumitaka Arai, Riichiro Shirota, Toshitake Yaegashi, Yoshio Ozawa, Akihito Yamamoto, Ichiro Mizushima, Yoshihiko Saito
  • Publication number: 20110169071
    Abstract: A memory string is formed to surround the side surface of a columnar portion and a charge storing layer, and includes plural first conductive layers functioning as gates of memory transistors, and a first protecting layer stacked to protect an upper portion of the plural first conductive layers. The plural first conductive layers constitute a first stairway portion formed stepwise such that their ends are located at different positions. Each first conductive layer constitutes a step of the first stairway portion. A top surface of a first portion of the first stairway portion is covered with the first protecting layer including a first number of layers, and A tope surface of a second portion of the first stairway portion located at a lower level than the first portion is covered with the first protecting layer including a second number of layers fewer than the first number of layers.
    Type: Application
    Filed: March 19, 2010
    Publication date: July 14, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tsuneo Uenaka, Kazuyuki Higashi
  • Patent number: 7977731
    Abstract: A NOR flash memory has a plurality of memory cell transistors, wherein each memory cell transistor shares the source diffusion layer with another memory cell transistor adjacent thereto on one side thereof in the column direction and shares the drain diffusion layer with another memory cell transistor adjacent thereto on the other side thereof in the column direction, and the width of the source diffusion layer in the column direction is narrower than the width of the drain diffusion layer in the column direction.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Asada, Hideyuki Yamawaki
  • Publication number: 20110163370
    Abstract: A semiconductor memory includes memory cell transistors including a tunnel insulating film, a floating gate electrode, a first insulating film, a control gate electrode, and a first metal salicide film; low-voltage transistors having a first p-type source region and a first p-type drain region, a first gate insulating film, and a first gate electrode of an n conductivity type having the same dose of a first p-type impurity as with the first p-type source region; and high-voltage transistors having a second p-type source region and a second p-type drain region, a second gate insulating film thicker than the first gate insulating film, and a second gate electrode of an n conductivity type having the same dose of a second p-type impurity as with the second p-type source region.
    Type: Application
    Filed: March 4, 2011
    Publication date: July 7, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Masato Endo
  • Patent number: 7973354
    Abstract: A gate pattern is disclosed that includes a semiconductor substrate, a lower conductive pattern, an upper conductive pattern, and a sidewall conductive patter. The lower conductive pattern is on the substrate. The insulating pattern is on the lower conductive pattern. The upper conductive pattern is on the insulating pattern opposite to the lower conductive pattern. The sidewall conductive pattern is on at least a portion of sidewalls of the upper conductive pattern and the lower conductive pattern. The sidewall conductive pattern electrically connects the upper conductive pattern and the lower conductive pattern. An upper edge portion of the lower conductive pattern may be recessed relative to a lower edge portion of the lower conductive pattern to define a ledge thereon. The sidewall conductive pattern may be directly on the ledge and sidewall of the recessed upper edge portion of the lower conductive pattern.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi, Joon-Hee Lee, Hwa-Kyung Shin
  • Publication number: 20110156132
    Abstract: A nonvolatile semiconductor memory device according to an embodiment includes memory strings which have a plurality of transistors including gate electrode films formed over sides of columnar semiconductor films on gate dielectric films in a height direction of the semiconductor films, and which are arranged in a matrix shape substantially perpendicularly above a substrate. The gate electrode films of the transistors at same height of the memory strings arranged in a first direction are connected to one another. A distance between the semiconductor films at least in a forming position of the transistor at an uppermost layer of the memory strings adjacent to each other in the first direction is smaller than double of thickness of the gate dielectric films.
    Type: Application
    Filed: May 20, 2010
    Publication date: June 30, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masahiro Kiyotoshi
  • Patent number: 7968926
    Abstract: A memory cell includes a semiconductor substrate; and a first, a second, and a third transistor. The first transistor includes a first dielectric over the semiconductor substrate; and a first floating gate over the first dielectric. The second transistor is electrically coupled to the first transistor and includes a second dielectric over the semiconductor substrate; and a second floating gate over the second dielectric. The first and the second floating gates are electrically disconnected. The memory cell further includes a first capacitor; a second capacitor electrically coupled to the first capacitor; a third capacitor; a fourth capacitor electrically coupled to the third capacitor, wherein each of the first, the second, the third and the fourth capacitors includes the semiconductor substrate as one of the capacitor plates. The third transistor is a selector of the memory cell and is electrically coupled to the first and the second transistors.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: June 28, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Yi Huang, Te-Hsun Hsu, Cheng Hsiang Huang
  • Patent number: 7964909
    Abstract: A plurality of mesas are formed in the substrate. Each pair of mesas forms a trench. A plurality of diffusion areas are formed in the substrate. A mesa diffusion area is formed in each mesa top and a trench diffusion area is formed under each trench. A vertical, non-volatile memory cell is formed on each sidewall of the trench. Each memory cell is comprised of a fixed threshold element located vertically between a pair of non-volatile gate insulator stacks. In one embodiment, each gate insulator stack is comprised of a tunnel insulator formed over the sidewall, a deep trapping layer, and a charge blocking layer. In another embodiment, an injector silicon rich nitride layer is formed between the deep trapping layer and the charge blocking layer.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: June 21, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Publication number: 20110140189
    Abstract: An electrically erasable programmable read-only memory includes a first polysilicon layer, a second polysilicon layer and a third polysilicon layer, the first polysilicon layer and the third polysilicon layer forming a control gate and the second polysilicon layer forming a floating gate. The first polysilicon layer is horizontally disposed in series with the second polysilicon layer and is connected to the third polysilicon layer, so that the control gate encloses all of the floating gate except for a tunnel surface of the floating gate.
    Type: Application
    Filed: June 9, 2010
    Publication date: June 16, 2011
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Jin-Yeon KANG
  • Patent number: 7956408
    Abstract: A nonvolatile semiconductor memory device relating to one embodiment of this invention includes a substrate, a plurality of memory strings formed on said substrate, said memory string having a first select gate transistor, a plurality of memory cells and a second select gate transistor, said first select gate transistor having a first pillar semiconductor, a first gate insulation layer formed around said first pillar semiconductor and a first gate electrode being formed around said first gate insulation layer; said memory cell having a second pillar semiconductor, a first insulation layer formed around said second pillar semiconductor, a storage layer formed around said first insulation layer, a second insulation layer formed around said storage layer and first to nth electrodes (n is a natural number 2 or more) being formed around said second insulation layer, said first to nth electrodes being spread in two dimensions respectively, said second select gate transistor having a third pillar semiconductor, a se
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 7, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiyuki Enda, Hirosyoshi Tanimoto, Takashi Izumida
  • Patent number: 7948038
    Abstract: In device isolation trenches, a first device-isolation insulator film is formed to have recesses thereon and a second device-isolation insulator film is formed in the recesses. The uppermost portions at both ends of the first device-isolation insulator film are located higher than the uppermost portions at both ends of the second device-isolation insulator film.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Koki Ueno
  • Patent number: 7948052
    Abstract: A dual-bit memory device is provided which includes trench isolation material disposed near bit line contact areas. For example, in one implementation a semiconductor memory device is provided in which each memory cell can store two bits of information. The memory device comprises a substrate, first and second buried bit lines in the substrate, a first bit line contact on the first buried bit line, a second bit line contact on the second buried bit line, and an insulator region disposed in the substrate between the first buried bit line and the second buried bit line. The insulator region prevents a current from flowing between the first buried bit line and the second buried bit line.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 24, 2011
    Assignee: Spansion LLC
    Inventor: Wei Zheng
  • Patent number: 7948035
    Abstract: The present invention relates to a flash memory array. The flash memory array includes at least two word lines of gate electrode material. At least one of the word lines is connected through a first metal level to a discharge circuit, while other word line(s) may connect to a discharge circuit through a first and second metal level. The memory array further includes a shorting path between the word lines of the memory array. The shorting path is a high resistance layer of undoped gate electrode material. The resistance value of the gate electrode material is such that the word lines can be used to read, write, or erase without effecting each other, but that during the formation of a first metal level, as charges will build up on a first word line which requires a second metal level to connect to its discharge junction circuit, it will short the first word line to an adjacent second word line that has a connection to its junction circuit on the first metal level.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 24, 2011
    Assignee: Spansion LLC
    Inventors: Nian Yang, Joon-Heong Ong, Jiani Zhang
  • Publication number: 20110115014
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a plurality of semiconductor pillars and a charge storage film. The stacked body is provided on the substrate, with a plurality of insulating films alternately stacked with a plurality of electrode films, and includes a hydrophobic layer provided between one of the insulating films and one of the electrode films. The hydrophobic layer has higher hydrophobicity than the electrode films. The plurality of semiconductor pillars extend in a stacking direction of the stacked body and pierce the stacked body, and the charge storage film is provided between the electrode films and one of the semiconductor pillars.
    Type: Application
    Filed: July 20, 2010
    Publication date: May 19, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daigo ICHINOSE, Tadashi Iguchi
  • Patent number: 7943983
    Abstract: Memory devices having an increased effective channel length and/or improved TPD characteristics, and methods of making the memory devices are provided. The memory devices contain two or more memory cells on a semiconductor substrate and bit line dielectrics between the memory cells. The memory cell contains a pair of first bit lines and a pair of second bit lines. The first and second bit lines can be formed by an implant process using first and second spacers that have different lateral lengths from each other. The spacers can be used to offset the implants, thereby controlling the lateral lengths of the bit lines.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 17, 2011
    Assignee: Spansion LLC
    Inventors: Huaqiang Wu, Hiro Kinoshita, Ning Cheng, Arturo Ruiz, Jihwan Choi
  • Patent number: 7939878
    Abstract: There is provided a nonvolatile semiconductor memory of an aspect of the present invention includes a semiconductor substrate, first and second isolation insulating layers provided in the semiconductor substrate, a channel region between the first and second isolation insulating layers, a gate insulating film on the channel region, a floating gate electrode on the gate insulating film, an inter-gate insulating film on the floating gate electrode, and a control gate electrode on the inter-gate insulating film, wherein the isolation insulating layer is made up of a thermal oxide film provided on a bottom surface and a side surface of a concave portion of the semiconductor substrate and an insulating film which is provided on the thermal oxide film and fills the concave portion, and a dimension of the floating gate electrode in a channel width direction is more than a dimension of the channel width.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 10, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Watanabe
  • Patent number: 7936004
    Abstract: A nonvolatile semiconductor memory device includes a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; a second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory string and the first to nth electrodes of at least two other memory strings which are adjacent to the memory string in two directions are shared as first to nth conductor layers spread in two dimensions.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: May 3, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Patent number: 7932147
    Abstract: A flash memory device may include a device isolation layer and an active area formed over a semiconductor substrate, a memory gate formed over the active area, and a control gate formed over the semiconductor substrate including the memory gate, wherein the active area, where a source contact is to be formed, has the same interval spacing as a bit line, and a common source line area, where the source contact is to be formed, has an impurity area connecting neighboring active areas.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 26, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jin-Ha Park
  • Patent number: 7928499
    Abstract: A semiconductor structure includes a semiconductor substrate; a tunneling layer on the semiconductor substrate; a source region adjacent the tunneling layer; and a floating gate on the tunneling layer. The floating gate comprises a first edge having an upper portion and a lower portion, wherein the lower portion is recessed from the upper portion. The semiconductor structure further includes a blocking layer on the floating gate, wherein the blocking layer has a first edge facing a same direction as the first edge of the floating gate.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: April 19, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chang Liu, Chu-Wei Chang, Chi-Hsin Lo, Chia-Shiung Tsai
  • Patent number: 7923813
    Abstract: A One Time Programmable (OTP) memory cell (10) comprising a first, metallic layer (12) coated with a second, conductive stable transition compound (14) with an insulating layer (16) there-between. The first and second layers (12, 14) are selected according to the difference in Gibbs Free Energy between them, which dictates the chemical energy that will be generated as a result of an exothermic chemical reaction between the two materials. The materials of the first and second layers (12, 14) are highly thermally stable in themselves but, when a voltage is applied to the cell (10), a localized breakdown of the insulative layer (16) results which creates a hotspot (18) that sets off an exothermic chemical reaction between the first and second layers (12, 14). The exothermic reaction generates sufficient heat (20) to create a short circuit across the cell and therefore reduce the resistance thereof.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: April 12, 2011
    Assignee: NXP B.V.
    Inventors: Paul Van Der Sluis, Andrei Mijiritskii, Pierre H. Woerlee, Victor M. G Van Acht, Nicolaas Lambert
  • Patent number: 7919823
    Abstract: A semiconductor integrated circuit device includes a cell well, a memory cell array formed on the cell well and having a memory cell area and cell well contact area, first wiring bodies arranged in the memory cell area, and second wiring bodies arranged in the cell well contact area. The layout pattern of the second wiring bodies is the same as the layout pattern of the first wiring bodies. The cell well contact area comprises cell well contacts that have the same dopant type as the cell well and that function as source/drain regions of dummy transistors formed in the cell well contact area.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Sato, Kikuko Sugimae, Masayuki Ichige
  • Publication number: 20110073866
    Abstract: In a vertical-type non-volatile memory device, an insulation layer pattern is provided on a substrate, the insulation layer pattern having a linear shape. Single-crystalline semiconductor patterns are provided on the substrate to make contact with both sidewalls of the insulation layer pattern, the single-crystalline semiconductor patterns having a pillar shape that extends in a vertical direction relative to the substrate. A tunnel oxide layer is provided on the single-crystalline semiconductor pattern. A lower electrode layer pattern is provided on the tunnel oxide layer and on the substrate. A plurality of insulation interlayer patterns is provided on the lower electrode layer pattern, the insulation interlayer patterns being spaced apart from one another by a predetermined distance along the single-crystalline semiconductor pattern. A charge-trapping layer and a blocking dielectric layer are sequentially formed on the tunnel oxide layer between the insulation interlayer patterns.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 31, 2011
    Inventors: Young-Hoo Kim, Hyo-San Lee, Sang-Won Bae, Bo-Un Yoon, Kun-Tack Lee
  • Patent number: 7915660
    Abstract: A junction-free NAND flash memory is described, including a substrate, memory cells, source/drain inducing (SDI) gates electrically connected with each other, and a dielectric material layer. The memory cells are disposed on the substrate, wherein each memory cell includes a charge storage layer. Each SDI gate is disposed between two neighboring memory cells. The dielectric material layer is disposed between the memory cells and the SDI gates and between the SDI gates and the substrate.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: March 29, 2011
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Houng-Chi Wei, Shi-Hsien Chen, Hsin-Heng Wang, Shih-Hsiang Lin
  • Patent number: 7915663
    Abstract: A semiconductor device includes an insulation layer (14) provided on a semiconductor substrate (12), a p-type semiconductor region (16) provided on the insulation layer, an isolation region (18) provided that surrounds the p-type semiconductor region to reach the insulation layer, an n-type source region (20) and an n-type drain region (22) provided on the p-type semiconductor region, a charge storage region (30) provided above the p-type semiconductor region between the n-type source region and the n-type drain region, and an voltage applying portion that applies a different voltage to the p-type semiconductor region while any of programming, erasing and reading a different data of a memory cell that has the charge storage region is being preformed.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: March 29, 2011
    Assignee: Spansion LLC
    Inventor: Yukio Hayakawa
  • Patent number: 7910976
    Abstract: In one embodiment of the invention, a memory includes wordline jogs and adjacent spacers. Spacers from different wordlines may contact one another on either side of a drain contact and consequently isolate and self-align the contact in the horizontal and vertical directions.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: March 22, 2011
    Inventor: Richard Fastow
  • Patent number: 7911027
    Abstract: It is an object of the invention to effectively absorb a power noise and to implement the stable operation of a circuit. The invention provides a semiconductor device comprising a bypass capacitor including an MOS structure having a gate electrode formed to be extended from a power wiring region to a portion provided under an empty region which is adjacent to the power wiring region and has no other functional layer, and formed through a capacitive insulating film on a diffusion region having one conductivity type, and a substrate contact formed under a ground wiring region and fixing a substrate potential, wherein the bypass capacitor has a contact to come in contact with the power wiring which is formed on a surface of the gate electrode and has the diffusion region having the one conductivity type and a diffusion region of the substrate contact connected to each other.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: March 22, 2011
    Assignee: Panasonic Corporation
    Inventors: Mitsumi Itoh, Masatoshi Sawada, Junko Honma, Kenji Shimazaki, Hiroyuki Tsujikawa, Hiroshi Benno
  • Patent number: 7906804
    Abstract: A memory device includes a semiconductor substrate, memory elements formed above the substrate in rows and columns, bit lines and word lines selectively connected with the memory elements in the respective columns and rows, each memory element including, a first gate insulator formed above the substrate, a charge accumulation layer formed on the first gate insulator, a second gate insulator formed on the charge accumulation layer, and a control electrode formed on the second gate insulator, wherein a ratio r/d is not smaller than 0.5, where r: a radius of curvature of an upper corner portion or surface roughness of the charge accumulation layer and d: an equivalent oxide thickness of the second gate insulator in a cross section along a direction vertical to the bit lines.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: March 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Akahori, Wakako Takeuchi, Atsuhiro Sato
  • Publication number: 20110057249
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked structural body, a semiconductor pillar, and a memory unit. The stacked structural body is provided on a major surface of the substrate. The stacked structural body includes electrode films alternately stacked with inter-electrode insulating films in a direction perpendicular to the major surface. The pillar pierces the body in the direction. The memory unit is provided at an intersection between the pillar and the electrode films. The electrode films include at least one of amorphous silicon and polysilicon. The stacked structural body includes first and second regions. A distance from the second region to the substrate is greater than a distance from the first region to the substrate. A concentration of an additive included in the electrode film in the first region is different from that included in the electrode film in the second region.
    Type: Application
    Filed: August 25, 2010
    Publication date: March 10, 2011
    Inventors: Takashi NAKAO, Kazuaki Iwasawa
  • Publication number: 20110049601
    Abstract: According to one embodiment, a semiconductor device includes a substrate, conductive members, an interlayer insulating film, and a plurality of contacts. The conductive members are provided in an upper portion of the substrate or above the substrate to extend in one direction. The interlayer insulating film is provided on the substrate and the conductive members. The plurality of contacts is provided in the interlayer insulating film. In a first region on the substrate, the contacts are located at some of lattice points of an imaginary first lattice. In a second region on the substrate, the contacts are located at some of lattice points of an imaginary second lattice. The second lattice is different from the first lattice. Each of the first lattice and the second lattice includes some of the lattice points located on the conductive members or on an extension region extended in the one direction of the conductive members.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 3, 2011
    Inventors: Yasunobu Kai, Takaki Hashimoto
  • Publication number: 20110049612
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device including a semiconductor layer with a main surface, a first insulating layer formed on the main surface of the semiconductor layer, a charge storage layer formed on the first insulating layer, a second insulating layer formed on the charge storage layer, and a control gate electrode formed on the second insulating layer. At least one inelastic scattering film that reduces energy of electrons by scattering is contained in at least one of the charge storage layer and second insulating layer.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 3, 2011
    Inventors: Masaaki HIGUCHI, Yoshio Ozawa, Katsuyuki Sekine, Ryota Fujitsuka
  • Publication number: 20110049597
    Abstract: A non-volatile memory device including two or more capacitors having different sizes formed in separated regions and operating at a low voltage, the non-volatile memory device including: a conductive semiconductor substrate formed of a first conductive material; a conductive separation layer provided on at least one portion of the first conductive semiconductor substrate and formed of a second conductive material different from the first conductive material, and which separates an inside of the first conductive semiconductor substrate into a first region and a second region; an insulation layer provided on the first region and the second region to contact the first region and the second region; a charge storage layer provided on the insulation layer; a control gate electrically connected to the first region; and a data line electrically connected to the second region.
    Type: Application
    Filed: March 31, 2010
    Publication date: March 3, 2011
    Applicants: SAMSUNG TECHWIN CO., LTD., SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Ji-hong KIM, Kee-won KWON
  • Patent number: 7888730
    Abstract: A nonvolatile semiconductor memory includes first and second memory cells having a floating gate and a control gate. The floating gate of the first and second memory cells is comprised a first part, and a second part arranged on the first part, and a width of the second part in an extending direction of the control gate is narrower than that of the first part. A first space between the first parts of the first and second memory cells is filled with one kind of an insulator. The control gate is arranged at a second space between the second parts of the first and second memory cells.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Ichige, Fumitaka Arai, Riichiro Shirota, Toshitake Yaegashi, Yoshio Ozawa, Akihito Yamamoto, Ichiro Mizushima, Yoshihiko Saito
  • Publication number: 20110031549
    Abstract: A memory includes active areas and an isolation on a semiconductor substrate. A tunnel dielectric film is on active areas. Floating gates include lower gate parts and upper gate parts. An upper gate part has a larger width than that of a lower gate part on a cross section perpendicular to an extension direction of an active area, and is provided on the lower gate part. An intermediate dielectric film is on an upper surface and a side surface of each floating gate. The control gate is on an upper surface and a side surface of each floating gate via the intermediate dielectric film. A height of a lower end of each control gate from a surface of the semiconductor substrate is lower than a height of an interface between the upper gate part and the lower gate part from the surface of the semiconductor substrate.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 10, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaki Kondo, Kazuaki Isobe
  • Publication number: 20110024823
    Abstract: A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween.
    Type: Application
    Filed: December 8, 2009
    Publication date: February 3, 2011
    Inventors: Hau-Yan Lu, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 7880264
    Abstract: A memory circuit arrangement and a fabrication method are disclosed. The memory circuit arrangement has a memory cell area. The memory cell area contains memory cell transistors, one column of which are selected using a triple gate area selection transistor. The transistor has gate area that extends into isolating trenches. The isolating trenches isolate the memory cell in different columns of the memory cell array.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: February 1, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ronald Kakoschke, Franz Schuler
  • Publication number: 20110018051
    Abstract: An integrated circuit device includes a transistor array having a vertical stack of independently controllable gate electrodes therein. A first semiconductor channel region is provided, which extends on a first sidewall of the vertical stack of independently controllable gate electrodes. A first electrically insulating layer is also provided, which extends between the first semiconductor channel region and the first sidewall of the vertical stack of independently controllable gate electrodes. Source and drain regions are provided, which are electrically coupled to first and second ends of the first semiconductor channel region, respectively.
    Type: Application
    Filed: June 16, 2010
    Publication date: January 27, 2011
    Inventors: Ji-Young Kim, Kang L. Wang, Yong-Jik Park, Jeong-Hee Han, Augustin Jinwoo Hong
  • Patent number: 7875931
    Abstract: In order to form a plurality of semiconductor elements over an insulating surface, in one continuous semiconductor layer, an element region serving as a semiconductor element and an element isolation region having a function to electrically isolate element regions from each other by repetition of PN junctions. The element isolation region is formed by selective addition of an impurity element of at least one or more kinds of oxygen, nitrogen, and carbon and an impurity element that imparts an opposite conductivity type to that of the adjacent element region in order to electrically isolate elements from each other in one continuous semiconductor layer.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Ikuko Kawamata
  • Patent number: 7868388
    Abstract: In some aspects, a memory circuit is provided that includes (1) a two-terminal memory element formed on a substrate; and (2) a CMOS transistor formed on the substrate and adapted to program the two-terminal memory element. The two-terminal memory element is formed between a gate layer and a first metal layer of the memory circuit. Numerous other aspects are provided.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: January 11, 2011
    Assignee: SanDisk 3D LLC
    Inventor: Christopher J. Petti
  • Patent number: 7869279
    Abstract: A memory device including a plurality of memory cells, each with access and program PMOS transistors situated in a common N-Well formed in a P-substrate, and an n-erase pocket formed directly in the P-substrate. Each cell includes a program PMOS including gate, and first and second P+ regions formed in an N-Well, wherein the first P+ region is electrically connected to a corresponding bit line. Each cell further comprises an access PMOS including a gate, and first and second P+ regions formed within the same n-doped well as the first and second P+ regions of the program PMOS, wherein the first P+ region is electrically connected to the second P+ region of the program PMOS, and the gate is electrically connected to a corresponding word line. Each cell further includes an n-doped erase pocket including gate, and first and second N+ regions electrically connected to a corresponding erase line, and the gate is electrically connected to the gate of the program PMOS, forming the floating gate of the cell.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 11, 2011
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Kola Nirmal Ratnakumar