Electrically Programmable Rom (epo) Patents (Class 257/E27.103)
  • Publication number: 20120205735
    Abstract: In one embodiment, there is provided a nonvolatile semiconductor storage device. The device includes: a plurality of nonvolatile memory cells. Each of the nonvolatile memory cells includes: a first semiconductor layer including a first source region, a first drain region, and a first channel region; a block insulating film formed on the first channel region; a charge storage layer formed on the block insulating film; a tunnel insulating film formed on the charge storage layer; a second semiconductor layer formed on the tunnel insulating film and including a second source region, a second drain region, and a second channel region. The second channel region is formed on the tunnel insulating film such that the tunnel insulating film is located between the second source region and the second drain region. A dopant impurity concentration of the first channel region is higher than that of the second channel region.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 16, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Naoki YASUDA, Jun Fujiki
  • Patent number: 8243494
    Abstract: A process in the manufacturing of a resistor random access memory with a confined melting area for switching a phase change in the programmable resistive memory. The process initially formed a pillar comprising a substrate body, a first conductive material overlying the substrate body, a programmable resistive memory material overlying the first conductive material, a high selective material overlying the programmable resistive memory material, and a silicon nitride material overlying the high selective material. The high selective material in the pillar is isotropically etched on both sides of the high selective material to create a void on each side of the high selective material with a reduced length. A programmable resistive memory material is deposited in a confined area previously occupied by the reduced length of the poly, and the programmable resistive memory material is deposited into an area previously occupied by the silicon nitride material.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: August 14, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Erh-Kun Lai, ChiaHua Ho, Kuang Yeu Hsieh, Shih-Hung Chen
  • Patent number: 8243492
    Abstract: Embodiments relate to a manufacturing method of a one time programmable (OTP) memory device including: forming a common source in a linear configuration on a semiconductor substrate; forming a gate dielectric layer on the semiconductor substrate at both sides of the source; forming a gate over the gate dielectric layer; forming a spacer between the gates and at both side walls of the gate; and forming a drain on the semiconductor substrate at both sides of the spacer. With embodiments, the OTP memory device can be formed together with the logic part using the logic process and can increase the storage capacity of the OTP memory device by improving density of memory arrays.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: August 14, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung-Kun Park
  • Patent number: 8242552
    Abstract: Disclosed herein is a storage element including: a first electrode; a second electrode formed in a position opposed to the first electrode; and a variable-resistance layer formed so as to be interposed between the first electrode and the second electrode. The first electrode is a tubular object, and is formed so as to be thicker on an opposite side from the variable-resistance layer than on a side of the variable-resistance layer.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: August 14, 2012
    Assignee: Sony Corporation
    Inventor: Jun Sumino
  • Publication number: 20120199898
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Application
    Filed: April 19, 2012
    Publication date: August 9, 2012
    Applicant: SanDisk Technologies, Inc.
    Inventors: Johann Alsmeier, Vinod Robert Purayath, Henry Chien, George Matamis, Yao-Sheng Lee, James Kai, Yuan Zhang
  • Patent number: 8232184
    Abstract: Silicon carbide semiconductor device includes trench, in which connecting trench section is connected to straight trench section. Straight trench section includes first straight trench and second straight trench extending in parallel to each other. Connecting trench section includes first connecting trench perpendicular to straight trench section, second connecting trench that connects first straight trench and first connecting trench to each other, and third connecting trench that connects second straight trench and first connecting trench to each other. Second connecting trench extends at 30 degrees of angle with the extension of first straight trench. Third connecting trench extends at 30 degrees of angle with the extension of second straight trench. A manufacturing method according to the invention for manufacturing a silicon carbide semiconductor device facilitates preventing defects from being causes in a silicon carbide semiconductor device during the manufacture thereof.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: July 31, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasuyuki Kawada, Takeshi Tawara
  • Patent number: 8217468
    Abstract: In device isolation trenches, a first device-isolation insulator film is formed to have recesses thereon and a second device-isolation insulator film is formed in the recesses. The uppermost portions at both ends of the first device-isolation insulator film are located higher than the uppermost portions at both ends of the second device-isolation insulator film.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: July 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Koki Ueno
  • Patent number: 8211755
    Abstract: A method for preventing arcing during deep via plasma etching is provided. The method comprises forming a first patterned set of parallel conductive lines over a substrate and forming a plurality of semiconductor pillars on the first patterned set of parallel conductive lines and extending therefrom, wherein a pillar comprises a first barrier layer, an antifuse layer, a diode, and a second barrier layer, wherein an electric current flows through the diode upon a breakdown of the antifuse layer. The method further comprises depositing a dielectric between the plurality of semiconductor pillars, and plasma etching a deep via recess through the dielectric and through the underlying layer after the steps of forming a plurality of semiconductor pillars and depositing a dielectric. An embodiment of the invention comprises a memory array device.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: July 3, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Lan Kuo, Kern-Huat Ang
  • Publication number: 20120155176
    Abstract: A semiconductor memory device and a method of manufacturing the same.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 21, 2012
    Inventor: Jin Hyo Jung
  • Patent number: 8203211
    Abstract: Provided is a nonvolatile memory device having a three dimensional structure. The nonvolatile memory device may include cell arrays having a plurality of conductive patterns having a line shape three dimensionally arranged on a semiconductor substrate, the cell arrays being separated from one another; semiconductor patterns extending from the semiconductor substrate to cross sidewalls of the conductive patterns; common source regions provided in the semiconductor substrate under a lower portion of the semiconductor patterns in a direction in which the conductive patterns extend; a first impurity region provided in the semiconductor substrate so that the first impurity region extends in a direction crossing the conductive patterns to electrically connect the common source regions; and a first contact hole exposing a portion of the first impurity region between the separated cell arrays.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: June 19, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaehun Jeong, Hansoo Kim, Jaehoon Jang, Hoosung Cho, Kyoung-Hoon Kim
  • Patent number: 8198667
    Abstract: A laminated body is formed by alternately laminating a plurality of dielectric films and electrode films on a silicon substrate. Next, a through hole extending in the lamination direction is formed in the laminated body. Next, a selective nitridation process is performed to selectively form a charge layer made of silicon nitride in a region of an inner surface of the through hole corresponding to the electrode film. Next, a high-pressure oxidation process is performed to form a block layer made of silicon oxide between the charge layer and the electrode film. Next, a tunnel layer made of silicon oxide is formed on an inner side surface of the through hole. Thus, a flash memory can be manufactured in which the charge layer is split for each electrode film.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: June 12, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takuji Kuniya, Yosuke Komori, Ryota Katsumata, Yoshiaki Fukuzumi, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Hideaki Aochi
  • Patent number: 8183622
    Abstract: A semiconductor device includes bit lines (12) that are provided in a semiconductor substrate (10) an ONO film (14) that is provided on the semiconductor substrate; word lines that are provided on the ONO film (14) and extend in a width direction of the bit lines (12); and a dummy layer (44) that extends in the width direction of the bit lines (12) and is provided in a bit-line contact region (40) having contact holes formed to connect the bit lines (12) with wiring layers (34). In accordance with the present invention, the proximity effect at the time of word line formation can be restrained, and the variation in the widths of the word lines can be made smaller, or current leakage between the bit lines and the semiconductor substrate can be restrained.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 22, 2012
    Assignee: Spansion LLC
    Inventor: Masatomi Okanishi
  • Publication number: 20120113726
    Abstract: The present invention discloses a flash memory and the fabrication method and the operation method for the same. The flash memory comprises two memory cells of vertical channels, wherein a lightly-doped N type (or P type) silicon is used as a substrate; a P+ region (or an N+ region) is provided on each of the both ends of the silicon surface, and two channel regions perpendicular to the surface are provided therebetween; an N+ region (or a P+ region) shared by two channels is provided over the channels; a tunneling oxide layer, a polysilicon floating gate, a block oxide layer and a polysilicon control gate are provided sequentially on the outer sides of each channel from inside to outside; and the polysilicon floating gate and the polysilicon control gate are isolated from the P+ region by a sidewall oxide layer. The whole device is a two-bit TFET type flash memory with vertical channels which has better compatibility with prior-art standard CMOS process.
    Type: Application
    Filed: March 7, 2011
    Publication date: May 10, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Yimao Cai, Shiqiang Qin, Qianqian Huang, Poren Tang, Yu Tang, Gengyu Yang
  • Patent number: 8174063
    Abstract: A non-volatile semiconductor memory device includes a substrate, a first gate formed on a first region of a surface of the substrate, a second gate formed on a second region of the surface of the substrate, a charge storage layer filled between the first gate and the second gate, a first diffusion region formed on a first side of the charge storage layer, and a second diffusion region formed opposite the charge storage layer from the first diffusion region. The first region and the second region are separated by a distance sufficient for forming a self-aligning charge storage layer therebetween.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: May 8, 2012
    Assignee: eMemory Technology Inc.
    Inventors: Hau-Yan Lu, Shih-Chen Wang, Ching-Sung Yang
  • Patent number: 8174068
    Abstract: A semiconductor device includes: a semiconductor substrate; a silicon pillar provided perpendicularly to a main surface of the semiconductor substrate; a gate dielectric film that covers a portion of a side surface of the silicon pillar; an insulator pillar that covers remaining portions of the side surface of the silicon pillar; a gate electrode that covers the silicon pillar via the gate dielectric film and the insulator pillar; an interlayer dielectric film provided above the silicon pillar, the gate dielectric film, the insulator pillar, and the gate electrode; and a gate contact plug embedded in a contact hole provided in the interlayer dielectric film, and in contact with the gate electrode and the insulator pillar. A film thickness of the insulator pillar in a lateral direction is thicker than a film thickness of the gate dielectric film in a lateral direction.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: May 8, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Kazuhiro Nojima
  • Patent number: 8169826
    Abstract: A nonvolatile semiconductor memory device comprises: a plurality of first memory strings; a first select transistor having one end thereof connected to one end of the first memory strings; a first line commonly connected to the other end of a plurality of the first select transistors; a switch circuit having one end thereof connected to the first line; and a second line commonly connected to the other end of a plurality of the switch circuits. The switch circuit controls electrical connection between the second line and the first line.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: May 1, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoo Hishida, Yoshihisa Iwata, Megumi Ishiduki, Ryota Katsumata, Yoshiaki Fukuzumi, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 8148769
    Abstract: A nonvolatile semiconductor memory device includes a plurality of memory strings, each of which has a plurality of electrically rewritable memory cells connected in series; and select transistors, one of which is connected to each of ends of each of the memory strings. Each of the memory strings is provided with a first semiconductor layer having a pair of columnar portions extending in a perpendicular direction with respect to a substrate, and a joining portion formed so as to join lower ends of the pair of columnar portions; a charge storage layer formed so as to surround a side surface of the columnar portions; and a first conductive layer formed so as to surround the side surface of the columnar portions and the charge storage layer, and configured to function as a control electrode of the memory cells.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Hiroyasu Tanaka, Megumi Ishiduki, Yosuke Komori, Hideaki Aochi
  • Publication number: 20120074479
    Abstract: Electrically erasable programmable “read-only” memory (EEPROM) cells in an integrated circuit, and formed by a single polysilicon level. The EEPROM cell consists of a coupling capacitor and a combined read transistor and tunneling capacitor. The capacitance of the coupling capacitor is much larger than that of the tunneling capacitor. In one embodiment, field oxide isolation structures isolate the devices from one another; a lightly-doped region at the source of the read transistor improves breakdown voltage performance. In another embodiment, trench isolation structures and a buried oxide layer surround the well regions at which the coupling capacitor and combined read transistor and tunneling capacitor are formed.
    Type: Application
    Filed: December 6, 2011
    Publication date: March 29, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiaoju Wu, Jozef Czeslaw Mitros
  • Publication number: 20120049245
    Abstract: Memory arrays and their formation are disclosed. One such memory array has first and second memory cells over a semiconductor, an air gap between the first and second memory cells, and an isolation region within the semiconductor and under the air gap so that the isolation region is aligned with the air gap.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventors: Andrew Bicksler, Chris Larsen
  • Patent number: 8125016
    Abstract: There is provided a semiconductor device having, on a silicon substrate, a gate insulating film and a gate electrode in this order; wherein the gate insulating film comprises a nitrogen containing high-dielectric-constant insulating film which has a structure in which nitrogen is introduced into metal oxide or metal silicate; and the nitrogen concentration in the nitrogen containing high-dielectric-constant insulating film has a distribution in the direction of the film thickness; and a position at which the nitrogen concentration in the nitrogen containing high-dielectric-constant insulating film reaches the maximum in the direction of the film thickness is present in a region at a distance from the silicon substrate. A manufacturing method of a semiconductor device comprising the step of making the introduction of nitrogen by irradiating the high-dielectric-constant insulating film which is made of metal oxide or metal silicate, with a nitrogen containing plasma, is also provided.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: February 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Heiji Watanabe, Kazuhiko Endo, Kenzo Manabe
  • Patent number: 8114736
    Abstract: A method for forming an integrated circuit system is provided including forming a memory section having a spacer with a substrate, forming an outer doped region of the memory section in the substrate, forming a barrier metal layer over the spacer, and forming a metal plug over the outer doped region and the barrier metal layer.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: February 14, 2012
    Assignees: Globalfoundries Inc., Spansion LLC
    Inventors: Simon Siu-Sing Chan, Hidehiko Shiraiwa, Kuo-Tung Chang, Angela T. Hui
  • Publication number: 20120032287
    Abstract: A semiconductor device includes a magnetic tunnel junction (MTJ) storage element configured to be disposed in a common interlayer metal dielectric (IMD) layer with a logic element. Cap layers separate the common IMD layer from a top and bottom IMD layer. Top and bottom electrodes are coupled to the MTJ storage element. Metal connections to the electrodes are formed in the top and bottom IMD layers respectively through vias in the separating cap layers. Alternatively, the separating cap layers are recessed and the bottom electrodes are embedded, such that direct contact to metal connections in the bottom IMD layer is established. Metal connections to the top electrode in the common IMD layer are enabled by isolating the metal connections from the MTJ storage elements with metal islands and isolating caps.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: QUALCOMM Incorporated
    Inventors: Xia Li, Xiaochun Zhu, Seung H. Kang
  • Publication number: 20120032266
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate; a memory cell region defined in the semiconductor substrate; and a line-and-space pattern formed in the memory cell region in which the lines constitute an active region and the spaces constitute an element isolation region. The first and the second lines of the active region counted from two opposing ends of the memory cell region are each separated into two or more line segments. The segment ends of the line segments of the first and the second lines are linked to form a loop by a linking pattern.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daina INOUE, Minori KAJIMOTO, Tatsuya KATO
  • Patent number: 8110864
    Abstract: In one aspect of the present invention, a nonvolatile semiconductor memory device may include a semiconductor substrate; a plurality of tunnel insulating films formed on the semiconductor substrate at predetermined intervals in a first direction; a plurality of floating gate electrodes each having a first portion and a second portion, the first portions being formed on the respective tunnel insulating films, the second portions being formed on the respective first portions and having smaller width than the first portions in the first direction; an inter-gate insulating film formed on the floating gate electrodes; and first and second control gate electrodes respectively formed on sidewalls, in the first direction, of the second portion of each of the plurality of floating gate electrodes with the inter-gate insulating film interposed therebetween.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Masaki Kondo
  • Patent number: 8106445
    Abstract: A nonvolatile semiconductor memory device comprises a memory cell configured to store data and a resistor element provided around the memory cell. The memory cell includes a charge storage layer provided above a substrate, a first semiconductor layer formed on a top surface of the charge storage layer via an insulating layer, and a first low resistive layer formed on a top surface of the first semiconductor layer and having resistance lower than that of the first semiconductor layer. The resistor element includes a second semiconductor layer formed on the same layer as the first semiconductor layer, and a second low resistive layer formed on the same layer as the first low resistive layer and on a top surface of the second semiconductor layer, having resistance lower than that of the second semiconductor layer.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Fukuda, Rieko Tanaka, Takumi Abe
  • Publication number: 20120012909
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 8097913
    Abstract: An electrically erasable and programmable read only memory (EEPROM) device and a method of manufacturing the EEPROM device are provided. First and second gate structures having the same structure are formed on a tunnel insulating layer formed on a substrate, such that the first and second gate structures are spaced apart from each other. A common source region is formed at a portion of the substrate located between the first and second gate structures. First and second drain regions are formed at first and second portions of the substrate adjacent to the first and second gate structures, respectively. Thus, the EEPROM device is manufactured including first and second transistors that have the same structure and may alternately serve as a memory transistor and a selection transistor according to an applied signal.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: January 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Weon-Ho Park, Jeong-Uk Han, Yong-Tae Kim
  • Patent number: 8093650
    Abstract: A non-volatile memory (NVM) system includes a plurality of NVM cells fabricated in a dual-well structure. Each NVM cell includes an access transistor and an NVM transistor, wherein the access transistor has a drain region that is continuous with a source region of the NVM transistor. The drain regions of each NVM transistor in a column of the array are commonly connected to a corresponding bit line. The control gates of each NVM transistor in a row of the array are commonly connected to a corresponding word line. The source regions of each of the access transistors in the array are commonly coupled. The NVM cells are programmed and erased without having to apply the high programming voltage VPP across the gate dielectric layers of the access transistors. As a result, the NVM cells can be scaled down to sub-0.35 micron geometries.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: January 10, 2012
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Sorin S. Georgescu, A. Peter Cosmin
  • Patent number: 8093645
    Abstract: A non-volatile semiconductor memory device includes a plurality of memory cell regions including a plurality of bit lines, a plurality of word lines intersecting the plurality of bit lines, and a first insulating film formed in a region between any two adjacent bit lines, a bit line contact region including bit line contacts connected to the plurality of bit lines, a first UV light shielding film covering at least a portion of the semiconductor substrate in the bit line contact region, an interlayer insulating film, and a second UV light shielding film covering the plurality of memory cell regions. The first UV light shielding film effectively reduces or blocks UV light generated during a fabrication step.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: January 10, 2012
    Assignee: Panasonic Corporation
    Inventor: Yukihiro Yamashita
  • Publication number: 20120001249
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: SanDisk Corporation
    Inventors: Johann Alsmeier, George Samachisa
  • Publication number: 20120001252
    Abstract: Monolithic, three dimensional NAND strings include a semiconductor channel, at least one end portion of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes having a strip shape extending substantially parallel to the major surface of the substrate, the blocking dielectric comprising a plurality of blocking dielectric segments, a plurality of discrete charge storage segments, and a tunnel dielectric located between each one of the plurality of the discrete charge storage segments and the semiconductor channel.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: SanDisk Corporation
    Inventors: Johann Alsmeier, Vinod Robert Purayath, Henry Chien, George Matamis, Yao-Sheng Lee, James Kai, Yuan Zhang
  • Patent number: 8084809
    Abstract: In a nonvolatile semiconductor memory device, a stacked body is formed by alternately stacking dielectric films and conductive films on a silicon substrate and a plurality of through holes extending in the stacking direction are formed in a matrix configuration. A shunt interconnect and a bit interconnect are provided above the stacked body. Conductor pillars are buried inside the through holes arranged in a line immediately below the shunt interconnect out of the plurality of through holes, and semiconductor pillars are buried inside the remaining through holes. The conductive pillars are formed from a metal, or low resistance silicon. Its upper end portion is connected to the shunt interconnect and its lower end portion is connected to a cell source formed in an upper layer portion of the silicon substrate.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Maeda, Yoshihisa Iwata
  • Patent number: 8080837
    Abstract: A memory device includes an array of memory cells and peripheral devices. At least some of the individual memory cells include carbonated portions that contain SiC. At least some of the peripheral devices do not include any carbonated portions. A transistor includes a first source/drain, a second source/drain, a channel including a carbonated portion of a semiconductive substrate that contains SiC between the first and second sources/drains and a gate operationally associated with opposing sides of the channel.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: December 20, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8076205
    Abstract: A semiconductor memory includes a memory cell array area provided with first and second memory cells and having a first active area and a first element isolation area constituting a line & space structure, and having a floating gate electrode and a control gate electrode in the first active area, a word line contact area adjacent to the memory cell array area and having a second active area, first and second word lines with a metal silicide structure, functioning respectively as the control gate electrodes of the first and second memory cells and arranged to straddle the memory cell array area and the word line contact area. A dummy gate electrode is arranged just below the first and second word lines in the second active area.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: December 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideaki Maekawa
  • Patent number: 8076715
    Abstract: A dual-bit memory device is provided which includes trench isolation material disposed below a bit line that is shared by adjacent memory cells. The dual-bit memory device comprises a substrate, a first memory cell designed to store two bits of information, a second memory cell designed to store two bits of information, and an insulator region. The first memory cell is adjacent to the second memory cell. The first memory cell includes a first buried bit line and a second buried bit line. The first memory cell and the second memory cell share the second buried bit line. The insulator region is disposed in the substrate below the second buried bit line to prevent electrons from flowing between the first memory cell and the second memory cell.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: December 13, 2011
    Assignee: Spansion LLC
    Inventor: Ashot Melik-Martirosian
  • Patent number: 8072018
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate. A lamination structure is on the substrate along a first direction. The lamination structure comprises a plurality of conductive layers arranged from bottom to top and separated from each other, and each of the conductive layers has a channel region and an adjacent source/drain doped region along the first direction. A first gate structure is on a sidewall of the channel region of each conductive layer. The first gate structure comprises an inner first gate insulating layer and an outer first gate conductive layer.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: December 6, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Su Chen, Ming-Jinn Tsai
  • Publication number: 20110291180
    Abstract: Angled ion implants are utilized to form doped regions in a semiconductor pillar formed in an opening of a mask. The pillar is formed to a height less than the height of the mask. Angled ion implantation can be used to form regions of a semiconductor device such as a body tie region, a halo region, or current terminal extension region of a semiconductor device implemented with the semiconductor pillar.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Inventor: Mark D. Hall
  • Publication number: 20110278656
    Abstract: A stacked capacitor for double-poly flash memory is provided. The stacked capacitor is formed by a lower electrode, a lower dielectric layer, a central electrode, an upper dielectric layer, and an upper electrode, wherein the lower electrode is a doped region in a substrate. The manufacturing process of this stacked capacitor can be fully integrated in to the manufacturing process of the double-poly flash memory cell.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: CHINGIS TECHNOLOGY CORPORATION
    Inventors: Julian CHANG, An-Xing SHEN, Soon-Won KANG
  • Publication number: 20110272755
    Abstract: A semiconductor device comprising a first insulating film provided on a semiconductor substrate in a cell transistor region, a first conductive film provided on the first insulating film, an inter-electrode insulating film provided on the first conductive film, a second conductive film provided on the inter-electrode insulating film and having a first metallic silicide film on a top surface thereof, first source/drain regions formed on a surface of the semiconductor substrate, a second insulating film provided on the semiconductor substrate in at least one of a selection gate transistor region and a peripheral transistor region, a third conductive film provided on the second insulating film and having a second metallic silicide film having a thickness smaller than a thickness of the first metallic silicide film on a top surface thereof, and a second source/drain regions formed on the surface of the semiconductor substrate.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 10, 2011
    Inventors: Masato ENDO, Fumitaka Arai
  • Patent number: 8053373
    Abstract: A semiconductor-on-insulator structure includes a buried dielectric layer interposed between a base semiconductor substrate and a surface semiconductor layer. The buried dielectric layer comprises an oxide material that includes a nitrogen gradient that peaks at the interface of the buried dielectric layer with at least one of the base semiconductor substrate and surface semiconductor layer. The interface of the buried dielectric layer with the at least one of the base semiconductor substrate and surface semiconductor layer is abrupt, providing a transition in less than about 5 atomic layer thickness, and having less than about 10 angstroms RMS interfacial roughness. A second dielectric layer comprising an oxide dielectric material absent nitrogen may be located interposed between the buried dielectric layer and the surface semiconductor layer.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Toshiharu Furukawa, Wilfried Haensch, Zhibin Ren, Dinkar V. Singh, Jeffrey W. Sleight
  • Publication number: 20110260232
    Abstract: An electronic device includes a first memory cell and a second memory cell, of a nonvolatile memory array. The first memory cell includes a body region, a gate structure, a source region, and a drain region. The second memory cell includes a body region, a gate structure, a source region, and a drain region. In one embodiment, the body of the second memory cell is physically isolated from the body region of the first memory cell. A bitline segment is electrically connected to the drain region of the first memory cell and to the drain region of the second memory cell.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Inventors: Gregory James Scott, Mark Michael Nelson, Thierry Coffi Herve Yao
  • Patent number: 8044455
    Abstract: A step is provided between a substrate surface of a select gate and a substrate surface of a memory gate. When the substrate surface of the select gate is lower than the substrate surface of the memory gate, electrons in a channel upon writing obliquely flow in the step portion. Even if the electrons obtain the energy required for passing a barrier during the oblique flow, the electron injection does not occur because electrons are away from the substrate surface. The injection can occur only on a drain region side from a position where the electrons reach the substrate surface. As a result, the injection of the electrons into a gap region is suppressed, so that the electron distribution comes close to the hole distribution. Therefore, variation in a threshold value upon information retention is suppressed, and information-retaining characteristics of a memory cell are improved.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 25, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yutaka Okuyama, Tsuyoshi Arigane
  • Publication number: 20110254074
    Abstract: A method of manufacturing a semiconductor integrated circuit device includes defining a first area by forming a separating area on a substrate, and forming a tunnel film in the first area, a floating gate on the tunnel film, a first electrode in the separating area, a first film on the floating gate, a second film on the first electrode, a control gate on the first film, a second electrode on the second film, and source and drain areas in the first area. The method includes forming a first interlayer film to cover the control gate and the second electrode, forming, in the first interlayer film, a conductive via plug reaching the second electrode, and forming, on the first interlayer film, a second wiring electrically coupled to the second electrode via the conductive via plug, and a first wiring that is capacitively-coupled to the second wiring and to the second electrode.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 20, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Toru Anezaki
  • Publication number: 20110254072
    Abstract: Methods, devices, and systems associated with charge storage structures in semiconductor devices are described herein. In one or more embodiments, a method of forming nanodots includes forming at least a portion of a charge storage structure over a material by reacting a single-source precursor and a reactant, where the single-source precursor includes a metal and a semiconductor.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Publication number: 20110248327
    Abstract: Nonvolatile memory devices include a string of nonvolatile memory cells on a substrate. This string of nonvolatile memory cells includes a first vertical stack of nonvolatile memory cells on the substrate and a string selection transistor on the first vertical stack of nonvolatile memory cells. A second vertical stack of nonvolatile memory cells is also provided on the substrate and a ground selection transistor is provided on the second vertical stack of nonvolatile memory cells. This second vertical stack of nonvolatile memory cells is provided adjacent the first vertical stack of nonvolatile memory cells. A conjunction doped semiconductor region is provided in the substrate. This conjunction doped region electrically connects the first vertical stack of nonvolatile memory cells in series with the second vertical stack of nonvolatile memory cells so that these stacks can operate as a single NAND-type string of memory cells.
    Type: Application
    Filed: March 2, 2011
    Publication date: October 13, 2011
    Inventors: Yong-Hoon Son, Myoungbum Lee, Kihyun Hwang, Seungjae Baik, Jung Ho Kim
  • Patent number: 8030700
    Abstract: A semiconductor memory device includes: a semiconductor substrate; a stacked body provided on the semiconductor substrate and having a plurality of insulator layers and a plurality of conductive layers alternately stacked; a semiconductor layer provided inside a through-hole formed so as to pass through the stacked body and extending in a stacking direction of the insulator layers and the conductive layers; and a charge trap layer provided between the conductive layer and the semiconductor layer. A lower part in the semiconductor layer is narrower than an upper part therein, and at least the lowermost layer in the conductive layers is thinner than the uppermost layer therein.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Sakamoto
  • Publication number: 20110233652
    Abstract: A non-volatile semiconductor storage device includes: a memory cell area in which a plurality of electrically rewritable memory cells are formed; and a peripheral circuit area in which transistors that configure peripheral circuits to control the memory cells are formed. The memory cell area has formed therein: a semiconductor layer formed to extend in a vertical direction to a semiconductor substrate; a plurality of conductive layers extending in a parallel direction to, and laminated in a vertical direction to the semiconductor substrate; and a property-varying layer formed between the semiconductor layer and the conductive layers and having properties varying depending on a voltage applied to the conductive layers. The peripheral circuit area has formed therein a plurality of dummy wiring layers that are formed on the same plane as each of the plurality of conductive layers and that are electrically separated from the conductive layers.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Shino, Atsuhiro Sato, Takeshi Kamigaichi, Fumitaka Arai
  • Patent number: 8026545
    Abstract: An EEPROM according to the present invention includes: a semiconductor layer of a first conductive type; and a first insulating film formed on the semiconductor layer. A first impurity region, a second impurity region, a third impurity region, a fourth impurity region, and a fifth impurity region of a second conductive type are formed in top layer portions of the semiconductor layer. On the first insulating film, a select gate, a first floating gate, and a second floating gate are respectively disposed opposite a region between the first impurity region and the second impurity region, a region between the second impurity region and the third impurity region, and a region between the third impurity region and the fourth impurity region. In the first insulating film, a first tunnel window and a second tunnel window are respectively formed at portions in contact with the first floating gate and the second floating gate.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: September 27, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Yushi Sekiguchi
  • Publication number: 20110227140
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a memory film, and a SiGe film. The stacked body includes a plurality of conductive layers and a plurality of insulating layers alternately stacked above the substrate. The memory film includes a charge storage film. The memory film is provided on a sidewall of a memory hole punched through the stacked body. The SiGe film is provided inside the memory film in the memory hole.
    Type: Application
    Filed: July 12, 2010
    Publication date: September 22, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Megumi ISHIDUKI, Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hideaki Aochi
  • Patent number: 8022461
    Abstract: A semiconductor device includes a plurality of bit lines repeatedly arranged with a same line width and pitch in a memory device region; a plurality of shunt lines arranged in a same layer as that of the plurality of bit lines, in parallel therewith, and with the same line width and pitch as those of the plurality of bit lines in the memory device region; and an upper-layer contact plug arranged from an upper-layer side so as to be connected to the plurality of shunt lines by extending over two or more shunt lines.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: September 20, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Wada, Akihiro Kajita, Kazuyuki Higashi