Ferroelectric Non-volatile Memory Structure (epo) Patents (Class 257/E27.104)
  • Publication number: 20080164502
    Abstract: The present invention to provide a new technique to reduce a variation in switching field of a magnetization free layer in a magnetic memory. The magnetic memory according to the present invention includes a magnetization free layer including a ferromagnetic layer having a shape magnetic anisotropy in a first direction and a magnetic strain constant is positive; and a stress inducing structure configured to apply a tensile stress to said magnetization free layer in a same direction as the first direction.
    Type: Application
    Filed: November 16, 2005
    Publication date: July 10, 2008
    Applicant: NEC CORPORATION
    Inventors: Yoshiyuki Fukumoto, Tetsuhiro Suzuki, Katsumi Suemitsu
  • Patent number: 7396750
    Abstract: A method and a structure are provided for improving the contact of two adjacent GMR memory bits. Two adjacent bit ends are connected by utilizing a single via.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: July 8, 2008
    Assignee: Northern Lights Semiconductor Corp.
    Inventors: Vicki Wilson, Guoqing Zhan, Ray Buske, James Chyi Lai
  • Patent number: 7394090
    Abstract: A non-volatile memory comprising: a first substrate (100) and a second substrate (110), the first substrate (100) having a plurality of switching elements (4) arranged in matrix, and a plurality of first electrodes (18) connected to the switching element (4), the second substrate (110) having a conductive film (32), and a recording layer (34) whose resistance value changes by application of an electric pulse, wherein the plurality of first electrodes (18) are integrally covered by the recording layer (34), the recording layer (34) thereby being held between the plurality of first electrodes (18) and the conductive film (32); the first substrate (100) further comprising a second electrode (22), the second electrode (22) being electrically connected to the conductive film (32), the voltage of which is maintained at a set level while applying current to the recording layer (34). This non-volatile memory achieves high integration at low cost.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: July 1, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyoyuki Morita, Noboru Yamada, Akihito Miyamoto, Takashi Ohtsuka, Hideyuki Tanaka
  • Publication number: 20080135900
    Abstract: A method of forming an organic ferroelectric film configured to include an organic ferroelectric material with a crystalline property as a principal material includes (a) forming a low crystallinity film having a crystallinity lower than a crystallinity of the organic ferroelectric film on one surface of a substrate, and (b) forming the organic ferroelectric film from the low crystallinity film. The step (a) includes applying a liquid material containing the organic ferroelectric material on the one surface of the substrate and then drying the liquid material, and the step (b) includes heating and pressurizing the low crystallinity film to enhancing the crystallinity in the low crystallinity film while fairing the low crystallinity film.
    Type: Application
    Filed: November 8, 2007
    Publication date: June 12, 2008
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Hiroshi TAKIGUCHI, Junichi KARASAWA
  • Patent number: 7382013
    Abstract: To provide a dielectric thin with a high dielectric constant, a low leakage current, and stable physical properties and electrical properties and to provide a thin film capacitor or other thin film dielectric device with a high capacitance and high reliability and a method of production of the same, a dielectric thin film containing oxides such as barium strontium titanate expressed by the formula (BaxSr(1-x))aTiO3 (0.5<x?1.0, 0.96<a?1.00) and having a thickness of not more than 500 nm and a method of production of a thin film dielectric device including a step of annealing the dielectric thin film in an atmosphere of an oxidizing gas after forming a dielectric thin film on a conductive electrode.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: June 3, 2008
    Assignee: TDK Corporation
    Inventors: Kiyoshi Uchida, Kenji Horino, Hitoshi Saita
  • Publication number: 20080121953
    Abstract: A ferroelectric device employs ferroelectric electrodes as local interconnect(s). One or more circuit features are formed within or on a semiconductor body. A first dielectric layer is formed over the semiconductor body. Lower contacts are formed within the first dielectric layer. A bottom electrode is formed over the first dielectric layer and on the lower contacts. A ferroelectric layer is formed on the bottom electrode. A top electrode is formed on the ferroelectric layer. A second dielectric layer is formed over the first dielectric layer. Upper contacts are formed within the second dielectric layer and in contact with the top electrode. Conductive features are formed on the upper contacts.
    Type: Application
    Filed: September 12, 2006
    Publication date: May 29, 2008
    Inventor: Scott R. Summerfelt
  • Publication number: 20080121955
    Abstract: There is provided a silicon-based ferroelectric memory material, which includes a mesoporous silica with the nanopores thereon, and high-density arrays of nanocrystalline silicon or germanium quantum dots formed on the inner wall of the nanopores of the mesoporous silica. The silicon-based ferroelectric memory material is substantially composed of silicon and oxygen element, and the process for fabricating such a material is simple and can be done at the low temperature (<400° C.) so that the process for fabricating the silicon-based ferroelectric memory material is compatible with the semiconductor process, and is effective to prevent from cross pollution encountered in the prior art. The ferroelectric memory including the silicon-based ferroelectric memory material has the same advantages, such as high speed and long-life, as those of the conventional ferroelectric memory.
    Type: Application
    Filed: November 28, 2006
    Publication date: May 29, 2008
    Inventors: Jia-Min Shieh, An-Thung Cho, Yi-Fan Lai, Bau-Tong Dai
  • Patent number: 7374952
    Abstract: Methods of patterning a magnetic stack of a magnetic memory cell and structures thereof. At least the top magnetic material layer of a magnetic stack is patterned using a hard mask, and a conformal insulating material is deposited over the patterned top magnetic material layer and hard mask. The conformal insulating material is anisotropically etched to remove the conformal insulating material over vertical sidewalls of at least the patterned top magnetic material layer and the hard mask. The remaining conformal insulating material comprises a sidewall spacer hard mask that is used as a mask to pattern the remaining material layers of the magnetic stack. The sidewall spacer hard mask may be left remaining in the magnetic memory cell structure.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: May 20, 2008
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Ihar Kasko, Sivananda K. Kanakasabapathy, Gregory Costrini
  • Publication number: 20080111173
    Abstract: A ferroelectric capacitor is formed over a semiconductor substrate (10), and thereafter, interlayer insulating films (48, 50, 52) covering the ferroelectric capacitor are formed. Next, a contact hole (54) reaching a top electrode (40) is formed in the interlayer insulating films (48, 50, 52). Next, a wiring (58) electrically connected to the top electrode (40) through the contact hole (54) is formed on the interlayer insulating films (48, 50, 52). At the time of forming the top electrode (40), conductive oxide films (40a, 40b) are formed, and then a cap film (40c) composed of a noble metal exhibiting less catalytic action than Pt and having a thickness of 150 nm or less is formed on the conductive oxide films (40a, 40b).
    Type: Application
    Filed: December 17, 2007
    Publication date: May 15, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Wensheng WANG
  • Patent number: 7368774
    Abstract: A capacitor includes a lower electrode, a first dielectric film composed of lead zirconate titanate niobate formed above the lower electrode, a second dielectric film composed of lead zirconate titanate or lead zirconate titanate niobate with a Nb composition smaller than a Nb composition of the lead zirconate titanate niobate composing the first dielectric film, and an upper electrode formed above the second dielectric film.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: May 6, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Yasuaki Hamada, Takeshi Kijima
  • Patent number: 7368298
    Abstract: An Ir film, an IrOx film, a Pt film, a PtO film and a Pt film are formed, and thereafter a PLZT film is formed. Then, heat treatment at 600° C. or lower is performed by the RTA method in an atmosphere containing Ar and O2 to thereby crystallize the PLZT film. Subsequently, an IrOx film and an IrO2 film are formed. Then, these films are patterned at once. Thereafter, an alumina film is formed as a protective film. Subsequently, heat treatment at 650° C. for 60 minutes in an oxygen atmosphere is performed as recovery annealing. Note that no heat treatment is performed from the crystallization of the PLZT film to the recovery annealing.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 6, 2008
    Assignee: Fujitsu Limited
    Inventor: Wensheng Wang
  • Patent number: 7352060
    Abstract: A multilayer wiring substrate for providing a capacitor structure inside a multilayer wiring structure is disclosed. The multilayer wiring substrate includes a dielectric layer including a resin material mixed with an inorganic filler, wherein the inorganic filler is fabricated by mixing a paraelectric filler with an inorganic filler having a high dielectric constant.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 1, 2008
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Noriyoshi Shimizu, Tomoo Yamasaki, Akio Rokugawa, Takahiro Iijima
  • Patent number: 7348616
    Abstract: Ferroelectric integrated circuit devices, such as memory devices, are formed on an integrated circuit substrate. Ferroelectric capacitor(s) are on the integrated circuit substrate and a further structure on the integrated circuit substrate overlies at least a part of the ferroelectric capacitor(s). The further structure includes at least one layer providing a barrier to oxygen flow to the ferroelectric capacitor(s). An oxygen penetration path contacting the ferroelectric capacitor(s) is interposed between the ferroelectric capacitor(s) and the further structure. The layer providing a barrier to oxygen flow may be an encapsulated barrier layer. Methods for forming ferroelectric integrated circuit devices, such as memory devices, are also provided.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: March 25, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-jin Joo, Ki-nam Kim, Yoon-jong Song
  • Publication number: 20080023741
    Abstract: A nonvolatile ferroelectric memory device using a silicon substrate includes an insulating layer formed in an etching region of the silicon substrate, a bottom word line formed in the insulating layer so as to be enclosed by the insulating layer, a floating channel layer formed over the bottom word line, an impurity layer formed at both ends of the floating channel layer and including a source region formed over the insulating layer and a drain region formed over the silicon substrate, a ferroelectric layer formed over the floating channel layer, and a word line formed over the ferroelectric layer.
    Type: Application
    Filed: March 9, 2007
    Publication date: January 31, 2008
    Inventor: Hee Bok Kang
  • Patent number: 7323349
    Abstract: A method of fabricating resistor memory array includes preparing a silicon substrate; depositing a bottom electrode, a sacrificial layer, and a hard mask layer on a substrate P+ layer; masking, patterning and etching to remove, in a first direction, a portion of the hard mask, the sacrificial material, the bottom electrode; depositing a layer of silicon oxide; masking, patterning and etching to remove, in a second direction perpendicular to the first direction, a portion of the hard mask, the sacrificial material, the bottom electrode;, and over etching to an N+ layer and at least 100 nm of the silicon substrate; depositing of a layer of silicon oxide; etching to remove any remaining hard mask and any remaining sacrificial material; depositing a layer of CMR material; depositing a top electrode; applying photoresist, patterning the photoresist and etching the top electrode; and incorporating the memory array into an integrated circuit.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: January 29, 2008
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jong-Jan Lee, Jer-Shen Maa, Douglas J. Tweet, Wei-Wei Zhuang
  • Patent number: 7312488
    Abstract: There is provided a semiconductor storage device comprising a ferroelectric capacitor superior in barrier capability against penetration of hydrogen from all directions including a transverse direction. The device comprises a transistor formed on a semiconductor substrate, the ferroelectric capacitor formed above the transistor and including a lower electrode, a ferroelectric film, and an upper electrode, a first hydrogen barrier film which continuously surrounds side portions of a ferroelectric capacitor cell array constituted of a plurality of ferroelectric capacitors, and a second hydrogen barrier film which is formed above the ferroelectric capacitor cell array and which is brought into contact with the first hydrogen barrier film in the whole periphery.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: December 25, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tohru Ozaki, Iwao Kunishima
  • Publication number: 20070293007
    Abstract: A semiconductor device includes: a lower hydrogen-barrier film; a capacitor formed on the lower hydrogen-barrier film and including a lower electrode, a capacitive insulating film, and an upper electrode; an interlayer dielectric film formed so as to cover the periphery of the capacitor; and an upper hydrogen-barrier film covering the top and lateral portions of the capacitor. An opening, which exposes the lower hydrogen-barrier film where the lower hydrogen-barrier film is located around the capacitor, and which is tapered and flares upward, is formed in the interlayer dielectric film, and the upper hydrogen-barrier film is formed along the lateral and bottom faces of the opening, and is in contact with the lower hydrogen-barrier film in the opening.
    Type: Application
    Filed: August 10, 2007
    Publication date: December 20, 2007
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Toyoji Ito, Eiji Fujii, Kazuo Umeda
  • Patent number: 7309617
    Abstract: The invention relates to a method for fabricating a reference layer for MRAM memory cells and an MRAM memory cell equipped with a reference layer of this type. A reference layer of this type comprises two magnetically coupled layers having a different Curie temperature. When cooling from a temperature above the Curie temperature TC1 of the first layer in an external magnetic field, the magnetization of the second layer is oriented by a second-order phase transition along the field direction of the external magnetic field. Upon further cooling below the Curie temperature TC2 of the second layer, the latter is oriented antiparallel with respect to the first layer as a result of the antiferromagnetic coupling between the two layers.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: December 18, 2007
    Assignee: Infineon Technologies AG
    Inventors: Manfred Ruehrig, Ulrich Klostermann
  • Patent number: 7307338
    Abstract: Systems and methodologies are provided for forming three dimensional memory structures that are fabricated from blocks of individual polymer memory cells stacked on top of each other. Such a polymer memory structure can be formed on top of control component circuitries employed for programming a plurality of memory cells that form the stacked three dimensional structure. Such an arrangement provides for an efficient placement of polymer memory cell on a wafer surface, and increases amount of die space available for circuit design.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: December 11, 2007
    Assignee: Spansion LLC
    Inventors: Aaron Mandell, Juri H Krieger, Igor Sokolik, Richard P Kingsborough, Stuart Spitzer
  • Publication number: 20070281372
    Abstract: A method for manufacturing a memory element including forming a first electrode on a first face of a substrate; forming a ferroelectric layer on a second face of the first electrode, the second face being on an opposite side to the substrate side, and the ferroelectric layer being mainly made of a crystalline organic ferroelectric material; and forming a second electrode on a third face of the ferroelectric layer, the third face being on an opposite side to the first electrode side, the second electrode being formed by ejecting an vaporized electrode material in a direction inclined with respect to a normal line direction of the substrate and depositing the vaporized electrode material on the third face of the ferroelectric layer, wherein data writing/reading is performed by changing a polarized state of the ferroelectric layer by applying a voltage between the first electrode and the second electrode.
    Type: Application
    Filed: May 11, 2007
    Publication date: December 6, 2007
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Hiroshi TAKIGUCHI, Junichi KARASAWA
  • Patent number: 7304339
    Abstract: Ferroelectric thin film devices including a passivation structure to reduce or control a leakage path between two electrodes and along an interface between a ferroelectric thin film layer and a passivation layer are described. Methods for fabricating such devices are also disclosed. The passivation structure includes a first passivation layer that includes an opening exposing a portion of the ferroelectric thin film layer allowing a second passivation layer to contact the thin film layer through the opening. In an exemplary embodiment, the opening is a rectangular ring surrounding an active region of a capacitor. In another exemplary embodiment, the second passivation layer also contacts the second electrode, a portion of which is also exposed through the opening. In another exemplary embodiment, current flows along the interface between the thin film layer and the passivation layer in an integrated resistor.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: December 4, 2007
    Assignee: Agile RF, Inc.
    Inventor: Lee-Yin V. Chen
  • Patent number: 7291530
    Abstract: A method of manufacturing a semiconductor storage device having a capacitive element having a dielectric layer having a perovskite-type crystal structure represented by general formula ABO3 and a lower electrode and an upper electrode disposed so as to sandwich the dielectric layer therebetween; in the method are carried out forming, on a lower electrode conductive layer, using a MOCVD method, an initial nucleus containing at least one metallic element the same as a metallic element in the dielectric layer, forming, on the initial nucleus, using a MOCVD method, a buffer layer containing at least one metallic element the same as the metallic element contained in both the initial nucleus and the dielectric layer, in a higher content than the content of this metallic element contained in the initial nucleus, and forming, on the buffer layer, using a MOCVD method, the dielectric layer having a perovskite-type crystal structure.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: November 6, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Takashi Nakagawa, Takashi Hase
  • Publication number: 20070218568
    Abstract: A method for manufacturing a ferroelectric capacitor, includes the steps of: forming a ferroelectric capacitor layer having a lower electrode layer, a ferroelectric layer and an upper electrode layer on a base substrate; forming a titanium oxide layer on the ferroelectric capacitor layer; patterning the titanium oxide layer by high-temperature etching between 200° C. and 500° C. to thereby form a mask pattern; and etching the ferroelectric capacitor layer by using the mask pattern as a mask, to thereby form a ferroelectric capacitor having a lower electrode, a ferroelectric film and an upper electrode.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 20, 2007
    Applicant: Seiko Epson Corporation
    Inventor: Mamoru Miyaji
  • Patent number: 7271011
    Abstract: Techniques are provided for sensing a first current produced by an active circuit component. According to these techniques, a current sensor is disposed over the active circuit component. The current sensor includes a Magnetic Tunnel Junction (“MTJ”) core disposed between a first conductive layer and a second conductive layer. The MTJ core can be used to sense the first current and produce a second current based on the first current sensed at the MTJ core.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 18, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Mark A. Durlam
  • Patent number: 7265403
    Abstract: A semiconductor device is composed at least of a memory circuit part having capacitors and a peripheral circuit part for controlling the memory circuit part and has a first hydrogen barrier film of hydrogen resistance covering a region in which the capacitors are formed and a second hydrogen barrier film of hydrogen resistance covering at least the memory circuit part and the peripheral circuit part above the first hydrogen barrier film. The second hydrogen barrier film covers a region of the semiconductor device located between an interconnect layer above the first hydrogen barrier film and closest to the capacitors and the first hydrogen barrier film except for a region thereof in which a contact plug is formed.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 4, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Toyoji Ito
  • Patent number: 7262065
    Abstract: A method for manufacturing a ferroelectric memory includes: (a) forming first and second contact sections on a first dielectric layer formed above a base substrate; (b) forming a laminated body having a lower electrode, a ferroelectric layer and an upper electrode successively laminated; (c) forming a conductive hard mask above the laminated body and etching an area of the laminated body exposed through the hard mask, to thereby form a ferroelectric capacitor above the first contact section; (d) forming above the first dielectric layer a second dielectric layer that covers the hard mask, the ferroelectric capacitor and the second contact section; (e) forming a contact hole in the second dielectric layer which exposes the second contact section; (f) providing a conductive layer in an area including the contact hole for forming a third contact section; and (g) polishing the conductive layer and the second dielectric layer until the hard mask above the ferroelectric capacitor is exposed.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 28, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Hiroyuki Mitsui, Katsuo Takano, Shinichi Fukada, Hiroshi Matsuki
  • Patent number: 7253463
    Abstract: A semiconductor memory device includes a semi-conductor substrate, a MOS transistor formed on the semiconductor substrate and including a pair of impurity regions as a source and a drain, and a gate electrode, a first conductive plug formed in contact with an upper surface of one of the pair of impurity regions, and a planar ferroelectric capacitor formed by stacking a lower electrode layer, a ferroelectric layer and an upper electrode layer on the first conductive plug, a side face upper end of the first conductive plug being aligned with a corresponding part of a side face of the ferroelectric capacitor.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: August 7, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yuki Yamada
  • Patent number: 7247939
    Abstract: A method for forming a metal filled semiconductor feature with improved structural stability including a semiconductor wafer having an anisotropically etched opening formed through a plurality of dielectric insulating layers revealing a first etching resistant layer overlying a conductive area; a plurality of dielectric insulating layers sequentially stacked to have alternating etching rates to a preferential etching process; subjecting the anisotropically etched opening to the preferential etching process whereby the sidewalls of the anisotropically etched opening are preferentially etched to produce etched dielectric insulating layers to form roughened sidewall surfaces; anisotropically etching through the etching resistant layer to reveal the conductive area; and, filling the anisotropically etched opening with a metal to form a metal filled semiconductor feature.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: July 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chen Huang, Chao-Chen Chen
  • Publication number: 20070164267
    Abstract: A non-volatile memory element comprises a bottom electrode 12; a top electrode 15; and a recording layer 13 containing phase change material and a block layer 14 that can block phase change of the recording layer 13, provided between the bottom electrode 12 and the top electrode 15. The block layer 14 is constituted of material having an electrical resistance that is higher than that of material constituting the recording layer 13. The block layer 14 suppresses the radiation of heat towards the top electrode 15 and greatly limits the phase change region when a write current is applied. The result is a high heating efficiency. The top electrode 15 itself can be used to constitute a bit line, or a separate bit line can be provided.
    Type: Application
    Filed: January 19, 2006
    Publication date: July 19, 2007
    Inventors: Isamu Asano, Natsuki Sato, Wolodymyr Czubatyj, Jeffrey Fournier
  • Publication number: 20070152253
    Abstract: The present invention is related to a ferroelectric storage medium for ultrahigh density data storage device and a method for fabricating the same. A supercell having high anisotropy is formed by controlling crystal structure and symmetry of unit structure (supercell) of artificial lattice by using an ordered alignment of predetermined ions having orientation of (perpendicular) deposition direction. Unit atomic layers of oxides having different polarization characteristic are deposited so that the supercell itself shows electric polarization having only two, upward and downward directions as one block of supercell having single-directional polarization. Oxide artificial lattices can be formed so as to have solely 180 degree domain structure, thus a single electric domain having improved anisotropic characteristic can be formed, thereby allowing capability of ultrahigh density data storage and long term data retention.
    Type: Application
    Filed: May 26, 2006
    Publication date: July 5, 2007
    Applicant: SUNGKYUNGKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION
    Inventors: Jaichan Lee, Taekjib Choi
  • Patent number: 7239002
    Abstract: In a temperature sensor section of a semiconductor integrated circuit device, first vias of tungsten are formed at the topmost layer of a multi-layer wiring layer and pads of titanium are provided on regions of the multi-layer wiring layer which covers the vias. An insulating layer is provided in such a way as to cover the multi-layer wiring layer and the pads, second vias are so formed as to reach the pads. Vanadium oxide is buried in the second vias by reactive sputtering, and a temperature monitor part of vanadium oxide is provided in such a way as to connect the second vias each other. Accordingly, the temperature monitor part is connected between the two wires.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: July 3, 2007
    Assignees: NEC Electronics Corporation, NEC Corporation
    Inventors: Hiroaki Ohkubo, Kuniko Kikuta, Yasutaka Nakashiba, Naoyoshi Kawahara, Hiroshi Murase, Naoki Oda, Tokuhito Sasaki, Nobukazu Ito
  • Publication number: 20070138522
    Abstract: A memory device including: a lower electrode; a ferroelectric layer formed above the lower electrode; a charge compensation layer formed above the ferroelectric layer and including an oxide having a composition differing from a composition of the ferroelectric layer; and upper electrodes formed above the charge compensation layer. The upper electrodes includes: a saturated polarization forming electrode used for forming a domain polarized to saturation in a predetermined direction in a predetermined region of the ferroelectric layer; a writing electrode disposed apart from the saturated polarization forming electrode; and a reading electrode disposed apart from the writing electrode.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 21, 2007
    Inventors: Takeshi Kijima, Yasuaki Hamada, Tatsuya Shimoda
  • Publication number: 20070138520
    Abstract: A first passive ferroelectric memory element comprising a first electrode system and a second electrode system, wherein said first electrode system is at least partly insulated from said second electrode system by an element system comprising at least one ferroelectric element, wherein said first electrode system is a conductive surface, or a conductive layer; wherein said second electrode system is an electrode pattern or a plurality of isolated conductive areas in contact with, for read-out or data-input purposes only, a plurality of conducting pins isolated from one another.
    Type: Application
    Filed: December 20, 2005
    Publication date: June 21, 2007
    Applicant: AGFA-GEVAERT
    Inventors: Luc Leenders, Michel Werts
  • Patent number: 7217576
    Abstract: A method for manufacturing a ferroelectric capacitor in accordance with the present invention includes: (a) a step of forming a ferroelectric laminated body by successively laminating a lower electrode layer, a ferroelectric layer and an upper electrode layer over a base substrate; (b) a step of patterning at least the upper electrode layer and the ferroelectric layer by dry etching; (c) a step of coating a coating composition including a compound having an element composing the ferroelectric layer at least on a side wall of the ferroelectric layer; and (d) a step of thermally treating the coating composition, to crystallize the coating composition coated on the side wall of the ferroelectric layer.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: May 15, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Masao Nakayama, Takeshi Kijima
  • Patent number: 7217969
    Abstract: A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Charles Thomas Black, Alfred Grill, Randy William Mann, Deborah Ann Neumayer, Wilbur David Pricer, Katherine Lynn Saenger, Thomas McCarroll Shaw
  • Patent number: 7214977
    Abstract: A ferroelectric thin film formed of a highly oriented polycrystal in which 180° domains and 90° domains arrange at a constant angle to an applied electric field direction in a thin film plane and reversely rotate in a predetermined electric field.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: May 8, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Takeshi Kijima, Yasuaki Hamada, Eiji Natori
  • Patent number: 7208786
    Abstract: A memory device comprising a layer of piezoelectric material and a layer of ferroelectric material clamped together such that a voltage applied to one layer results in a voltage being generated across the other layer. The method of data storage and retrieval comprising the steps of: providing a layer of ferroelectric material, providing a layer of piezoelectric material, clamping the two layers together, storing data by internally polarising the ferroelectric material in one of two stable directions in accordance with the data to be stored, and retrieving stored data by applying a non-polarising voltage to one layer and detecting a resultant voltage from the other layer. Preferably, the piezoelectric material is implemented as a ferroelectric material.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: April 24, 2007
    Assignee: Seiko Epson Corporation
    Inventor: Daping Chu
  • Patent number: 7193260
    Abstract: A ferroelectric memory device includes a first bit line, a second bit line provided adjacent to the first bit line, a first memory cell block including a first terminal, a second terminal, and a plurality of memory cells connected in series between the first and second terminals and arranged in a first direction along the first bit line connected to the first terminal by a first block select transistor, a second memory cell block including a plurality of memory cells, and a plurality of first contacts arranged between the first and second memory cell blocks, each first contact connecting the upper electrode and drain or source electrode of one memory cell.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: March 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kamoshida, Daisaburo Takashima
  • Publication number: 20070057300
    Abstract: A semiconductor device includes a substrate, a first electrode provided above the substrate, a ferroelectric layer provided above the first electrode, a second electrode provided above the ferroelectric layer, and a dielectric side spacer that is provided above the first electrode and on a side surface of at least the ferroelectric layer.
    Type: Application
    Filed: August 24, 2006
    Publication date: March 15, 2007
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Shinichi Fukada
  • Publication number: 20070051999
    Abstract: A ferroelectric capacitor having a three-dimensional structure, a nonvolatile memory device having the same, and a method of fabricating the same are provided. The ferroelectric capacitor may include a trench-type lower electrode, at least one layer formed around the lower electrode, a ferroelectric layer (PZT layer) formed on the lower electrode and the at least one layer and an upper electrode formed on the ferroelectric layer. The at least one layer may be at least one insulating interlayer and the at least one layer may also be at least one diffusion barrier layer. The at least one layer may be formed of an insulating material excluding SiO2 or may have a perovskite crystal structure excluding Pb.
    Type: Application
    Filed: September 5, 2006
    Publication date: March 8, 2007
    Inventors: Sang-min Shin, Young-soo Park, June-mo Koo, Byoung-jae Bae, I-hun Song, Suk-pil Kim
  • Publication number: 20070051998
    Abstract: A semiconductor memory device with a dielectric structure and a method for fabricating the same are provided. The dielectric structure includes: a first dielectric layer having a dielectric constant of approximately 25 or higher; a second dielectric layer including a material having a crystallization rate lower than the first dielectric layer and formed over the first dielectric layer; and a third dielectric layer including a material substantially identical to that of the first dielectric layer and formed over the second dielectric layer.
    Type: Application
    Filed: March 22, 2006
    Publication date: March 8, 2007
    Inventors: Deok-Sin Kil, Kwon Hong, Seung-Jin Yeom
  • Patent number: 7186573
    Abstract: A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: March 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Charles Thomas Black, Alfred Grill, Randy William Mann, Deborah Ann Neumayer, Wilbur David Pricer, Katherine Lynn Saenger, Thomas McCarroll Shaw
  • Publication number: 20070040287
    Abstract: A method for forming a capacitor of a semiconductor device ensures charging capacity and improves leakage current characteristic. In the capacitor forming method, a semiconductor substrate formed with a storage node contact is prepared first. Next, a storage electrode is formed such that the storage electrode is connected to the storage node contact. Also, a dielectric film comprised of a composite dielectric of a SrTiO3 film and an anti-crystallization film is formed on the storage electrode. Finally, a plate electrode is formed on the dielectric film.
    Type: Application
    Filed: August 15, 2006
    Publication date: February 22, 2007
    Inventor: Jong Bum Park
  • Publication number: 20070034849
    Abstract: A multi-layer chalcogenide electronic device. The device includes an active region in electrical communication with two terminals, where the active region includes two or more layers. In one embodiment, the pore region includes two or more chalcogenide materials which differ in chemical composition. In another embodiment, the pore region includes one or more chalcogenide materials and a layer of Sb. The devices offer the advantages of minimal conditioning requirements, fast set speeds, high reset resistances and low set resistances.
    Type: Application
    Filed: June 13, 2006
    Publication date: February 15, 2007
    Inventors: Regino Sandoval, Sergey Kostylev, Wolodymyr Czubatyj, Tyler Lowrey
  • Patent number: 7176509
    Abstract: Two ferroelectric capacitors including a PZT film are connected to one MOS transistor. Electrodes of the ferroelectric capacitor are arranged above a main plane of a substrate parallel to the main plane. Therefore, high capacity can be obtained easily. Furthermore, a (001) direction of the PZT film is parallel to the virtual straight line linking between the two electrodes. Therefore, a direction in which an electric field is applied coincides with a direction of a polarization axis, so that high electric charge amount of remanent polarization can be obtained.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: February 13, 2007
    Assignee: Fujitsu Limited
    Inventors: Kenji Maruyama, Jeffrey Scott Cross
  • Publication number: 20070012977
    Abstract: A semiconductor device includes a MOS transistor having a capacitor-forming surface; and a ferroelectric capacitor formed on the capacitor-forming surface of the MOS transistor and including upper and lower electrode layers of Pt and a dielectric layer sandwiched between the upper and lower electrode layers. The ferroelectric capacitor has a cross-section that is generally trapezoid in shape, and that has an inclined side which forms an angle of greater than 45 degrees and less than 90 degrees with the capacitor-forming surface of the MOS transistor.
    Type: Application
    Filed: September 18, 2006
    Publication date: January 18, 2007
    Inventors: Tai-Bor Wu, Chun-Kai Huang
  • Publication number: 20060284224
    Abstract: A ferroelectric memory device, which includes a vertical ferroelectric capacitor having an electrode distance smaller than a minimum feature size of lithography technology being used and suitable for the miniaturization, and a method of manufacturing the same are disclosed. According to one aspect of the present invention, it is provided a ferroelectric memory device comprising an MIS transistor formed on a substrate, and a ferroelectric capacitor formed on an interlevel insulator above the MIS transistor, wherein a pair of electrodes of the ferroelectric capacitor are disposed in a channel length direction of the MIS transistor to face each other putting a ferroelectric film in-between, and wherein a distance between the electrodes of the ferroelectric capacitor is smaller than a gate length of the MIS transistor.
    Type: Application
    Filed: June 19, 2006
    Publication date: December 21, 2006
    Inventor: Susumu Shuto
  • Publication number: 20060278907
    Abstract: A semiconductor element, a semiconductor sensor, and a semiconductor memory element are provided, in which an MFMIS structure having a lower electrode and an integrated circuit can be integrated. An epitaxially grown ?-Al2O3 single crystal film (2) is disposed on a semiconductor single crystal substrate (1), and an epitaxial single crystal Pt thin film (3) is disposed on the ?-Al2O3 single crystal film (2).
    Type: Application
    Filed: March 5, 2004
    Publication date: December 14, 2006
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Makoto Ishida, Kazuaki Sawada, Daisuke Akai, Mikako Yokawa, Keisuke Hirabayashi
  • Patent number: 7148532
    Abstract: Additional elements of Ca, Sr, and Ir are added to a single layer lead lanthanum zirconate titanate (PLZT), thereby decreasing a c/a ratio to within a range from 1.00 to 1.008 smaller than a general c/a of a range from about 1.01 to 1.03 generally used in a lead lanthanum zirconate titanate (PLZT) crystal having a crystal structure of a tetragonal system. With this arrangement, a large switching charge Qsw can be obtained without thinning the PLZT layer even when the operation voltage is 3.0 V or less.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 12, 2006
    Assignee: Fujitsu Limited
    Inventors: Kenji Nomura, Wensheng Wang
  • Patent number: 7148530
    Abstract: A ferroelectric capacitor and a method for manufacturing the same includes a lower electrode, a dielectric layer, and an upper electrode layer, which are sequentially stacked, wherein the dielectric layer has a multi-layer structure including a plurality of sequentially stacked ferroelectric films, and wherein two adjacent ferroelectric films have either different compositions or different composition ratios. Use of a ferroelectric capacitor according to an embodiment of the present invention, it is possible to hold stable polarization states of ferroelectric domains for a long retention time, and thus data written in the ferroelectric capacitor a long time ago can be accurately written, thereby improving the reliability of a ferroelectric random access memory (FRAM).
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: December 12, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Shin, Yong-kyun Lee, Bo-soo Kang, Tae-won Noh, Jong-gul Yoon