Pixel-elements With Integrated Switching, Control, Storage, Or Amplification Elements (epo) Patents (Class 257/E27.132)
  • Patent number: 7825444
    Abstract: An active pixel using a transfer gate that has a polysilicon gate doped with indium. The pixel includes a photosensitive element formed in a semiconductor substrate and an n-type floating node formed in the semiconductor substrate. An n-channel transfer transistor having a transfer gate is formed between the floating node and the photosensitive element. The pixel substrate has a laterally doping gradient doped with an indium dopant.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: November 2, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventors: Howard E. Rhodes, Hidetoshi Nozaki
  • Patent number: 7825412
    Abstract: The present invention provides a display device which can obviate the occurrence of a leak current in a thin film transistor. In a display device including a substrate, and gate signal lines, an insulation film, semiconductor layers and conductor layers which are sequentially stacked on the substrate, the conductor layer forms at least a drain electrode which is connected to a drain signal line and a source electrode which is connected to a pixel electrode, and the semiconductor layer is formed in a pattern in which the semiconductor layer has a protruding portion which protrudes outwardly from the conductor layer at a portion thereof except for a distal end of the drain electrode as viewed in a plan view.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: November 2, 2010
    Assignees: Hitachi Displays, Ltd., IPS Alpha Technology, Ltd.
    Inventors: Kunihiko Watanabe, Junichi Uehara, Miyo Ishii
  • Patent number: 7816158
    Abstract: The present invention provides a liquid crystal display device to be operated at high speed and with high precision by improving performance of a thin-film transistor without increasing cross capacity of gate lines and data lines. On an upper layer of a gate insulator GI at an intersection of gate lines GL and data lines DL to be prepared on an active matrix substrate SUB1, which makes up a liquid crystal display panel of a liquid crystal display device, an insulating material with low dielectric constant is dropped by ink jet coating method to prepare another insulator LDP in order to improve performance characteristics of the thin-film transistor to be prepared on a silicon semiconductor layer SI without increasing cross capacity on said intersection.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: October 19, 2010
    Assignee: Future Vision Inc.
    Inventor: Yoshikazu Yoshimoto
  • Patent number: 7812317
    Abstract: A radiation detecting apparatus according to the present invention includes: pixels including switching elements arranged on an insulating substrate and conversion elements arranged on the switching elements to convert a radiation into electric carriers, the switching elements and the conversion elements are connected with each other, the pixels two-dimensionally arranged on the insulating substrate in a matrix; gate wiring commonly connected with a plurality of switching elements arranged in a row direction on the insulating substrate; signal wiring commonly connected with a plurality of switching elements arranged in a column direction; and a plurality of insulating films arranged between the switching elements and the conversion elements, wherein at least one of the gate wiring and the signal wiring is arranged to be put between the plurality of insulating films.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 12, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Minoru Watanabe, Chiori Mochizuki, Keiichi Nomura, Takamasa Ishii
  • Patent number: 7808066
    Abstract: An image sensor includes a semiconductor substrate including a pixel region and a peripheral circuit region; interlayer insulating films including metal wires arranged on the pixel region and the peripheral circuit region; and a photodiode and an upper electrode disposed on the interlayer insulating film of the pixel region. Further, the image sensor includes a protective layer disposed on the semiconductor substrate including the upper electrode and the interlayer insulating film of the peripheral circuit region and having a sloping portion in a region corresponding to the sidewall of the photodiode; via holes disposed on the protective layer so as to selectively expose the upper electrode and the metal wires of the peripheral circuit region; and upper wiring disposed on the protective layer including the via holes.
    Type: Grant
    Filed: October 12, 2008
    Date of Patent: October 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Kang-Hyun Lee
  • Patent number: 7808022
    Abstract: A method and apparatus for reducing cross-talk between pixels in a semiconductor based image sensor. The apparatus includes neighboring pixels separated by a homojunction barrier to reduce cross-talk, or the diffusion of electrons from one pixel to another. The homojunction barrier being deep enough in relation to the other pixel structures to ensure that cross-pixel electron diffusion is minimized.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 5, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventor: Bart Dierickx
  • Patent number: 7807999
    Abstract: An array substrate includes a gate line, a data line, a switching device, a transmissive electrode, a reflective electrode and a compensating wiring. A pixel region includes first and second regions. The switching device is connected to the gate line and the data line. The transmissive electrode is connected to the switching device. The transmissive electrode is formed in the first region. The reflective electrode is insulated from the transmissive electrode. The reflective electrode is formed in the second region that is adjacent to the first region. The compensating wiring is connected to the switching device. The compensating wiring faces the reflective electrode in the second region with an insulation layer interposed therebetween. Thus, both of a reflectivity of the reflective electrode and a transmissivity of the transmissive electrode are enhanced simultaneously, while the liquid crystal display apparatus maintains a uniform cell gap.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Seop Kim, Won-Sang Park, Sang-Il Kim, Dong-Sik Sakong, Young-Chol Yang, Sung-Kyu Hong, Jong-Lae Kim
  • Patent number: 7808023
    Abstract: Imaging devices utilizing sub-wavelength gratings to separate the spectral components of the natural white light are disclosed. This disclosed method and apparatus redirects the light to be collected onto separate photosensors for different wavelengths to provide improved quantum efficiency.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: October 5, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Zhaohui Yang, Ulrich C. Boettiger
  • Patent number: 7800104
    Abstract: An array substrate for a liquid crystal display device includes: a data line on a substrate; a source electrode contacting the data line, a drain electrode spaced apart from the source electrode and a pixel electrode connected to the drain electrode, wherein the source electrode, the drain electrode and the pixel electrode each including a transparent conductive material; an organic semiconductor layer contacting the source and drain electrodes; a gate insulating layer on the organic semiconductor layer; a gate electrode on the gate insulating layer; a first passivation layer on the gate electrode, the first passivation layer having a gate contact hole exposing the gate electrode; and a gate line on the first passivation layer, the gate line connected to the gate electrode through the gate contact hole.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: September 21, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Nack-Bong Choi, Hyun-Sik Seo
  • Patent number: 7795676
    Abstract: A back-illuminated type solid-state imaging device is provided in which an electric field to collect a signal charge (an electron, a hole and the like, for example) is reliably generated to reduce a crosstalk. The back-illuminated type solid-state imaging device includes a structure 34 having a semiconductor film 33 on a semiconductor substrate 31 through an insulation film 32, in which a photoelectric conversion element PD that constitutes a pixel is formed in the semiconductor substrate 31, at least part of transistors 15, 16, and 19 that constitute the pixel is formed in the semiconductor film 33, and a rear surface electrode 51 to which a voltage is applied is formed on the rear surface side of the semiconductor substrate 31.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: September 14, 2010
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7791117
    Abstract: To fabricate an active matrix type display device integrated with an image sensor at a low cost and without complicating process, an image sensor laminated with TFT and a light receiving unit is formed on a light receiving matrix, a display matrix is arranged with TFT and pixel electrodes on a matrix and formed with an electrode layer functioning as a black matrix, a lower electrode of the light receiving unit is formed by a starting film the same as that of the black matrix, a terminal for fixing potential of an upper electrode is formed by starting films the same as those of a signal line, the electrode layer or pixel electrodes and the terminals function also as shield electrodes for a side face of the light receiving unit since potential thereof is fixed.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 7, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hongyong Zhang, Masayuki Sakakura, Yurika Satou
  • Patent number: 7781781
    Abstract: A CMOS image sensor array and method of fabrication. The CMOS imager sensor array comprises a substrate; an array of light receiving pixel structures formed above the substrate, the array having formed therein “m” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer; a dense logic wiring region formed adjacent to the array of light receiving pixel structures having “n” levels of conductive structures, each level formed in a corresponding interlevel dielectric material layer, where n>m. A microlens array having microlenses and color filters formed above the interlevel dielectric material layer, a microlens and respective color filter in alignment with a respective light receiving structure formed at a surface of the substrate. A top surface of the interlevel dielectric material layer beneath the microlens array is recessed from a top surface of the interlevel dielectric material layers of the dense logic wiring region.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Zhong-Xiang He, Mark D. Jaffe, Robert K. Leidy, Stephen E. Luce, Richard J. Rassel, Edmund J. Sprogis
  • Publication number: 20100200895
    Abstract: Provided are a unit pixel for improving sensitivity in low illumination conditions and a method of manufacturing the unit pixel. The unit pixel includes: a photodiode generating image charges corresponding to an image signal; a transfer transistor transferring the image charges to a floating diffusion area; and a reset transistor having a terminal connected to the floating diffusion area and the other terminal applied with a power supply, wherein concentration of impurity ions implanted into the floating diffusion area is lower than concentration of impurity ions implanted into a diffusion area of the reset transistor applied with the power supply.
    Type: Application
    Filed: August 4, 2008
    Publication date: August 12, 2010
    Applicant: SILICONFILE TECHNOLOGIES INC.
    Inventor: Do-Young Lee
  • Publication number: 20100200731
    Abstract: It is intended to provide a CMOS image sensor with a high degree of pixel integration. A solid-state imaging device comprises a signal line (256) formed on a Si substrate, an island-shaped semiconductor formed on the signal line, and a pixel selection line (255). The island-shaped semiconductor includes: a first semiconductor layer (252) connected to the signal line; a second semiconductor layer (251) located above and adjacent to the first semiconductor layer; a gate (253) connected to the second semiconductor layer through an insulating film; and a charge storage section comprised of a third semiconductor layer (254) connected to the second semiconductor layer and adapted, in response to receiving light, to undergo a change in amount of electric charges therein; a fourth semiconductor layer (250) located above and adjacent to the second and third semiconductor layers. The pixel selection line (255) is connected to the fourth semiconductor layer formed as a top portion of the island-shaped semiconductor.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 12, 2010
    Inventors: Fujio Masuoka, Hiroki NAKAMURA
  • Patent number: 7772627
    Abstract: Pixel cells are provided which employ a gate capacitor associated with the floating diffusion node to selectively increase the storage capacity of the floating diffusion node. The gate capacitor can be formed at the same time as the same process steps used to form other gates of the pixel cells. The inherent capacity of the storage node alone may be sufficient under low light conditions. Higher light conditions may result in selective activation of the gate capacitor, thus increasing the capacity of the storage node with the additional capacity provided by the gate capacitor. The invention produces high dynamic range and high output signal without charge sharing or lag output signal. Methods of forming such pixel cells can be applied in CMOS and CCD imaging devices, image pixel arrays in CMOS and CCD imaging devices, and CMOS and CCD imager systems.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 10, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: Sungkwon C. Hong
  • Patent number: 7772626
    Abstract: An image sensor and fabricating method thereof are disclosed by which damage to a protective layer can be prevented in a manner of reducing thermal stress of an uppermost metal line in performing thermal treatment for enhancing the dark characteristic. Such damage can be prevented by forming a poly layer pattern in an insulating interlayer on at least one side of the uppermost layer metal line.
    Type: Grant
    Filed: November 15, 2008
    Date of Patent: August 10, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung-Moo Kim
  • Publication number: 20100193669
    Abstract: Realization of an adequate hole accumulation layer and reduction in dark current are allowed to become mutually compatible. A solid-state imaging device 1 having a light-receiving portion 12 to photoelectrically convert incident light is characterized by including a film 21, which is disposed on a light-receiving surface 12s of the above-described light-receiving portion 12 and which lowers an interface state, and a film 22, which is disposed on the above-described film 21 to lower the interface state and which has a negative fixed charge, wherein a hole accumulation layer 23 is disposed on the light-receiving surface 12s side of the light-receiving portion 12.
    Type: Application
    Filed: August 20, 2007
    Publication date: August 5, 2010
    Applicant: SONY CORPORATION
    Inventors: Tetsuji Yamaguchi, Yuko Ohgishi, Takashi Ando, Harumi Ikeda
  • Patent number: 7768046
    Abstract: An image sensor has a semiconductor substrate of a first conductivity type having a photo-detecting surface and a semiconductor region of a second conductivity type disposed under the photo-detecting surface and forming a junction with the semiconductor substrate. A dielectric body is provided in the semiconductor substrate beneath the junction so that a width of the dielectric body in a direction parallel to the photo-detecting surface does not extend beyond a width of the semiconductor region in the direction parallel to the photo-detecting surface. The dielectric body is polarized due to charges forming a depletion region generated by the semiconductor substrate and the semiconductor region. A width of the dielectric body is approximately equal to a width of an inner surface of the depletion in the direction parallel to the photo-detecting surface of the semiconductor substrate.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: August 3, 2010
    Assignee: Seiko Instruments Inc.
    Inventor: Sumitaka Goto
  • Patent number: 7755119
    Abstract: An imager having reduced floating diffusion leakage and a mechanism for improving the storing of collected charge is described. A polysilicon contact is provided between a floating diffusion region and a gate of a source follower output transistor, with the contact also electrically connected to a storage capacitor. The storage capacitor provides additional charge storage capacity to the floating diffusion region. In addition, an associated reset transistor has different dopant characteristics in the source and drain regions. The floating diffusion region may be used in the pixels of a CMOS imager or in the output stage of a CCD imager.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: July 13, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 7749874
    Abstract: A CMOS image sensor includes a pinned photodiode and a transfer gate that are formed using a thick mask that is self-aligned to at least one edge of the polysilicon gate structure to facilitate both the formation of a deep implant and to provide proper alignment between the photodiode implant and the gate. In one embodiment a drain side implant is formed concurrently with the deep n-type implant of the photodiode. After the deep implant, the mask is removed and a shallow p+ implant is formed to complete the photodiode. In another embodiment, the polysilicon is etched to define only a drain side edge, a shallow drain side implant is performed, and then a thick mask is provided and used to complete the gate structure, and is retained during the subsequent high energy implant. Alternatively, the high energy implant is performed prior to the shallow drain side implant.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Tower Semiconductor Ltd.
    Inventors: Clifford I. Drowley, David Cohen, Assaf Lahav, Shai Kfir, Naor Inbar, Anatoly Sergienko, Vladimir Korobov
  • Publication number: 20100164042
    Abstract: Embodiments of a process comprising forming a pixel on a front side of a substrate, thinning the substrate, depositing a doped silicon layer on a backside of the thinned substrate, and diffusing a dopant from the doped silicon layer into the substrate. Embodiments of an apparatus comprising a pixel formed on a front side of a thinned substrate, a doped silicon layer formed on a backside of the thinned substrate, and a region in the thinned substrate, and near the backside, where a dopant has diffused from the doped silicon layer into the thinned substrate. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: December 31, 2008
    Publication date: July 1, 2010
    Applicant: OMNIVISION TECHNOLOGIES INC.
    Inventor: Sohei Manabe
  • Patent number: 7745824
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, the source wires 126 of a pixel portion 205 are formed of material having low resistance (representatively, aluminum, silver, copper). The source wires of a driving circuit are formed in the same process as the gate wires 162 of the pixel portion and a pixel electrode 163.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 29, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama
  • Patent number: 7741143
    Abstract: In an embodiment, an image sensor includes an isolation layer disposed in a semiconductor substrate to define a first active region and a second active region extending from the first active region. A photodiode is disposed in a portion of the first active region. A floating diffusion region is provided in the second active region at a position spaced apart from the photodiode. A transfer gate electrode is disposed on the second active region between the photodiode and the floating diffusion region. The transfer gate electrode is disposed to cover both sidewalls and an upper portion of the second active region. The transfer gate electrode has a region extending onto the first active region and overlapping the photodiode. The photodiode has a protrusion into the second active region at the portion adjacent to the transfer gate electrode. A deep n-impurity region of the photodiode extends in the protrusion.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: June 22, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kee-Hyun Paik, Jeong-Ho Lyu, Chang-Sub Lee, Keun-Ho Lee
  • Patent number: 7741665
    Abstract: Provided are a high-quality CMOS image sensor and a photo diode, which can be fabricated in sub-90 nm regime using nanoscale CMOS technology. The photo diode includes: a p-type well; an internal n-type region formed under a surface of the p-type well; and a surface p-type region including a highly doped p-type SiGeC epitaxial layer or a polysilicon layer deposited on a top surface of the p-type well over the internal n-type region. The image sensor includes: a photo diode including an internal n-type region and a surface p-type region; a transfer transistor for transmitting photo-charges generated in the photo diode to a floating diffusion node; and a driving transistor for amplifying a variation in an electric potential of the floating diffusion node due to the photo-charges. The image sensor further includes a floating metal layer for functioning as the floating diffusion node and applying an electric potential from a drain of the transfer transistor to a gate of the driving transistor.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: June 22, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Yeong Kang, Jin Gun Koo, Sang Heung Lee
  • Patent number: 7737478
    Abstract: An output terminal of a photoelectric conversion element included in the photoelectric conversion device is connected to a drain terminal and a gate terminal of a MOS transistor which is diode-connected, and a voltage Vout generated at the gate terminal of the MOS transistor is detected in accordance with a current Ip which is generated at the photoelectric conversion element. The voltage Vout generated at the gate terminal of the MOS transistor can be directly detected, so that the range of output can be widened than a method in which an output voltage is converted into a current by connecting a load resistor, and so on.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: June 15, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Makoto Yanagisawa, Atsushi Hirose
  • Patent number: 7737519
    Abstract: The present invention, in a photoelectric conversion device in which a pixel including a photoelectric conversion device for converting a light into a signal charge and a peripheral circuit including a circuit for processing the signal charge outside a pixel region in which the pixel are disposed on the same substrate, comprising: a first semiconductor region of a first conductivity type for forming the photoelectric region, the first semiconductor region being formed in a second semiconductor region of a second conductivity type; and a third semiconductor region of the first conductivity type and a fourth semiconductor region of the second conductivity type for forming the peripheral circuit, the third and fourth semiconductor regions being formed in the second semiconductor region; wherein in that the impurity concentration of the first semiconductor region is higher than the impurity concentration of the third semiconductor region.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: June 15, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiichi Tamura, Hiroshi Yuzurihara, Takeshi Ichikawa, Ryuichi Mishima
  • Patent number: 7732814
    Abstract: A liquid crystal display (LCD) device includes a gate line and a data line crossing each other to define a pixel region on a first substrate, a thin film transistor connected to the gate line and the data line, a first protrusion and a second protrusion formed on the first substrate, a pixel electrode connected to the thin film transistor in the pixel region, a first patterned spacer and a second patterned spacer formed on a second substrate facing the first substrate, wherein the first patterned spacer corresponds to the first protrusion, and the second patterned spacer corresponds to the second protrusion.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 8, 2010
    Assignee: LG Display Co., Ltd.
    Inventors: Na-Kyung Lee, Sung-Lim Nam
  • Patent number: 7732282
    Abstract: The transistor comprises a source and a drain separated by a lightly doped intermediate zone. The intermediate zone forms first and second junctions respectively with the source and with the drain. The transistor comprises a first gate to generate an electric field in the intermediate zone, on the same side as the first junction, and a second gate to generate an electric field in the intermediate zone, on the same side as the second junction.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: June 8, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Cyrille Le Royer, Olivier Faynot, Laurent Clavelier
  • Publication number: 20100133418
    Abstract: Optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit an array of conductive regions; and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a method of forming a nanocrystalline film includes fabricating a plurality of nanocrystals having a plurality of first ligands attached to their outer surfaces; exchanging the first ligands for second ligands of different chemical composition than the first ligands; forming a film of the ligand-exchanged nanocrystals; removing the second ligands; and fusing the cores of adjacent nanocrystals in the film to form an electrical network of fused nanocrystals.
    Type: Application
    Filed: August 24, 2006
    Publication date: June 3, 2010
    Inventors: Edward Sargent, Jason Clifford, Gerasimos Konstantatos, Ian Howard, Ethan J.D. Klem, Larissa Levina
  • Patent number: 7723734
    Abstract: An LTPS-LCD structure and a method for manufacturing the structure are provided. The structure comprises a substrate where a plurality of pixels are formed thereon. Each of these pixels comprises a control area, a capacitance area, and a display area. The structure is initially formed with a transparent electrode on the substrate, followed by a control device, a capacitance storage device. The display unit is then formed on the control area, the capacitance area, and the display area, respectively. As a result, the capacitance of the structure can be enhanced and the manufacturing processes of masks can be reduced.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 25, 2010
    Assignee: Au Optronics Corp.
    Inventor: Yi-Sheng Cheng
  • Patent number: 7718460
    Abstract: A method for manufacturing a solid state imaging device includes steps of forming a photodiode layer buried in a semiconductor substrate by ion injection and of forming a shielding layer buried in the photodiode layer by ion injection. At least in the ion injection process in the step of forming the shielding layer, an ion injection pause period is provided at least one time during whole ion injection step. According to the method, crystal defects are prevented from generating even if ion injection is performed with high energy, thereby suppressing dark current without complexity in manufacturing process.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: May 18, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shu Sasaki
  • Patent number: 7709367
    Abstract: A method for fabricating a storage node contact in a semiconductor device includes forming a landing plug over a substrate, forming a first insulation layer over the landing plug, forming a bit line pattern over the first insulation layer, forming a second insulation layer over the bit line pattern, forming a mask pattern for forming a storage node contact over the second insulation layer, etching the second and first insulation layers until the landing plug is exposed to form a storage node contact hole including a portion having a rounded profile, filling a conductive material in the storage node contact hole to form a contact plug, and forming a storage node over the contact plug.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hae-Jung Lee, Ik-Soo Choi, Chang-Youn Hwang, Mi-Hyune You
  • Patent number: 7705360
    Abstract: An array substrate includes a substrate, a data line formed on the substrate, a passivation layer formed on the data line, a gate line including a gate electrode and a capacitor line formed on the passivation layer, a gate insulation layer formed on the gate electrode and the capacitor line, a semiconductor layer formed on the gate insulation layer, a contact hole formed through the passivation layer and the gate insulation layer to expose the data line and a source electrode and a drain electrode formed on the semiconductor layer. The capacitor electrode is overlapped with the data line. The source electrode is connected to the data line through the contact hole and the source electrode and the drain electrode include a transparent conductive material.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: April 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Joon Cho
  • Patent number: 7705354
    Abstract: A display device includes a main body, a support stand, and a display portion. The display portion includes a pixel having a TFT and a capacitor. The capacitor includes a capacitor electrode on an insulating surface, an insulating film on the capacitor electrode, and a pixel electrode of the TFT on the insulating film.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: April 27, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Shunpei Yamazaki, Jun Koyama, Setsuo Nakajima
  • Patent number: 7705378
    Abstract: A CMOS image sensor and fabricating method thereof can enhance the quality of the image sensor by preventing unnecessary diffused reflection of light by providing an opaque filter layer next to a microlens. The CMOS image sensor includes a photodiode, an insulating interlayer, a metal line, a device protecting layer, a microlens on the device protecting layer and overlapped with the photodiode, and an opaque layer pattern on the device protecting layer next to the microlens.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: April 27, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Chang Eun Lee
  • Patent number: 7696546
    Abstract: A silicide layer (first silicide layer, second silicide layer) is laminated on top laminate surfaces of gates of a transmission transistor and a reset transistor, respectively. Each of the first silicide layer and the second silicide layer respectively formed on each of the gates extends in a direction along the main surface of the semiconductor substrate among at least a portion of a plurality of image pixels, connecting gates with one another among the respective image pixels. On the other hand, a signal outputter is not in contact with any silicide layers, has the top laminate surface that is covered with an insulating layer, and is connected with other transistors via a metal wiring layer.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: April 13, 2010
    Assignee: Panasonic Corporation
    Inventors: Tatsuya Hirata, Shouzi Tanaka, Ryohei Miyagawa
  • Patent number: 7696597
    Abstract: A pixel with a photosensor and a transfer transistor having a split transfer gate. A first section of the transfer gate is connectable to a first voltage source while a second section of the transfer gate is connectable to a second voltage source. Thus, during a charge integration period of a photosensor, the two sections of the transfer gate may be oppositely biased to decrease dark current while controlling blooming of electrons within and out of the pixel cell. During charge transfer the two gate sections may be commonly connected to a positive voltage sufficient to transfer charge from the photosensor to a floating diffusion region.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: April 13, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: John Ladd
  • Patent number: 7687302
    Abstract: A frame shutter type device provides a separated well in which the storage node is located. The storage node is also shielded by a light shield to prevent photoelectric conversion.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: March 30, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Eric R. Fossum, Sandor L. Barna
  • Patent number: 7687299
    Abstract: The invention provides a semiconductor apparatus provided with at least one set of buried channel type first conductive type MOS transistor and surface channel type first conductive type MOS transistor on the same substrate, in which a first conductive type impurity region is provided below a gate electrode of the buried channel type and surface channel type MOS transistors and between source drain regions. Further, the invention provides a solid state image pickup device having a photoelectric conversion portion and a pixel including a plurality of transistors formed in correspondence to the photoelectric conversion portion, in a substrate, wherein the plurality of transistors includes a buried channel type first conductive type MOS transistor and a surface channel type first conductive type MOS transistor, and a first conductive type impurity region is provided below a gate electrode of the buried channel type and surface channel type MOS transistors and between source drain regions.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 30, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takeshi Ichikawa
  • Patent number: 7679114
    Abstract: An object is to provide a solid state image pickup device and a camera which do not worsen a sensor performance in terms of an optical property, a saturated charge amount and the like. A solid state image sensor including a pixel region having a plurality of pixels includes at least a photodiode and an amplifying portion amplifying photocharges outputted from the photodiode in the pixel region, and further includes a well electrode for taking well potential of a well region in which the amplifying portion is arranged. Between the well electrode and the photodiode, no element isolation regions by an insulation film are arranged. Moreover, on the surface of a first semiconductor region in which the photodiode stores the charges, a second semiconductor layer of a conductivity type reverse to that of the first semiconductor region is arranged.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 16, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toru Koizumi
  • Patent number: 7679087
    Abstract: There is disclosed a method of fabricating a thin-film transistor having excellent characteristics. Nickel element is held in contact with selected regions of an amorphous silicon film. Then, thermal processing is performed to crystallize the amorphous film. Subsequently, thermal processing is carried out in an oxidizing ambient containing a halogen element to form a thermal oxide film. At this time, the crystallinity is improved. Also, gettering of the nickel element proceeds. This crystalline silicon film consists of crystals grown radially from a number of points. Consequently, the thin-film transistor having excellent characteristics can be obtained.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: March 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Teramoto, Jun Koyama, Yasushi Ogata, Masahiko Hayakawa, Mitsuaki Osame, Hisashi Ohtani, Toshiji Hamatani
  • Patent number: 7675095
    Abstract: A solid-state imaging device includes a pixel array including pixels two-dimensionally arranged in matrix form, with a signal line provided in each column of the arranged pixels, each pixel including a photoelectric conversion element, and a fixing unit fixing the potential of the signal line, which is obtained before the pixel has an operating period, to an intermediate potential between a first power-supply potential and a second power-supply potential.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: March 9, 2010
    Assignee: Sony Corporation
    Inventors: Keiji Mabuchi, Toshifumi Wakano, Ken Koseki
  • Patent number: 7670864
    Abstract: A CMOS image sensor and method of manufacture reduces the problem of electron loss in a floating diffusion area. A method of fabricating a CMOS image sensor includes forming a gate electrode over a first conductive type semiconductor substrate. A second conductive type first diffusion layer is formed within the semiconductor substrate to be aligned with an edge of one side of the gate electrode. A spacer may be attached to both sidewalls of the gate electrode. A first conductive type second diffusion layer may be formed within the first diffusion layer to leave a distance amounting to a width of the spacer in-between. A second conductive type third diffusion layer may be formed within the semiconductor substrate to be aligned with an edge of the other side of the gate electrode. A first conductive type fourth diffusion layer may be formed over the third diffusion layer, and a first conductive type fifth diffusion layer may be formed under the third diffusion layer.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Keun-Hyuk Lim
  • Patent number: 7666703
    Abstract: An active pixel using a transfer gate that has a polysilicon gate doped with indium. The pixel includes a photosensitive element formed in a semiconductor substrate and an n-type floating node formed in the semiconductor substrate. An n-channel transfer transistor having a transfer gate is formed between the floating node and the photosensitive element. The pixel substrate has a laterally doping gradient doped with an indium dopant.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: February 23, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventors: Howard E. Rhodes, Hidetoshi Nozaki
  • Patent number: 7663233
    Abstract: A pad part of a semiconductor device includes a semiconductor substrate having a pad forming region; a plurality of dot type stack patterns with a dielectric layer and a conductive layer for option capacitors, formed in the pad forming region and arranged at regular intervals; a first interlayer dielectric formed on the semiconductor substrate to cover the stack patterns; first metal lines formed on the first interlayer dielectric to be connected to the stack patterns arranged in diagonal directions; a second interlayer dielectric formed on the first interlayer dielectric to cover the first metal lines; second metal lines formed on the second interlayer dielectric to be brought into contact with the first metal lines; a pad formed on the second interlayer dielectric; and option metal lines formed on the second interlayer dielectric to connect the second metal lines and the pad to each other.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: February 16, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Dong Ju Lim
  • Patent number: 7662658
    Abstract: A pinned photodiode with an ultra-shallow highly-doped surface layer of a first conductivity type and a method of formation are disclosed. The ultra-shallow highly-doped surface latter has a thickness of about 100 Angstroms to about 500 Angstroms and a dopant concentration of about 5×1017 atoms per cm3 to about 1×1019 atoms per cm3. The ultra-shallow highly-doped surface layer is formed by diffusion of ions from a doped layer into the substrate or by a plasma doping process. The ultra-shallow pinned layer is in contact with a charge collection region of a second conductivity type.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: February 16, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Howard E. Rhodes, Richard A. Mauritzson
  • Patent number: 7655966
    Abstract: A global shutter compatible pixel circuit comprising a reset gate (RG) transistor is provided in which a dynamic voltage is applied to the drain of the reset gate transistor in order to reduce a floating diffusion (FD) leakage therethrough during signal hold time. The drain voltage of the reset gate transistor is held at a lower voltage than a circuit supply voltage to minimize the off-state leakage through the RG transistor, thus reducing the change in the voltage at the floating diffusion during the signal hold time. In addition, a design structure for such a circuit providing a dynamic voltage to the drain of a reset gate of a pixel circuit is also provided.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Mark D. Jaffe, Charles F. Musante, Richard J. Rassel
  • Patent number: 7656004
    Abstract: A display device includes a display panel, first and second gate drivers and a data driver. The display panel includes pixel regions respectively having first, second and third pixels. The first pixel is coupled to first, second gate lines and a data line. The second gate line is adjacent to the first gate line. The second pixel is coupled to the first gate line and a first data line. The third pixel is coupled to the first gate line and a second data line. The first gate driver provides the first gate line with a first gate driving signal, and the second gate driver provides the second gate line with a second gate driving signal. The data driver provides first and second data lines with image signal. The display quality of the display device may be enhanced and the number of the data lines may be reduced.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin Jeon, Hyung-Guel Kim
  • Patent number: 7652291
    Abstract: A flat panel display that can prevent a voltage drop of a driving power and, at the same time, minimizes the characteristic reduction of electronic devices located in a circuit region where various circuit devices are located includes: a substrate; an insulating film arranged on the substrate; a pixel region including at least one light emitting diode, the pixel region arranged on the insulating film and adapted to display an image; a circuit region arranged on the insulating film and including electronic devices adapted to control signals supplied to the pixel region; and a conductive film interposed between the substrate and the insulating film in a region corresponding to the pixel region and electrically connected to one electrode of the light emitting diode.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 26, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jae-Bon Koo, Jae-Kyeong Jeong, Hyun-Soo Shin, Yeon-Gon Mo
  • Patent number: RE41340
    Abstract: A lock in pinned photodiode photodetector includes a plurality of output ports which are sequentially enabled. Each time when the output port is enabled is considered to be a different bin of time. A specified pattern is sent, and the output bins are investigated to look for that pattern. The time when the pattern is received indicates the time of flight. A CMOS active pixel image sensor includes a plurality of pinned photodiode photodetectors that share buffer transistors. In one configuration, the charge from two or more pinned photodiodes may be binned together and applied to the gate of a shared buffer transistor.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Vladimir Berezin, Alexander Krymski, Eric R. Fossum