With One-dimensional Charge Carrier Gas Channel (e.g., Quantum Wire Fet) (epo) Patents (Class 257/E29.245)
  • Publication number: 20100207103
    Abstract: A nanotube field effect transistor and a method of fabrication are disclosed. The method includes electrophoretic deposition of a nanotube to contact a region of a conductive layer defined by an aperture.
    Type: Application
    Filed: May 3, 2010
    Publication date: August 19, 2010
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Reginald Conway Farrow, Amit Goyal
  • Publication number: 20100200834
    Abstract: Example embodiments relate to a crystalline nanowire substrate having a structure in which a crystalline nanowire film having a relatively fine line-width may be formed on a substrate, a method of manufacturing the same, and a method of manufacturing a thin film transistor using the same. The method of manufacturing the crystalline nanowire substrate may include preparing a substrate, forming an insulating film on the substrate, forming a silicon film on the insulating film, patterning the insulating film and the silicon film into a strip shape, reducing the line-width of the insulating film by undercut etching at least one lateral side of the insulating film, and forming a self-aligned silicon nanowire film on an upper surface of the insulating film by melting and crystallizing the silicon film.
    Type: Application
    Filed: March 22, 2010
    Publication date: August 12, 2010
    Inventors: Hans S. Cho, Takashi Noguchi, Wenxu Xianyu, Do-Young Kim, Huaxiang Yin, Xiaoxin Zhang
  • Publication number: 20100187503
    Abstract: A semiconductor device includes an NMISFET region. The NMISFET region includes a Ge nano wire having a triangular cross section along a direction perpendicular to a channel current direction, wherein two of surfaces that define the triangular cross section of the Ge nano wire are (111) planes, and the other surface that define the triangular cross section of the Ge nano wire is a (100) plane; and an Si layer or an Si1-xGex layer (0<x<0.5) on the (100) plane of the Ge nano wire.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 29, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshihiko MORIYAMA, Yoshiki Kamata, Tsutomu Tezuka
  • Patent number: 7763978
    Abstract: Various embodiments of the present invention are directed to three-dimensional crossbar arrays. In one aspect of the present invention, a three-dimensional crossbar array includes a plurality of crossbar arrays, a first demultiplexer, a second demultiplexer, and a third demultiplexer. Each crossbar array includes a first layer of nanowires, a second layer of nanowires overlaying the first layer of nanowires, and a third layer of nanowires overlaying the second layer of nanowires. The first demultiplexer is configured to address nanowires in the first layer of nanowires of each crossbar array, the second demultiplexer is configured to address nanowires in the second layer of nanowires of each crossbar array, and the third demultiplexer is configured to supply a signal to the nanowires in the third layer of nanowires of each crossbar array.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: July 27, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Wu, R. Stanley Williams, Warren Robinett, Gregory S. Snider, Zhaoning Yu, Shih-Yuan Wang, Duncan Stewart
  • Patent number: 7737429
    Abstract: Disclosed are a nitride based semiconductor device, including a high-quality GaN layer formed on a silicon substrate, and a process for preparing the same. A nitride based semiconductor device in accordance with the present invention comprises a plurality of nanorods aligned and formed on the silicone substrate in the vertical direction; an amorphous matrix layer filling spaces between nanorods so as to protrude some upper portion of the nanorods; and a GaN layer formed on the matrix layer.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: June 15, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Min Ho Kim, Masayoshi Koike, Kyeong Ik Min, Seong Suk Lee, Sung Hwan Jang
  • Publication number: 20100133509
    Abstract: A method for fabricating a semiconductor nanowire that has first and second regions is provided. A catalyst particle is put on a substrate. A first source gas is introduced, thereby growing the first region from the catalyst particle via a vapor-liquid-solid phase growth. A protective coating is formed on a sidewall of the first region, and a second source gas is introduced to grow the second region extending from the first region via the liquid-solid-phase growth.
    Type: Application
    Filed: June 4, 2008
    Publication date: June 3, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Takahiro Kawashima, Tohru Saitoh
  • Publication number: 20100090293
    Abstract: Our invention discloses a self-aligned-gate structure for nano FET and its fabrication method. One dimension semiconductor material is used as conductive channel, whose two terminals are source and drain electrodes. Gate dielectric grown by ALD covers the area between source electrode and drain electrode, opposite sidewalls of source electrode and drain electrode, and part of upper source electrode and drain electrode. Gate electrode is deposited on gate dielectric by evaporation or sputtering. Total thickness of gate dielectric and electrode must less than source electrode or drain electrode. Gate electrode between source electrode and drain electrode is electrically separated from source and drain electrode by gate dielectric. The fabrication process of this self-aligned structure is simple, stable, and has high degree of freedom.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 15, 2010
    Applicant: PEKING UNIVERSITY
    Inventors: Zhiyong ZHANG, Lianmao PENG, Sheng WANG, Xuelei LIANG, Qing CHEN
  • Publication number: 20100072460
    Abstract: An electronic device and method of manufacturing the device. The device includes a semiconducting region, which can be a nanowire, a first contact electrically coupled to the semiconducting region, and at least one second contact capacitively coupled to the semiconducting region. At least a portion of the semiconducting region between the first contact and the second contact is covered with a dipole layer. The dipole layer can act as a local gate on the semiconducting region to enhance the electric properties of the device.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 25, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mikael T. Bjoerk, Joachim Knoch, Heike E. Riel, Walter Heinrich Riess, Heinz Schmid
  • Patent number: 7638397
    Abstract: The present invention relates to a method of forming a quantum wire gate device. The method includes patterning a first oxide upon a substrate. Preferably the first oxide pattern is precisely and uniformly spaced to maximize quantum wire numbers per unit area. The method continues by forming a first nitride spacer mask upon the first oxide and by forming a first oxide spacer mask upon the first nitride spacer mask. Thereafter, the method continues by forming a second nitride spacer mask upon the first oxide spacer mask and by forming a plurality of channels in the substrate that are aligned to the second nitride spacer mask. A dielectric is formed upon the channel length and the method continues by forming a gate layer over the plurality of channels. Because of the inventive method and the starting scale, each of the plurality of channels is narrower than the mean free path of semiconductive electron flow therein.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: December 29, 2009
    Assignee: Intel Corporation
    Inventor: Brian Doyle
  • Publication number: 20090302306
    Abstract: Disclosed herein are a nano electronic device and a method of fabricating the same. The nano electronic device includes a ferroelectric nano-structure and a semiconducting nano-wire. Polarization formed on the ferroelectric nano-structure is utilized.
    Type: Application
    Filed: April 5, 2006
    Publication date: December 10, 2009
    Inventors: Wan-Soo Yun, Sung-Oong Kang, Hyung-Ju Park
  • Patent number: 7598516
    Abstract: A complementary metal oxide semiconductor (CMOS) device, e.g., a field effect transistor (FET), that includes at least one one-dimensional nanostructure that is typically a carbon-based nanomaterial, as the device channel, and a metal carbide contact that is self-aligned with the gate region of the device is described. The present invention also provides a method of fabricating such a CMOS device.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: October 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Roy A. Carruthers, Jia Chen, Christophe G. M. M. Detavernier, Christian Lavoie, Hon-Sum Philip Wong
  • Patent number: 7569941
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20090114903
    Abstract: An integrated, multilayer nanotube and complementary metal oxide semiconductor (CMOS) device is provided along with a method of forming the same. The device includes at least one CMOS device formed on at least one layer of the device, a first metal wiring layer that is electrically connected to the least one CMOS device, and at least one nanotube device formed over the first metal wiring layer in parasitic isolation from the at least one CMOS device. In one or more embodiments, the at least one CMOS device and the at least one nanotube device are located on different layers of a same semiconductor wafer chip to allow the wafer to be is used for system-on-chip (SoC) applications having RF/analog circuitry based on the least one nanotube device and digital circuitry based on the at least one CMOS device.
    Type: Application
    Filed: May 22, 2008
    Publication date: May 7, 2009
    Inventor: Amol M. Kalburge
  • Patent number: 7521268
    Abstract: Provided is a method of manufacturing a display which includes an insulating substrate and a structure formed on the insulating substrate and including a display element, including forming a patterned layer as a portion of the structure on the insulating substrate by vapor deposition in vacuum using a mask, and cooling the insulating substrate before and/or during formation of the patterned layer by arranging a cooling plate which comprises a metal substrate and an infrared absorption layer covering a main surface of the metal substrate and being larger in infrared absorptance than the metal plate such that the infrared absorption layer faces the insulating substrate.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: April 21, 2009
    Assignee: Toshiba Matsushita Display Technology Co., Ltd.
    Inventors: Motonobu Aoki, Tetsuo Ishida
  • Publication number: 20080191196
    Abstract: The present invention generally relates to nanoscale heterostructures and, in some cases, to nanowire heterostructures exhibiting ballistic transport, and/or to metal-semiconductor junctions that that exhibit no or reduced Schottky barriers. One aspect of the invention provides a solid nanowire having a core and a shell, both of which are essentially undoped. For example, in one embodiment, the core may consist essentially of undoped germanium and the shell may consist essentially of undoped silicon. Carriers are injected into the nanowire, which can be ballistically transported through the nanowire. In other embodiments, however, the invention is not limited to solid nanowires, and other configurations, involving other nanoscale wires, are also contemplated within the scope of the present invention. Yet another aspect of the invention provides a junction between a metal and a nanoscale wire that exhibit no or reduced Schottky barriers.
    Type: Application
    Filed: May 25, 2007
    Publication date: August 14, 2008
    Inventors: Wei Lu, Jie Xiang, Yue Wu, Brian P. Timko, Hao Yan, Charles M. Lieber
  • Patent number: 7394118
    Abstract: Indium oxide nanowires are used for determining information about different chemicals or Biologics. Chemicals are absorbed to the surface of the nanowires, and cause the semiconducting characteristics of the Nanowires to change. These changed characteristics are sensed, and used to determine either the presence of the materials and/or the concentration of the materials. The nanowires may be between 10 and 30 nm in diameter, formed using a comparable size particle of catalyst material. The nanowires may then be used as part of the channel of a field effect transistor, and the field effect transistor is itself characterized.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: July 1, 2008
    Assignee: University of Southern California
    Inventor: Chongwu Zhou
  • Publication number: 20080067495
    Abstract: Tunnel field-effect transistors (TFETs) are regarded as successors of metal-oxide semiconductor field-effect transistors (MOSFETs), but silicon-based TFETs typically suffer from low on-currents, a drawback related to the large resistance of the tunnel barrier. To achieve higher on-currents a nanowire-based TFET with a germanium (Ge) tunnel barrier in an otherwise silicon (Si) channel is used. A nanowire is introduced such that the lattice mismatch between silicon and germanium does not result in a highly defective interface. A dynamic power reduction as well as a static power reduction can result, compared to conventional MOSFET configurations. Multiple layers of logic can therefore be envisioned with these nanowire Si/Ge TFETs resulting in ultra-high on-chip transistor densities.
    Type: Application
    Filed: June 20, 2007
    Publication date: March 20, 2008
    Applicant: Interuniversitair Microelektronica Centrum (IMEC)
    Inventor: Anne S. Verhulst
  • Publication number: 20070262397
    Abstract: A transistor device is formed of a continuous linear nanostructure having a source region, a drain region and a channel region between the source and drain regions. The source (20) and drain (26) regions are formed of nanowire ania the channel region (24) is in the form of a nanotube. An insulated gate (32) is provided adjacent to the channel region (24) for controlling conduction i ni the channel region between the source and drain regions.
    Type: Application
    Filed: July 12, 2005
    Publication date: November 15, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Radu Surdeanu, Prabhat Agarwal, Abraham Balkenende, Erik Bakkers
  • Patent number: 7183597
    Abstract: The present invention relates to a method of forming a quantum wire gate device. The method includes patterning a first oxide upon a substrate. Preferably the first oxide pattern is precisely and uniformly spaced to maximize quantum wire numbers per unit area. The method continues by forming a first nitride spacer mask upon the first oxide and by forming a first oxide spacer mask upon the first nitride spacer mask. Thereafter, the method continues by forming a second nitride spacer mask upon the first oxide spacer mask and by forming a plurality of channels in the substrate that are aligned to the second nitride spacer mask. A dielectric is formed upon the channel length and the method continues by forming a gate layer over the plurality of channels. Because of the inventive method and the starting scale, each of the plurality of channels is narrower than the mean free path of semiconductive electron flow therein.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: February 27, 2007
    Assignee: Intel Corporation
    Inventor: Brian Doyle