Including Nitride (e.g., Gan) (epo) Patents (Class 257/E33.025)
  • Publication number: 20110133204
    Abstract: A light emitting diode includes a thermal conductive substrate, an p-type GaN layer, an active layer and an n-type GaN layer sequentially stacked above the substrate and an electrode pad deposited on the n-type GaN layer. A surface of n-type GaN layer away from the active layer has a first diffusing section and a second diffusing section. The first diffusing section is adjacent to the electrode pad and the second diffusing section is located at the other side of the first diffusing section opposite to the electrode pad, wherein the doping concentration of the first diffusing section is less than that of the second diffusing section. The n-type GaN layer has an electrical resistance larger than that of the first diffusing section which in turn is larger than that of the second diffusing section.
    Type: Application
    Filed: September 17, 2010
    Publication date: June 9, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHIH-CHEN LAI
  • Patent number: 7956360
    Abstract: A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: June 7, 2011
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Benjamin A. Haskell, Melvin B. McLaurin, Steven P. DenBaars, James Stephen Speck, Shuji Nakamura
  • Publication number: 20110127539
    Abstract: A nitride semiconductor light-emitting device includes an n type nitride semiconductor layer, a light-emitting layer formed on the n type nitride semiconductor layer, a first p type nitride semiconductor layer formed on the light-emitting layer, an intermediate layer formed on the first p type nitride semiconductor layer to alternately cover and expose a surface of the first p type nitride semiconductor layer, and a second p type nitride semiconductor layer formed on the intermediate layer. The intermediate layer is made of a compound containing Si and N as constituent elements.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 2, 2011
    Applicant: Sharp Kabushiki Kaisha
    Inventor: Satoshi KOMADA
  • Publication number: 20110129953
    Abstract: A method of manufacturing a nitride semiconductor device is disclosed. The method includes forming a gallium nitride (GaN) epitaxial layer on a first support substrate, forming a second support substrate on the GaN epitaxial layer, forming a passivation layer on a surface of the other region except for the first support substrate, etching the first support substrate by using the passivation layer as a mask, and removing the passivation layer and thereby exposing the second support substrate and the GaN epitaxial layer.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Inventors: Yong-Jin Kim, Dong-Kun Lee, Doo-Soo Kim, Ho-Jun Lee, Kye-Jin Lee
  • Patent number: 7952109
    Abstract: An apparatus comprising a structure comprising a group III-nitride and a junction between n-type and p-type group III-nitride therein, the structure having a pyramidal shape or a wedge shape.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 31, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Hock Min Ng
  • Publication number: 20110121357
    Abstract: A light emitting device and method for making the same is disclosed. The light-emitting device includes an active layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. The active layer emits light when holes from the p-type semiconductor layer combine with electrons from the n-type semiconductor layer therein. The active layer includes a number of sub-layers and has a plurality of pits in which the side surfaces of a plurality of the sub-layers are in contact with the p-type semiconductor material such that holes from the p-type semiconductor material are injected into those sub-layers through the exposed side surfaces without passing through another sub-layer. The pits can be formed by utilizing dislocations in the n-type semiconductor layer and etching the active layer using an etching atmosphere in the same chamber used to deposit the semiconductor layers without removing the partially fabricated device.
    Type: Application
    Filed: November 25, 2009
    Publication date: May 26, 2011
    Inventors: Steven Lester, Jeff Ramer, Jun Wu, Ling Zhang
  • Publication number: 20110121312
    Abstract: In an optical semiconductor device including a first semiconductor layer of a first conductivity type, an active layer provided on the first semiconductor layer, a second semiconductor layer of a second conductivity type provided on the active layer, an insulating layer provided on a part of the second semiconductor layer, an uneven semiconductor layer of the second conductivity type provided on another part of the second semiconductor layer, and an electrode layer provided on the insulating layer and the uneven semiconductor layer, a density of carriers of the second conductivity type being larger at a tip portion of the uneven semiconductor layer than at a bottom portion of the uneven semiconductor layer.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 26, 2011
    Applicant: STANLEY ELECTRIC CO.
    Inventors: Masahiko MOTEKI, Yusuke YOKOBAYASHI
  • Publication number: 20110121310
    Abstract: Solid state lighting devices with selected thermal expansion and/or surface characteristics, and associated methods are disclosed. A method in accordance with a particular embodiment includes forming an SSL (solid state lighting) formation structure having a formation structure coefficient of thermal expansion (CTE), selecting a first material of an interlayer structure to have a first material CTE greater than the substrate CTE, and selecting a second material of the interlayer structure based at least in part on the second material having a second material CTE less than the first material CTE. The method can further include forming the interlayer structure over the SSL formation structure by disposing (at least) a first layer of the first material over the SSL formation structure, a portion of the second material over the first material, and a second layer of the first material over the second material.
    Type: Application
    Filed: August 23, 2010
    Publication date: May 26, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Ji-Soo Park
  • Publication number: 20110114966
    Abstract: A high-brightness vertical light emitting diode (LED) device having an outwardly located metal electrode. The LED device is formed by: forming the metal electrode on an edge of a surface of a LED epitaxy structure using a deposition method, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), evaporation, electro-plating, or any combination thereof; and then performing a packaging process. The composition of the LED may be a nitride, a phosphide or an arsenide. The LED of the invention has the following advantages: improving current spreading performance, reducing light-absorption of the metal electrode, increasing brightness, increasing efficiency, and thereby improving energy efficiency. The metal electrode is located on the edge of the device and on the light emitting side. The metal electrode has two side walls, among which one side wall can receive more emission light from the device in comparison with the other one.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 19, 2011
    Applicant: Semileds Optoelectronics Co., Ltd., a Taiwanese Corporation
    Inventors: Wen-Huang Liu, Li-Wei Shan, Chen-Fu Chu
  • Patent number: 7943964
    Abstract: An AlxGayIn1-x-yN crystal substrate of the present invention has a main plane having an area of at least 10 cm2. The main plane has an outer region located within 5 mm from an outer periphery of the main plane, and an inner region corresponding to a region other than the outer region. The inner region has a total dislocation density of at least 1×102 cm?2 and at most 1×106 cm?2. It is thereby possible to provide an AlxGayIn1-x-yN crystal substrate having a large size and a suitable dislocation density for serving as a substrate for a semiconductor device, a semiconductor device including the AlxGayIn1-x-yN crystal substrate, and a method of manufacturing the same.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: May 17, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinsuke Fujiwara, Tomoki Uemura, Takuji Okahisa, Koji Uematsu, Manabu Okui, Muneyuki Nishioka, Shin Hashimoto
  • Publication number: 20110108796
    Abstract: Methods of performing laser spike annealing (LSA) in forming gallium nitride (GaN) light-emitting diodes (LEDs) as well as GaN LEDs formed using LSA are disclosed. An exemplary method includes forming atop a substrate a GaN multilayer structure having a n-GaN layer and a p-GaN layer that sandwich an active layer. The method also includes performing LSA by scanning a laser beam over the p-GaN layer. The method further includes forming a transparent conducting layer atop the GaN multilayer structure, and adding a p-contact to the transparent conducting layer and a n-contact to the n-GaN layer. The resultant GaN LEDs have enhanced output power, lower turn-on voltage and reduced series resistance.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Inventors: Yun Wang, Andrew M. Hawryluk
  • Publication number: 20110108852
    Abstract: The present GaN substrate can have an absorption coefficient not lower than 7 cm?1 for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient lower than 7 cm?1 for at least light having a wavelength not shorter than 500 nm and not longer than 780 nm, and specific resistance not higher than 0.02 ?cm. Here, the absorption coefficient for light having a wavelength not shorter than 500 nm and not longer than 780 nm can be lower than 7 cm?1. Thus, a GaN substrate having a low absorption coefficient for light having a wavelength within a light emission wavelength region of a light-emitting device and specific resistance not higher than a prescribed value and being suitable for the light-emitting device is provided.
    Type: Application
    Filed: December 30, 2010
    Publication date: May 12, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinsuke FUJIWARA, Toshihiro Kotani, Fumitake Nakanishi, Seiji Nakahata, Koji Uematsu
  • Patent number: 7939836
    Abstract: A semiconductor light emitting element having a rectangular shape in plan view comprising at least a first side and a second side adjacent to the first side, the semiconductor light emitting element including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, a plurality of first electrodes having a long shape along the first side and being arranged on the first conductivity-type semiconductor layer in a lattice form of x columns (x?2) along the first side and y rows (y>x) along the second side, and a second electrode arranged on the second conductivity-type semiconductor layer. The first electrode and the second electrode are arranged on the same surface side. The first electrode is surrounded by the first conductivity-type semiconductor layer, the second conductivity-type semiconductor layer, and the second electrode is provided.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 10, 2011
    Assignee: Nichia Corporation
    Inventors: Akinori Yoneda, Akiyoshi Kinouchi
  • Publication number: 20110101414
    Abstract: A method for fabricating a Light Emitting Diode (LED) with increased light extraction efficiency, comprising providing a III-Nitride based LED structure comprising a light emitting active layer between a p-type layer and an n-type layer; growing a Zinc Oxide (ZnO) layer epitaxially on the p-type layer by submerging a surface of the p-type layer in a low temperature aqueous solution, wherein the ZnO layer is a transparent current spreading layer; and depositing a p-type contact on the ZnO layer. The increase in efficiency may be more than 93% with very little or no increase in cost.
    Type: Application
    Filed: November 3, 2010
    Publication date: May 5, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daniel B. Thompson, Jacob J. Richardson, Steven P. DenBaars, Frederick F. Lange, MaryAnn E. Lange, Jin Hyeok Kim
  • Publication number: 20110101373
    Abstract: A composite substrate for laser devices is disclosed having improved wave guiding properties, improved lattice matching, improved thermal expansion matching, and improved thermal conductivity. The composite substrate has an intermediate layer (110) formed on a support substrate (102), and a seed layer (120) formed on the intermediate layer. An active device layer (124) is grown or attached to the seed layer, or to a light confinement layer on the seed layer. The intermediate layer may be formed directly on the support layer, or may be formed by thinning an attached wafer of the intermediate material, which is then thinned to a desired thickness.
    Type: Application
    Filed: September 21, 2009
    Publication date: May 5, 2011
    Applicant: S.O.I.TEC Silicon on Insulator Technologies
    Inventors: Chantal Arena, Christiaan J. Werkhoven
  • Patent number: 7935974
    Abstract: The invention relates to a monolithic white light emitting device using wafer bonding or metal bonding. In the invention, a conductive submount substrate is provided. A first light emitter is bonded onto the conductive submount substrate by a metal layer. In the first light emitter, a p-type nitride semiconductor layer, a first active layer, an n-type nitride semiconductor layer and a conductive substrate are stacked sequentially from bottom to top. In addition, a second light emitter is formed on a partial area of the conductive substrate. In the second light emitter, a p-type AlGaInP-based semiconductor layer, an active layer and an n-type AlGaInP-based semiconductor layer are stacked sequentially from bottom to top. Further, a p-electrode is formed on an underside of the conductive submount substrate and an n-electrode is formed on a top surface of the n-type AlGaInP-based semiconductor layer.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 3, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventors: Min Ho Kim, Masayoshi Koike, Kyeong Ik Min, Myong Soo Cho
  • Publication number: 20110095331
    Abstract: Provided is a group-III nitride semiconductor light-emitting device which has a high level of crystallinity and superior internal quantum efficiency and which is capable of enabling acquisition of high level light emission output, and a manufacturing method thereof, and a lamp. An AlN seed layer composed of a group-III nitride based compound is laminated on a substrate 11, and on this AlN seed layer, there are sequentially laminated each layer of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer respectively composed of a group-III nitride semiconductor, wherein the full width at half-maximum of the X-ray rocking curve of the (0002) plane of the p-type semiconductor layer 16 is 60 arcsec or less, and the full width at half-maximum of the X-ray rocking curve of the (10-10) plane is 250 arcsec or less.
    Type: Application
    Filed: June 11, 2009
    Publication date: April 28, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Kenzo Hanawa, Hiromitsu Sakai, Yasumasa Sasaki
  • Patent number: 7928448
    Abstract: A semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region is grown over a porous III-nitride region. A III-nitride layer comprising InN is disposed between the light emitting layer and the porous III-nitride region. Since the III-nitride layer comprising InN is grown on the porous region, the III-nitride layer comprising InN may be at least partially relaxed, i.e. the III-nitride layer comprising InN may have an in-plane lattice constant larger than an in-plane lattice constant of a conventional GaN layer grown on sapphire.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 19, 2011
    Inventors: Jonathan J. Wierer, Jr., John E. Epler
  • Publication number: 20110085578
    Abstract: In a blue-violet semiconductor laser device, a pair of side surfaces of a semiconductor device structure composed of a nitride based semiconductor layer is respectively positioned inside a pair of side surfaces of a partial substrate composed of a Ge substrate. This causes the pair of side surfaces of the semiconductor device structure and the pair of side surfaces of the partial substrate to be respectively spaced apart from each other by a predetermined distance in a direction perpendicular to the pair of side surfaces of the semiconductor device structure. On the partial substrate, current blocking layers are formed in a region between the pair of side surfaces of the partial substrate and the pair of side surfaces of the semiconductor device structure.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 14, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Seiichi Tokunaga, Kunio Takeuchi
  • Publication number: 20110084307
    Abstract: One object of the present invention is to provide a method for producing a group III nitride semiconductor light-emitting device which has excellent productivity and produce a group III nitride semiconductor light-emitting device and a lamp, a method for producing a group III nitride semiconductor light-emitting device, in which a buffer layer (12) made of a group III nitride is laminated on a substrate (11), an n-type semiconductor layer (14) comprising a base layer (14a), a light-emitting layer (15), and a p-type semiconductor layer (16) are laminated on the buffer layer (12) in this order, comprising: a pretreatment step in which the substrate (11) is treated with plasma; a buffer layer formation step in which the buffer layer (12) having a composition represented by AlxGa1-xN (0?x<1) is formed on the pretreated substrate (11) by activating with plasma and reacting at least a metal gallium raw material and a gas containing a group V element; and a base layer formation step in which the base layer (14a)
    Type: Application
    Filed: June 3, 2009
    Publication date: April 14, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Hisayuki Miki, Yasunori Yokoyama, Takehiko Okabe, Kenzo Hanawa
  • Publication number: 20110084305
    Abstract: A nitride-based semiconductor LED includes a substrate; an n-type nitride semiconductor layer formed on the substrate; an active layer and a p-type nitride semiconductor layer that are sequentially formed on a predetermined region of the n-type nitride semiconductor layer; a transparent electrode formed on the p-type nitride semiconductor layer; a p-electrode pad formed on the transparent electrode, the p-electrode pad being spaced from the outer edge line of the p-type nitride semiconductor layer by 50 to 200 ?m; and an n-electrode pad formed on the n-type nitride semiconductor layer.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 14, 2011
    Applicant: SAMSUNG LED CO., LTD.
    Inventors: Hyuk Min LEE, Hyun Kyung Kim, Dong Joon Kim, Hyoun Soo Shin
  • Publication number: 20110079813
    Abstract: A method of manufacturing a vertical GaN-based LED comprises forming a light emission structure in which an n-type GaN-based semiconductor layer, an active layer, and a p-type GaN-based semiconductor layer are sequentially laminated on a substrate; etching the light emission structure such that the light emission structure is divided into units of LED; forming a p-electrode on each of the divided light emission structures; filling a non-conductive material between the divided light emission structures; forming a metal seed layer on the resulting structure; forming a first plated layer on the metal seed layer excluding a region between the light emission structures; forming a second plated layer on the metal seed layer between the first plated layers; separating the substrate from the light emission structures; removing the non-conductive material between the light emission structures exposed by separating the substrate; forming an n-electrode on the n-type GaN-based semiconductor layer; and removing portions
    Type: Application
    Filed: December 15, 2010
    Publication date: April 7, 2011
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Lee Su Yeol, Oh Bang Won, Baik Doo Go, Jang Tae Sung, Woo Jong Gun, Choi Seok Beom, Yoon Sang Ho, Kim Dong Woo, Yeo In Tae
  • Publication number: 20110073870
    Abstract: The present III-nitride semiconductor light-emitting device comprises: a first III-nitride semiconductor layer having a first conductivity type; a second III-nitride semiconductor layer having a second conductivity type different from the first conductivity type; an active layer disposed between the first III-nitride semiconductor layer and the second III-nitride semiconductor layer and generating light by recombination of electrons and holes; and a depletion barrier layer brought into contact with the active layer and having a first conductivity type.
    Type: Application
    Filed: March 29, 2010
    Publication date: March 31, 2011
    Applicant: SEMICON LIGHT CO., LTD
    Inventors: Soo Kun JEON, Eun Hyun PARK, Jun Chun PARK
  • Publication number: 20110068360
    Abstract: The present invention provides a semiconductor light emitting element with excellent color rendering properties, a method for manufacturing the semiconductor light emitting element, and a light emitting device. The semiconductor light emitting element includes: a semiconductor substrate that has a convex portion having a tilted surface as an upper face, and a concave portion formed on either side of the convex portion, the concave portion having a smaller width than the convex portion, a bottom face of the concave portion being located in a deeper position than the upper face of the convex portion; and a light emitting layer that is made of a nitride-based semiconductor and is formed on the semiconductor substrate so as to cover at least the convex portion.
    Type: Application
    Filed: November 29, 2010
    Publication date: March 24, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hajime NAGO, Koichi Tachibana, Kotaro Zaima, Shinji Saito, Shinya Nunoue, Toshiyuki Oka
  • Publication number: 20110068349
    Abstract: A semiconductor light-emitting device (1) of the present invention includes a substrate (101); a laminate semiconductor layer (20) formed by sequentially laminating an n-type semiconductor layer (104), a light-emitting layer (105), and a p-type semiconductor layer (106) on the substrate (101); and a translucent electrode layer (109) formed on a top surface (106a) of the p-type semiconductor layer (106), wherein the translucent electrode layer (109) contains a dopant element, a content of the dopant element within the translucent electrode layer (109) decreases gradually toward the interface (109a) between the p-type semiconductor layer (106) and the translucent electrode layer (109), and in the translucent electrode layer (109) is formed a diffusion region in which an element constituting the p-type semiconductor layer (106) is diffused from the interface (109a) toward the inside of the translucent electrode layer (109).
    Type: Application
    Filed: May 20, 2009
    Publication date: March 24, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Hironao Shinohara, Naoki Fukunaga
  • Patent number: 7910389
    Abstract: Provided is a vertical semiconductor light-emitting device and a method of manufacturing the same. The method may include sequentially forming a lower clad layer, an active layer, and an upper clad layer on a substrate to form a semiconductor layer and forming first electrode layers on the upper clad layer. A metal support layer may be formed on each of the first electrode layers and a trench may be formed between the first electrode layers. The substrate may be removed and a second electrode layer may be formed on the lower clad layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 22, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventors: Hyun-Soo Kim, Kyu-Ho Shin, Jae-Hee Cho
  • Publication number: 20110062488
    Abstract: A Group III nitride semiconductor light-emitting device includes an electrically conductive support; a p-electrode provided on the support; a p-type layer, an active layer, and an n-type layer, which are formed of a Group III nitride semiconductor and are sequentially provided on the p-electrode; an n-electrode which is connected to the n-type layer; a first trench extending from the surface of the p-type layer on the p-electrode's side to reach the n-type layer; an auxiliary electrode which is in contact with the surface of the n-type layer serving as the bottom of the first trench, but is not in contact with the side walls of the first trench; and an insulating film which exhibits light permeability and covers the auxiliary electrode and the bottom and side walls of the first trench.
    Type: Application
    Filed: September 14, 2010
    Publication date: March 17, 2011
    Applicant: TOYODA GOSEI CO., LTD.
    Inventors: Toshiya Uemura, Jun Ito
  • Publication number: 20110062449
    Abstract: A method for growth and fabrication of semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga, Al, In, B)N template or nucleation layer on the substrate, and growing the semipolar (Ga, Al, In, B)N thin films, heterostructures or devices on the planar semipolar (Ga, Al, In, B)N template or nucleation layer. The method results in a large area of the semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Application
    Filed: November 23, 2010
    Publication date: March 17, 2011
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Robert M. Farrell, JR., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh Kumar Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7906787
    Abstract: The present invention relates to a nitride micro light emitting diode (LED) with high brightness and a method of manufacturing the same. The present invention provides a nitride micro LED with high brightness and a method of manufacturing the same, wherein a plurality of micro-sized luminous pillars 10 are formed in a substrates, a gap filling material such as SiO2, Si3N4, DBR(ZrO2/SiO2HfO2/SiO2), polyamide or the like is filled in gaps between the micro-sized luminous pillars, a top surface 11 of the luminous pillar array and the gap filling material is planarized through a CMP processing, and then a transparent electrode 6 having a large area is formed thereon, so that all the luminous pillars can be driven at the same time. In addition, the present invention provides a nitride micro LED with high brightness in which uniformity in formation of electrodes on the micro-sized luminous pillars array is enhanced by employing a flip-chip structure.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: March 15, 2011
    Inventor: Sang-Kyu Kang
  • Publication number: 20110057199
    Abstract: The invention provides an antistatic gallium nitride based light emitting device and a method for fabricating the same.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 10, 2011
    Applicant: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Qunfeng PAN, Xuejiao LIN, Jyh Chiarng WU
  • Publication number: 20110057167
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Yohei ENYA, Takashi KYONO, Katsushi AKITA, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110057201
    Abstract: An LED module comprising an LED chip, with an active gallium nitride layer and a silicon platform on which the LED chip is arranged, wherein the silicon platform has two electrodes on the side facing away from the LED chip which are electrically connected to the LED chip and wherein the thickness of the gallium nitride layer of the LED chip is between 2 ?m and 10 ?m, preferably 1 ?m to 5 ?m.
    Type: Application
    Filed: April 24, 2009
    Publication date: March 10, 2011
    Applicant: LEDON LIGHTING JENNERSDORF GMBH
    Inventor: Stefan Tasch
  • Publication number: 20110058585
    Abstract: A group-III nitride semiconductor laser device comprises a laser structure including a support base and a semiconductor region, and an electrode provided on the semiconductor region of the laser structure. The support base comprises a hexagonal group-III nitride semiconductor and has a semipolar primary surface, and the semiconductor region is provided on the semipolar primary surface of the support base. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer. The first cladding layer, the second cladding layer, and the active layer are arranged along a normal axis to the semipolar primary surface. The active layer comprises a gallium nitride-based semiconductor layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: March 10, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110042713
    Abstract: The nitride semi-conductive light emitting layer in this invention comprises a single crystal substrate 1 for epitaxial growth, a first buffer layer 2, an n-type nitride semi-conductive layer 3, a second buffer layer 4, a third buffer layer 5, a light emitting layer 6, and a p-type nitride semi-conductive layer 7. The first buffer layer 2 is laminated to a top side of the single crystal substrate 1. The n-type nitride semi-conductive layer 3 is laminated to a top side of the first buffer layer 2. The third buffer layer 5 is laminated to a top side of the n-type nitride semi-conductive layer 3 with the second buffer layer 4 being interposed therebetween. The light emitting layer 6 is laminated to a top side of the third buffer layer 5. The p-type nitride semi-conductive layer 7 is laminated to a top side of the light emitting layer 6.
    Type: Application
    Filed: March 23, 2009
    Publication date: February 24, 2011
    Applicants: PANASONIC ELECTRIC WORKS CO., LTD., RIKEN
    Inventors: Takayoshi Takano, Kenji Tsubaki, Hideki Hirayama, Sachie Fujikawa
  • Publication number: 20110042681
    Abstract: An n-side electrode that can inhibit the reduction in ohmic properties is provided. The n-side electrode is an n-side electrode for a nitride semiconductor light-emitting element, and includes an Al layer forming an ohmic contact to an n-type nitride semiconductor layer and having a thickness of 30 nm or greater.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 24, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Keishi Kohno
  • Publication number: 20110042680
    Abstract: A light emitting device includes: a conductive substrate; a metal film provided above the conductive substrate; a light emitting layer provided above the metal film; an electrode provided partly above the light emitting layer; and a current suppression layer being in contact with the metal film, provided in a region including at least part of an immediately underlying region of the electrode, and configured to suppress current, a first portion of the metal film including at least part of a portion located between the current suppression layer and the electrode, being separated from an portion other than the first portion.
    Type: Application
    Filed: March 18, 2010
    Publication date: February 24, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiko Akaike, Yoshinori Natsume, Masaaki Ogawa
  • Patent number: 7893447
    Abstract: A nitride-based semiconductor LED includes a substrate; an n-type nitride semiconductor layer formed on the substrate; an active layer and a p-type nitride semiconductor layer that are sequentially formed on a predetermined region of the n-type nitride semiconductor layer; a transparent electrode formed on the p-type nitride semiconductor layer; a p-electrode pad formed on the transparent electrode, the p-electrode pad being spaced from the outer edge line of the p-type nitride semiconductor layer by 50 to 200 ?m; and an n-electrode pad formed on the n-type nitride semiconductor layer.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 22, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventors: Hyuk Min Lee, Hyun Kyung Kim, Dong Joon Kim, Hyoun Soo Shin
  • Publication number: 20110037086
    Abstract: Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1-x1-y1)N (where 0?x1?1, 0?y1?1, and 0?x1+y1?1), a multiple quantum well-structured active layer made of undoped InAGa1-AN (where 0<A<1) formed on the n-type clad layer, and a p-type clad layer formed on the active layer wherein the p-type clad layer includes at least a first layer made of p-type Iny2Ga1-y2N (where 0?y2<1) formed on the active layer and a second layer made of p-type Alx3Iny3Ga(1-x3-y3)N (where 0<x3?1, 0?y3?1, and 0<x3+y3?1) formed on the first layer.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: SAMSUNG LED CO., LTD.
    Inventors: Je Won KIM, Jeong Tak Oh, Dong Joon Kim, Sun Woon Kim, Jin Sub Park, Kyu Han Lee
  • Publication number: 20110037085
    Abstract: A light emitting diode (LED) having a p-type layer having a thickness of 100 nm or less, an n-type layer, and an active layer, positioned between the p-type layer and the n-type layer, for emitting light, wherein the LED does not include a separate electron blocking layer.
    Type: Application
    Filed: November 2, 2009
    Publication date: February 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hong Zhong, Anurag Tyagi, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 7888171
    Abstract: In one aspect, a method includes fabricating a gallium nitride (GaN) layer with a first diamond layer having a first thermal conductivity and a second diamond layer having a second thermal conductivity greater than the first thermal conductivity. The fabricating includes using a microwave plasma chemical vapor deposition (CVD) process to deposit the second diamond layer onto the first diamond layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 15, 2011
    Assignee: Raytheon Company
    Inventors: Ralph Korenstein, Steven D. Bernstein, Stephen J. Pereira
  • Publication number: 20110027928
    Abstract: High quality GaN films exhibiting strong room temperature blue photoluminescence with negligible impurity emissions are grown by a Pulsed Laser Deposition process in which process parameters are controlled to attain plasma particle energy of a target material plume directed from the target on the substrate structure below 5 eV at the deposition surface. Among the process parameters, a distance between the deposition surface and the target, a pressure level of the reaction gas in the processing chamber, and an energy density of the pulsed laser beam directed to the target are controlled, in combination, to attain the required low plasma particle energy of the plume below 5 eV in vicinity of the deposition surface.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 3, 2011
    Applicant: NEOCERA, LLC
    Inventors: JEONGGOO KIM, SOLOMON HARSHAVARDHAN KOLAGANI, MIKHAIL STRIKOVSKI
  • Patent number: 7875474
    Abstract: The invention provides a gallium nitride based compound semiconductor light emitting device with excellent light extracting efficiency and its production method. A light emitting device, obtained from a gallium nitride based compound semiconductor, includes a substrate; a n-type semiconductor layer 13, a light emitting layer 14, and a p-type semiconductor layer 15, sequentially stacked on a substrate 11; a light-permeable positive electrode 16 stacked on the p-type semiconductor layer 15; a positive electrode bonding pad 17 provided on the light-permeable positive electrode 16; and a negative electrode bonding pad provided 18 on the n-type semiconductor layer 13, wherein a disordered uneven surface formed at least on a part of the surface 15a of the p-type semiconductor layer 15.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: January 25, 2011
    Assignee: Show A Denko K.K.
    Inventors: Noritaka Muraki, Hironao Shinohara, Hiroshi Osawa
  • Publication number: 20110012145
    Abstract: There is provided a GaN-based semiconductor light emitting device including: a substrate; and an n-type GaN-based semiconductor layer, an active layer and a p-type GaN-based semiconductor layer sequentially deposited on the substrate, wherein the active layer includes: a first barrier layer including AlxInyGa1-x-yN, where 0<x<1, 0<y<1, and 0<x+y<1; a second barrier layer having an energy band higher than an energy band of the first barrier layer and including one of InxGa1-xN, where 0<x<0.2, and GaN; a well layer including InxGa1-xN, where 0<x<1; a third barrier layer including one of InxGa1-xN, where 0<x<0.2 and GaN; and a lattice mismatch relaxation layer including one of AlxInyGa1-x-yN, where 0<x<1, 0<y<1, and 0<x+y<1, AlxGa1-xN, where 0<x<1, and GaN, the lattice mismatch relaxation layer having a lattice constant greater than a lattice constant of the well layer and smaller than a lattice constant of the p-type GaN-based semiconductor layer.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Tan SAKONG, Cheol Soo Sone, Ho Sun Paek, Suk Ho Yoon, Jeong Wook Lee
  • Publication number: 20110012168
    Abstract: A compound semiconductor light-emitting element includes: a substrate; a first electrode provided on one face of the substrate; a plurality of nanoscale columnar crystalline structures in which an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer are stacked in order on the other face of the substrate; a second electrode connected to top portions of the plurality of columnar crystalline structures; and a foundation layer, provided on the side of the other face, in a first region being a partial region of the substrate; wherein a level difference is provided, on the other face, between the first region and a second region being at least part of a remaining region of the substrate excluding the first region.
    Type: Application
    Filed: March 13, 2009
    Publication date: January 20, 2011
    Applicant: PANASONIC ELECTRIC WORKS CO., LTD.
    Inventor: Robert David Armitage
  • Publication number: 20110012169
    Abstract: A nitride semiconductor light-emitting device includes a substrate (101) made of silicon, a mask film (102) made of silicon oxide, formed on a principal surface of the substrate (101), and having at least one opening (102a), a seed layer (104) made of GaN selectively formed on the substrate (101) in the opening (102a), an LEG layer (105) formed on a side surface of the seed layer (104), and an n-type GaN layer (106), an active layer (107), and a p-type GaN layer (108) which are formed on the LEG layer (105). The LEG layer (105) is formed by crystal growth using an organic nitrogen material as a nitrogen source.
    Type: Application
    Filed: February 2, 2009
    Publication date: January 20, 2011
    Inventors: Toshiyuki Takizawa, Tetsuzo Ueda, Manabu Usuda
  • Publication number: 20110012167
    Abstract: A light emitting device includes a pair of electrodes facing to each other and a phosphor layer which is sandwiched between the pair of electrodes and includes phosphor particles placed therein. The phosphor particles include an n-type nitride semiconductor part and a p-type nitride semiconductor part, the n-type nitride semiconductor part and the p-type nitride semiconductor part are made of respective single crystals having wurtzite-type crystal structures having c axes parallel with each other, and the phosphor particles include an insulation layer provided to overlie one end surface out of their end surfaces perpendicular to the c axes.
    Type: Application
    Filed: February 24, 2009
    Publication date: January 20, 2011
    Inventors: Takayuki Shimamura, Masayuki Ono, Reiko Taniguchi, Eiichi Satoh, Masato Murayama, Masaru Odagiri
  • Publication number: 20110012150
    Abstract: A light-emitting device comprises a second conductive type semiconductor layer, an active layer on the second conductive type semiconductor layer, a first conductive type semiconductor layer on the active layer, and a nonconductive semiconductor layer on the first conductive type semiconductor layer, the nonconductive semiconductor layer comprising a light extraction structure.
    Type: Application
    Filed: August 26, 2008
    Publication date: January 20, 2011
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Sun Kyung Kim, Hyun Kyong Cho
  • Publication number: 20110012126
    Abstract: An object is to provide a nitride-based semiconductor light emitting device capable of preventing a Schottky barrier from being formed at an interface between a contact layer and an electrode. LD 1 is provided as a nitride-based semiconductor light emitting device provided with a GaN substrate 3, a hexagonal GaN-based semiconductor region 5 provided on a primary surface S1 of the GaN substrate 3 and including a light emitting layer 11, and a p-electrode 21 provided on the GaN-based semiconductor region 5 and comprised of metal. The GaN-based semiconductor region 5 includes a contact layer 17 involving strain, the contact layer 17 is in contact with the p-electrode, the primary surface S1 extends along a reference plane S5 inclined at a predetermined inclination angle ? from a plane perpendicular to the c-axis direction of the GaN substrate 3, and the inclination angle ? is either in the range of more than 40° and less than 90° or in the range of not less than 150° and less than 180°.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takamichi SUMITOMO, Masaki UENO, Takashi KYONO, Yohei ENYA, Yusuke YOSHIZUMI
  • Patent number: 7872270
    Abstract: A semiconductor light emitter includes a quantum well active layer which includes nitrogen and at least one other Group-V element, and barrier layers which are provided alongside the quantum well active layer, wherein the quantum well active layer and the barrier layers together constitute an active layer, wherein the barrier layers are formed of a Group-III-V mixed-crystal semiconductor that includes nitrogen and at least one other Group-V element, a nitrogen composition thereof being smaller than that of the quantum well active layer.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: January 18, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Takashi Takahashi, Shunichi Sato, Morimasa Kaminishi
  • Patent number: 7871843
    Abstract: The object of this invention is to provide a high-output type nitride light emitting device. The nitride light emitting device comprises an n-type nitride semiconductor layer, a p-type nitride semiconductor layer and an active layer therebetween, wherein the light emitting device comprises a gallium-containing nitride semiconductor layer prepared by crystallization from supercritical ammonia-containing solution in the nitride semiconductor layer.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: January 18, 2011
    Assignees: Ammono. Sp. z o.o., Nichia Corporation
    Inventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara