Including Nitride (e.g., Gan) (epo) Patents (Class 257/E33.025)
  • Publication number: 20120292632
    Abstract: According to one embodiment, a nitride semiconductor device includes a foundation layer and a functional layer. The foundation layer is formed on an Al-containing nitride semiconductor layer formed on a silicon substrate. The foundation layer has a thickness not less than 1 micrometer and including GaN. The functional layer is provided on the foundation layer. The functional layer includes a first semiconductor layer. The first semiconductor layer has an impurity concentration higher than an impurity concentration in the foundation layer and includes GaN of a first conductivity type.
    Type: Application
    Filed: August 31, 2011
    Publication date: November 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomonari SHIODA, Hung Hung, Jongil Hwang, Taisuke Sato, Naoharu Sugiyama, Shinya Nunoue
  • Publication number: 20120292634
    Abstract: Disclosed are a microarray type nitride light emitting device and a method of manufacturing the same. More particularly, a uniform current distribution property is ensured by dividing a fine light emitting region by using a first transparent contact layer according to a resistance change property in heat treatment of a material of a transparent conducting oxide used as a transparent contact layer, and connecting the divided light emitting regions by using a second transparent contact layer.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Applicant: ELECTRONIC AND TELECOMUNICATIONS RESEARCH INSTITUTE
    Inventor: Sung Bum BAE
  • Publication number: 20120292631
    Abstract: According to one embodiment, a semiconductor light emitting device includes a stacked structure body, a first electrode, a second electrode, and a dielectric body part. The stacked structure body includes a first semiconductor layer, having a first portion and a second portion juxtaposed with the first portion, a light emitting layer provided on the second portion, a second semiconductor layer provided on the light emitting layer. The first electrode includes a contact part provided on the first portion and contacting the first layer. The second electrode includes a first part provided on the second semiconductor layer and contacting the second layer, and a second part electrically connected with the first part and including a portion overlapping with the contact part when viewed from the first layer toward the second layer. The dielectric body part is provided between the contact part and the second part.
    Type: Application
    Filed: August 31, 2011
    Publication date: November 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi KATSUNO, Satoshi Mitsugi, Toshiyuki Oka, Shinya Nunoue
  • Publication number: 20120292633
    Abstract: An LED array includes a substrate and a plurality of LEDs formed on the substrate. The LEDs are electrically connected with each other. Each of the LEDs includes a connecting layer, an n-type GaN layer, an active layer, and a p-type GaN layer formed on the substrate in sequence. The connecting layer is etchable by alkaline solution. A bottom surface of the n-type GaN layer which connects the connecting layer has a roughened exposed portion. The bottom surface of the n-type GaN layer has an N-face polarity. A method for manufacturing the LED array is also provided.
    Type: Application
    Filed: December 9, 2011
    Publication date: November 22, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: TZU-CHIEN HUNG, CHIA-HUI SHEN
  • Patent number: 8314436
    Abstract: Provided are a light emitting device and a manufacturing method thereof. The light emitting device comprises a first conductive semiconductor layer with a lower surface being uneven in height, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 20, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sang Kyun Shim
  • Publication number: 20120286287
    Abstract: The present disclosure provides a vertical GaN-based semiconductor diode and a method of manufacturing the same. The GaN-based ?i-V group semiconductor device includes a substrate, a p-type ohmic electrode layer on the substrate, a p-type GaN-based ?i-V group compound semiconductor layer on the p-type ohmic electrode layer, an n-type GaN-based ?i-V group compound semiconductor layer on the p-type GaN-based ?i-V group compound semiconductor layer, and an n-type ohmic electrode layer on the n-type GaN-based IE-V group compound semiconductor layer. The p-type ohmic electrode layer is an Ag-based highly reflective electrode having a high reflectivity of 70% or more, and a surface of the n-type GaN-based E-V group compound semiconductor layer is subjected to at least one of a process of forming photonic crystals and a process of surface roughening.
    Type: Application
    Filed: November 25, 2010
    Publication date: November 15, 2012
    Applicants: Pohang University of Science and Technology Academy-Industry Foundation, SEOUL OPTO DEVICE CO., LTD.
    Inventor: Jong Lam Lee
  • Publication number: 20120286286
    Abstract: Disclosed are a non-polar nitride-based light emitting device and a method for fabricating the same. The non-polar nitride-based light emitting device includes a substrate, a first-type semiconductor layer on the substrate, an active layer on the active layer, a second-type semiconductor layer on the active layer, a light extraction layer on the second-type semiconductor layer and including at least one layer including indium having a plurality of unit structures having an inverted pyramidal intaglio shape, a first electrode electrically connected to the first-type semiconductor layer, and a second electrode electrically connected to the second-type semiconductor layer.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Inventors: Sukkoo JUNG, Younghak Chang, Hyunggu Kim, Kyuhyun Bang
  • Publication number: 20120286284
    Abstract: According to one embodiment, a semiconductor light emitting device includes: a foundation layer, a first semiconductor layer, a light emitting part, and a second semiconductor layer. The foundation layer includes a nitride semiconductor. The foundation layer has a dislocation density not more than 5×108 cm?2. The first semiconductor layer of a first conductivity type is provided on the foundation layer and includes a nitride semiconductor. The light emitting part is provided on the first semiconductor layer. The light emitting part includes: a plurality of barrier layers; and a well layer provided between the barrier layers. The well layer has a bandgap energy smaller than a bandgap energy of the barrier layers and has a thickness larger than a thickness of the barrier layers. The second semiconductor layer of a second conductivity type different from the first conductivity type, is provided on the light emitting part and includes a nitride semiconductor.
    Type: Application
    Filed: August 10, 2011
    Publication date: November 15, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koichi TACHIBANA, Shigeya Kimura, Hajime Nago, Shinya Nunoue
  • Publication number: 20120288974
    Abstract: A GaN based light emitting diode device which emits polarized light or light of various degrees of polarization for use in the creation of optical devices. The die are cut to different shapes, or contain some indicia that are used to represent the configuration of the weak dipole plane and the strong dipole plane. This allows for the more efficient manufacturing of such light emitting diode based optical devices.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 15, 2012
    Applicants: KAAI, Inc., Soraa, Inc.
    Inventors: Rajat Sharma, Eric M. Hall
  • Patent number: 8309982
    Abstract: Provided is a group-III nitride semiconductor light-emitting device which has a high level of crystallinity and superior internal quantum efficiency and which is capable of enabling acquisition of high level light emission output, and a manufacturing method thereof, and a lamp. An AlN seed layer composed of a group-III nitride based compound is laminated on a substrate 11, and on this AlN seed layer, there are sequentially laminated each layer of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer respectively composed of a group-III nitride semiconductor, wherein the full width at half-maximum of the X-ray rocking curve of the (0002) plane of the p-type semiconductor layer 16 is 60 arcsec or less, and the full width at half-maximum of the X-ray rocking curve of the (10-10) plane is 250 arcsec or less.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: November 13, 2012
    Assignee: Showa Denko K.K.
    Inventors: Kenzo Hanawa, Hiromitsu Sakai, Yasumasa Sasaki
  • Patent number: 8309984
    Abstract: A nitride-based semiconductor light-emitting device 100 includes a GaN substrate 10, of which the principal surface is an m-plane 12, a semiconductor multilayer structure 20 that has been formed on the m-plane 12 of the GaN-based substrate 10, and an electrode 30 arranged on the semiconductor multilayer structure 20. The electrode 30 includes an Mg alloy layer 32 which is formed of Mg and a metal selected from a group consisting of Pt, Mo, and Pd. The Mg alloy layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Ryou Kato
  • Patent number: 8309972
    Abstract: Aspects include electrodes that provide specified reflectivity attributes for light generated from an active region of a Light Emitting Diode (LED). LEDs that incorporate such electrode aspects. Other aspects include methods for forming such electrodes, LEDs including such electrodes, and structures including such LEDs.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: November 13, 2012
    Assignee: Bridgelux, Inc.
    Inventors: Frank T. Shum, William W. So, Steven D. Lester
  • Patent number: 8304793
    Abstract: A III-nitride semiconductor optical device has a support base comprised of a III-nitride semiconductor, an n-type gallium nitride based semiconductor layer, a p-type gallium nitride based semiconductor layer, and an active layer. The support base has a primary surface at an angle with respect to a reference plane perpendicular to a reference axis extending in a c-axis direction of the III-nitride semiconductor. The n-type gallium nitride based semiconductor layer is provided over the primary surface of the support base. The p-type gallium nitride based semiconductor layer is doped with magnesium and is provided over the primary surface of the support base. The active layer is provided between the n-type gallium nitride based semiconductor layer and the p-type gallium nitride based semiconductor layer over the primary surface of the support base. The angle is in the range of not less than 40° and not more than 140°. The primary surface demonstrates either one of semipolar nature and nonpolar nature.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: November 6, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takashi Kyono, Takao Nakamura
  • Patent number: 8304802
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes a Zn layer 32 and an Ag layer 34 provided on the Zn layer 32. The Zn layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Publication number: 20120273816
    Abstract: A semiconductor optical device includes: a group III nitride semiconductor substrate having a primary surface of a first orientation; a first group III nitride semiconductor laminate including a first active layer disposed on a first region of the primary surface; a group III nitride semiconductor thin film having a surface, which has a second orientation different from the first orientation, disposed on a second region, the second region being different from the first region; a junction layer provided between the second region and the group III nitride semiconductor thin film; and a second group III nitride semiconductor laminate including a second active layer and disposed on the surface of the group III nitride semiconductor thin film. The first and second active layers include first and second well layers containing In, respectively, and the emission wavelengths of the first and second well layers are different from each other.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 1, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahisa YOSHIDA, Yohei ENYA, Takashi KYONO, Masaki UENO
  • Publication number: 20120273794
    Abstract: According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, an active layer, and a second semiconductor layer. The first layer has a first upper surface and a first side surface. The active layer has a first portion covering the first upper surface and having a second upper surface, and a second portion covering the first side surface and having a second side surface. The second layer has a third portion covering the second upper surface, and a fourth portion covering the second side surface. The first and second layers include a nitride semiconductor. The first portion along a stacking direction has a thickness thicker than the second portion along a direction from the first side surface toward the second side surface. The third portion along the stacking direction has a thickness thicker than the fourth portion along the direction.
    Type: Application
    Filed: February 28, 2012
    Publication date: November 1, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinji SAITO, Shinya Nunoue, Rei Hashimoto
  • Patent number: 8299490
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes an Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Publication number: 20120267638
    Abstract: A method of fabricating a gallium nitride (GaN) thin layer structure includes forming a sacrificial layer on a substrate, forming a first buffer layer on the sacrificial layer, forming an electrode layer on the first buffer layer, forming a second buffer layer on the electrode layer, partially etching the sacrificial layer to form at least two support members configured to support the first buffer layer and define at least one air cavity between the substrate and the first buffer layer, and forming a GaN thin layer on the second buffer layer.
    Type: Application
    Filed: October 11, 2011
    Publication date: October 25, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Joo-ho Lee, Jun-hee Choi, Sang-hun Lee, Mi-jeong Song
  • Patent number: 8294179
    Abstract: An optical device has a structured active region configured for selected wavelengths of light emissions.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: October 23, 2012
    Assignee: Soraa, Inc.
    Inventor: James W. Raring
  • Patent number: 8294245
    Abstract: Affords a GaN single-crystal mass, a method of its manufacture, and a semiconductor device and method of its manufacture, whereby when the GaN single-crystal mass is being grown, and when the grown GaN single-crystal mass is being processed into a substrate or like form, as well as when an at least single-lamina semiconductor layer is being formed onto a single-crystal GaN mass in substrate form to manufacture semiconductor devices, cracking is controlled to a minimum. The GaN single-crystal mass 10 has a wurtzitic crystalline structure and, at 30° C., its elastic constant C11 is from 348 GPa to 365 GPa and its elastic constant C13 is from 90 GPa to 98 GPa; alternatively its elastic constant C11 is from 352 GPa to 362 GPa.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 23, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideaki Nakahata, Shinsuke Fujiwara, Takashi Sakurada, Yoshiyuki Yamamoto, Seiji Nakahata, Tomoki Uemura
  • Publication number: 20120264248
    Abstract: A semiconductor structure comprises a III-nitride light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure further comprises a curvature control layer grown on a first layer. The curvature control layer is disposed between the n-type region and the first layer. The curvature control layer has a theoretical a-lattice constant less than the theoretical a-lattice constant of GaN. The first layer is a substantially single crystal layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Linda T. ROMANO, Parijat Pramil DEB, Andrew Y. Kim, John F. KAEDING
  • Publication number: 20120264247
    Abstract: Various embodiments of the present disclosure pertain to separating nitride films from growth substrates by selective photo-enhanced wet oxidation. In one aspect, a method may transform a portion of a III-nitride structure that bonds with a first substrate structure into a III-oxide layer by selective photo-enhanced wet oxidation. The method may further separate the first substrate structure from the III-nitride structure.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: OPTO TECH CORPORATION
    Inventors: Lung-Han Peng, Jeng-Wei Yu, Po-Chun Yeh
  • Publication number: 20120258559
    Abstract: Exemplary embodiments of the present invention provide a method of fabricating a semiconductor substrate, the method including forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, etching the substrate using a solution to remove the metallic material layer and a portion of the first semiconductor layer, and forming a cavity in the first semiconductor layer under where the metallic material layer was removed.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 11, 2012
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventor: Shiro Sakai
  • Patent number: 8283676
    Abstract: A method for fabricating a light emitting device includes forming a trench in a first surface on a first side of a substrate. The trench comprises a first sloped surface not parallel to the first surface, wherein the substrate has a second side opposite to the first side of the substrate. The method also includes forming light emission layers over the first trench surface and the first surface, wherein the light emission layer is configured to emit light and removing at least a portion of the substrate from the second side of the substrate to form a protrusion on the second side of the substrate to allow the light emission layer to emit light out of the protrusion on the second side of the substrate.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 9, 2012
    Assignee: SiPhoton Inc.
    Inventors: Shaoher X. Pan, Jay Chen
  • Patent number: 8283694
    Abstract: A GaN substrate on which an epitaxially grown layer of good quality can be formed is obtained. A GaN substrate as a group III nitride substrate has a surface in which the number of chlorine atoms per square centimeter of the surface is not more than 2×1014, and the number of silicon atoms per square centimeter of the surface is not more than 3×1013, wherein a plane orientation of the surface is any of a (0001) plane, a (11-20) plane, a (10-12) plane, a (10-10) plane, a (20-21) plane, a (10-11) plane, a (11-21) plane, a (11-22) plane, and a (11-24) plane of a wurtzite structure.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 9, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Akihiro Hachigo, Masato Irikura, Seiji Nakahata
  • Publication number: 20120248457
    Abstract: According to the present invention, an AlN crystal film seed layer having high crystallinity is combined with selective/lateral growth, whereby a Group III nitride semiconductor multilayer structure more enhanced in crystallinity can be obtained. The Group III nitride semiconductor multilayer structure of the present invention is a Group III nitride semiconductor multilayer structure where an AlN crystal film having a crystal grain boundary interval of 200 nm or more is formed as a seed layer on a C-plane sapphire substrate surface by a sputtering method and an underlying layer, an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer, each composed of a Group III nitride semiconductor, are further stacked, wherein regions in which the seed layer is present and is absent are formed on the C-plane sapphire substrate surface and/or regions capable of epitaxial growth and incapable of epitaxial growth are formed in the underlying layer.
    Type: Application
    Filed: June 11, 2012
    Publication date: October 4, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Kenzo HANAWA, Yasumasa SASAKI
  • Publication number: 20120248458
    Abstract: A method for manufacturing vertically structured Group III nitride semiconductor LED chips includes a step of forming a light emitting laminate on a growth substrate; a step of forming a plurality of separate light emitting structures by partially removing the light emitting laminate to partially expose the growth substrate; a step of forming a conductive support on the plurality of light emitting structures; a step of lifting off the growth substrate from the plurality of light emitting structures; and a step of cutting the conductive support thereby singulating a plurality of LED chips each having the light emitting structure. The step of partially removing the light emitting laminate is performed such that each of the plurality of light emitting structures has a top view shape of a circle or a 4n-gon en” is a positive integer) having rounded corners.
    Type: Application
    Filed: November 5, 2009
    Publication date: October 4, 2012
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., WAVESQUARE INC.
    Inventors: Meoung Whan Cho, Seog Woo Lee, Pil Guk Jang, Ryuichi Toba, Tatsunori Toyota, Yoshitaka Kadowaki
  • Patent number: 8278676
    Abstract: A semiconductor light-emitting device includes: a first semiconductor layer having a first major surface and a second major surface which is an opposite side to the first major surface; a second semiconductor layer provided on the second major surface of the first semiconductor layer and including a light-emitting layer; a first electrode provided on the second major surface of the first semiconductor layer; a second electrode provided on a surface of the second semiconductor layer, the surface being an opposite side to the first semiconductor layer; an insulating film provided on a side surface of the second semiconductor layer, and an edge of an interface between the first semiconductor layer and the second semiconductor layer; and a metal film provided on the insulating film from the second electrode side toward the edge of the interface.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: October 2, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Kojima, Yoshiaki Sugizaki
  • Publication number: 20120241752
    Abstract: A low contact resistance semiconductor structure includes a substrate, a semiconductor stacked layer, a low contact resistance layer and a transparent conductive layer. The low contact resistance layer is formed on one side of a P-type GaN layer of the semiconductor stacked layer. The low contact resistance layer is formed at a thickness smaller than 100 Angstroms and made of a material selected from the group consisting of aluminum, gallium, indium, and combinations thereof. Through the low contact resistance layer, the resistance between the P-type GaN layer and transparent conductive layer can be reduced and light emission efficiency can be improved when being used on LEDs. The method of fabricating the low contact resistance semiconductor structure of the invention forms a thin and consistent low contact resistance layer through a Metal Organic Chemical Vapor Deposition (MOCVD) method to enhance matching degree among various layers.
    Type: Application
    Filed: November 21, 2011
    Publication date: September 27, 2012
    Inventors: Te-Chung Wang, Fu-Bang Chen, Hsiu-Mu Tang
  • Publication number: 20120241760
    Abstract: Disclosed is a semiconductor light emitting element (1) which is provided with: a laminated semiconductor layer which is formed on a substrate, and in which a first semiconductor layer having a first conductivity type, a light emitting layer, and a second semiconductor layer having a second conductivity type different from the first conductivity type; a first electrode (first electrode (170)) which is formed on a surface of the first semiconductor layer in the laminated semiconductor layer, and has a first opening (170a) used for electrical connection with an outside; and a second electrode (second electrode (180)) which is formed on a surface of the second semiconductor layer, and has a second opening (180a) used for electrical connection with the outside. The surface of the second semiconductor layer is exposed by cutting off a part of the laminated semiconductor layer.
    Type: Application
    Filed: December 2, 2010
    Publication date: September 27, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Takehiko Okabe
  • Publication number: 20120238046
    Abstract: A method of LED manufacturing is disclosed. A coating is applied to a mesa. This coating may have different thicknesses on the sidewalls of the mesa compared to the top of the mesa. Ion implantation into the mesa will form implanted regions in the sidewalls in one embodiment. These implanted regions may be used for LED isolation or passivation.
    Type: Application
    Filed: February 2, 2012
    Publication date: September 20, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: San Yu, Atul Gupta
  • Publication number: 20120235158
    Abstract: The present invention relates to a light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same. Nitride semiconductor layers are disposed on a Gallium Nitride substrate having an upper surface. The upper surface is a non-polar or semi-polar crystal and forms an intersection angle with respect to a c-plane. The nitride semiconductor layers may be patterned to form light emitting cells separated from one another. When patterning the light emitting cells, the substrate may be partially removed in separation regions between the light emitting cells to form recess regions. The recess regions are filled with an insulating layer, and the substrate is at least partially removed by using the insulating layer.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Kwang Choong KIM, Won Cheol SEO, Dae Won KIM, Dae Sung KAL, Kyung Hee YE
  • Publication number: 20120223326
    Abstract: A light emitting diode and a method for fabricating the same are provided. The light emitting diode includes: a transparent substrate; a semiconductor material layer formed on the top surface of a substrate with an active layer generating light; and a fluorescent layer formed on the back surface of the substrate with controlled varied thicknesses. The ratio of light whose wavelength is shifted while propagating through the fluorescent layer and the original light generated in the active layer can be controlled by adjusting the thickness of the fluorescent layer, to emit desirable homogeneous white light from the light emitting diode.
    Type: Application
    Filed: May 14, 2012
    Publication date: September 6, 2012
    Applicant: Samsung LED Co., Ltd.
    Inventors: Joon-seop KWAK, Jae-hee Cho
  • Publication number: 20120217496
    Abstract: In accordance with certain embodiments, an unpackaged inorganic LED die is adhered directly to a yielding substrate with a pressure-activated adhesive notwithstanding any nonplanarity of the surface of the unpackaged inorganic LED die or non-coplanarity of the contacts thereof.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Inventors: Michael Tischler, Philippe Schick, Ian Ashdown, Calvin Wade Sheen, Paul Jungwirth
  • Publication number: 20120217510
    Abstract: A method of producing a light-emitting semiconductor device of a group III nitride compound includes forming a high carrier concentration N+-layer satisfying the formula (Alx3Ga1-x3)y3In1-y3N, wherein 0?x3?1, 0?y3?1 and 0?x3+y3?1, forming an emission layer of a group III nitride compound semiconductor satisfying the formula, Alx1Gay1In1-x1-y1N, where 0?x1?1, 0?y1?1 and 0?x1+y1?1 on the high carrier concentration layer N+-layer, and forming a P-layer of a P-type conduction, on the emission layer, the P-layer including aluminum gallium nitride satisfying the formula Alx2Ga1-x2N, wherein 0?x2?1.
    Type: Application
    Filed: May 10, 2012
    Publication date: August 30, 2012
    Applicant: Toyoda Gosei Co., Ltd.
    Inventors: Katsuhide Manabe, Hisaki Kato, Michinari Sassa, Shiro Yamazaki, Makoto Asai, Naoki Shibata, Masayoshi Koike
  • Publication number: 20120217504
    Abstract: Disclosed is a nitride-based light emitting device using a silicon substrate. The nitride-based light emitting device includes a silicon (Si) substrate, a seed layer for nitride growth formed on the silicon substrate, and a light emitting structure formed on the seed layer and having a plurality of nitride layers stacked therein. The seed layer for nitride growth is comprised of GaN powders, thereby minimizing occurrence of dislocations caused by a difference in lattice constant between a nitride layer and the silicon substrate. A method of manufacturing the same is also disclosed.
    Type: Application
    Filed: July 24, 2011
    Publication date: August 30, 2012
    Applicants: Semimaterials Co., Ltd.
    Inventors: JOO JIN, Kun Park
  • Patent number: 8253125
    Abstract: There is provided a method of manufacturing a nitride semiconductor light emitting device. A method of manufacturing a nitride semiconductor light emitting device according to an aspect of the invention may include: nitriding a surface of an m-plane sapphire substrate; forming a high-temperature buffer layer on the m-plane sapphire substrate; depositing a semi-polar (11-22) plane nitride thin film on the high-temperature buffer layer; and forming a light emitting structure including a first nitride semiconductor layer, an active layer, and a second nitride semiconductor layer on the semi-polar (11-22) plane nitride thin film.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 28, 2012
    Assignee: Samsung LED Co., Ltd.
    Inventors: Ho Sun Paek, Sung Nam Lee, Ten Sakong, Youn Joon Sung, In Hoe Hur
  • Patent number: 8253162
    Abstract: The present GaN substrate can have an absorption coefficient not lower than 7 cm?1 for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient lower than 7 cm?1 for at least light having a wavelength not shorter than 500 nm and not longer than 780 nm, and specific resistance not higher than 0.02 ?cm. Here, the absorption coefficient for light having a wavelength not shorter than 500 nm and not longer than 780 nm can be lower than 7 cm?1. Thus, a GaN substrate having a low absorption coefficient for light having a wavelength within a light emission wavelength region of a light-emitting device and specific resistance not higher than a prescribed value and being suitable for the light-emitting device is provided.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 28, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shinsuke Fujiwara, Toshihiro Kotani, Fumitake Nakanishi, Seiji Nakahata, Koji Uematsu
  • Publication number: 20120204957
    Abstract: A method for growing an In(x)Al(y)Ga(1?x?y)N layer (where x is greater than zero and less than or equal to one, y is greater than or equal to zero and less than or equal to one and the sum of x and y is less than or equal to one). The method includes supplying plasma-activated nitrogen atoms as a source of nitrogen for the In(x)Al(y)Ga(1?x?y)N layer to a growth surface, where a flux of the plasma-activated nitrogen atoms supplied to the growth surface is at least four times higher than a total flux of aluminium and gallium atoms also supplied to the growth surface, where either the aluminium or gallium flux may or may not be zero; and simultaneously supplying indium atoms and nitrogen-containing molecules to the growth surface.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Inventors: David NICHOLLS, Tim Michael Smeeton, Valerie Berryman-Bousquet, Stewart Edward Hooper
  • Publication number: 20120205623
    Abstract: A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (11 02) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margalith, James Stephen Speck, Shuji Nakamura, Umesh K. Mishra
  • Publication number: 20120205620
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 16, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 8242532
    Abstract: According to one embodiment, a semiconductor light-emitting device having high light extraction efficiency is provided. The semiconductor light-emitting device includes a light transmissive substrate; a nitride semiconductor layer of a first conduction type formed on or above a top face side of the light transmissive substrate; an active layer made of nitride semiconductor formed on a top face of the nitride semiconductor layer of the first conduction type; a nitride semiconductor layer of a second conduction type formed on a top face of the active layer; a dielectric layer formed on a bottom face of the light transmissive substrate and having a refractive index lower than that of the light transmissive substrate; and a metal layer formed on a bottom face of the dielectric layer. And an interface between the light transmissive substrate and the dielectric layer is a uneven face, and an interface between the dielectric layer and the metal layer is a flat face.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taisuke Sato, Toshiyuki Oka, Koichi Tachibana, Shinya Nunoue, Kazufumi Shiozawa, Takayoshi Fujii
  • Publication number: 20120199841
    Abstract: Techniques for manufacturing optical devices, such as light emitting diodes (LEDs) using a separation process of thick gallium and nitrogen containing substrate members, are described.
    Type: Application
    Filed: October 25, 2011
    Publication date: August 9, 2012
    Applicant: Soraa, Inc.
    Inventors: Max Batres, Aurelien David
  • Publication number: 20120199843
    Abstract: Light emitting devices and methods are disclosed that provide improved light output. The devices have an LED mounted to a substrate, board or submount characterized by improved reflectivity, which reduces the absorption of LED light. This increases the amount of light that can emit from the LED device. The LED devices also exhibit improved emission characteristics by having a reflective coating on the submount that is substantially non-yellowing. One embodiment of a light emitting device according to the present invention comprises a submount having a circuit layer. A reflective coating is included between at least some of the elements of the circuit layer. A light emitting diode mounted to the circuit layer, the reflective coating being reflective to the light emitted by the light emitting diode. In some embodiments, the reflective coating comprises a carrier with scattering particles having a different index of refraction than said carrier material.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 9, 2012
    Inventors: Sten HEIKMAN, Zhimin Jamie YAO, James IBBETSON, Fan ZHANG
  • Publication number: 20120193739
    Abstract: A direct radiation converter is disclosed which includes a radiation detection material having an anode side and a cathode side in which the radiation detection material has a doping profile running in the anode-side to cathode-side direction. A radiation detector is further disclosed having such a direct radiation converter and having an anode array and a cathode array, and optionally having evaluation electronics for reading out a detector signal, as well as a medical apparatus having such a radiation detector. Also described is a method for producing a direct radiation converter which includes incorporating into a radiation detection material a doping profile running in the anode-side to cathode-side direction.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 2, 2012
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Peter Hackenschmied, Christian Schröter, Matthias Strassburg
  • Publication number: 20120190148
    Abstract: The present invention discloses a method for lift-off of an LED substrate. By eroding the sidewall of a GaN epitaxial layer, cavity structures are formed, which may act in cooperation with a non-fully filled patterned sapphire substrate from epitaxial growth to cause the GaN epitaxial layer to separate from the sapphire substrate. The method according to an embodiment of the present invention can effectively reduce the dislocation density in the growth of a GaN-based epitaxial layer; improve lattice quality, and realize rapid lift-off of an LED substrate, and has the advantages including low cost, no internal damage to the GaN film, elevated performance of the photoelectric device and improved luminous efficiency.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 26, 2012
    Applicant: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: SU-HUI LIN, SHENG-HSIEN HSU, KANG-WEI PENG, JIANSEN ZHENG, JYH-CHIARNG WU, KECHUANG LIN
  • Publication number: 20120187370
    Abstract: Disclosed is a light emitting device including a substrate, a first conductive semiconductor layer disposed on the substrate, an active layer disposed on the first conductive semiconductor layer, and a second conductive semiconductor layer disposed on the active layer, wherein the first conductive semiconductor layer comprises a first layer provided at the upper surface thereof with a notch, a second layer disposed on the first layer and a third layer disposed on the second layer, wherein the first conductive semiconductor layer further comprises a blocking layer between the first layer and the second layer and the blocking layer is disposed along the notch. The light emitting device can reduce leakage current by dislocation and improve resistance to static electricity.
    Type: Application
    Filed: January 26, 2012
    Publication date: July 26, 2012
    Inventors: Jongpil JEONG, Sanghyun Lee, Sehwan Sim, Sungyi Jung
  • Publication number: 20120187371
    Abstract: A packaged optical device includes a substrate having a surface region with light emitting diode devices fabricated on a semipolar or nonpolar GaN substrate. The LEDs emit polarized light and are characterized by an overlapped electron wave function and a hole wave function. Phosphors within the package are excited by the polarized light and, in response, emit electromagnetic radiation of a second wavelength.
    Type: Application
    Filed: January 27, 2012
    Publication date: July 26, 2012
    Applicant: Soraa, Inc.
    Inventors: James W. Raring, Eric M. Hall, Mark P. D'Evelyn
  • Patent number: 8227284
    Abstract: The present invention provides a group-III nitride compound semiconductor light-emitting device having high productivity and good emission characteristics, a method of manufacturing a group-III nitride compound semiconductor light-emitting device, and a lamp. A method of manufacturing a group-III nitride compound semiconductor light-emitting device includes a step of forming on a substrate 11 a semiconductor layer made of a group-III nitride compound semiconductor including Ga as a group-III element using a sputtering method. The substrate 11 and a sputtering target are arranged so as to face each other, and a gap between the substrate 11 and the sputtering target is in the range of 20 to 100 mm. In addition, when the semiconductor layer is formed by the sputtering method, a bias of more than 0.1 W/cm2 is applied to the substrate 11. Further, when the semiconductor layer is formed, nitrogen and argon are supplied into a chamber used for sputtering.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: July 24, 2012
    Assignee: Showa Denko K.K.
    Inventors: Hisayuki Miki, Kenzo Hanawa, Yasumasa Sasaki
  • Publication number: 20120175628
    Abstract: An exemplary LED includes an electrode layer, an LED die, a transparent electrically conductive layer, and an electrically insulating layer. The electrode layer includes a first section and a second section electrically insulated from the first section. The LED die is arranged on and electrically connected to the second section of the electrode layer. The transparent electrically conductive layer is formed on the LED die and electrically connects the LED die to the first section of the electrode layer. The electrically insulating layer is located between the LED die and the transparent electrically conductive layer to insulate the transparent electrically conductive layer from the second section of the electrode layer.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 12, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: SHIH-CHENG HUANG, PO-MIN TU, YA-WEN LIN