Field-effect Transistor Patents (Class 326/83)
  • Patent number: 7705638
    Abstract: A switching control circuit of synchronous rectification type that is capable of reducing dead time is obtained. Upon detection that an output potential rises above VDD-Va, a first sensor outputs an H signal to a first input terminal of a first NOR circuit, and the first NOR circuit outputs an L signal to a second input terminal of a second NOR circuit, and the second NOR circuit outputs an H signal to a first gate driving circuit. A PMOS is thereby turned on. Upon detection that the output potential falls below GND+Vb, a second sensor outputs an L signal to a first input terminal of a first NAND circuit, and the first NAND circuit outputs an H signal to a second input terminal of a second NAND circuit, and the second NAND circuit outputs an L signal to a second gate driving circuit. An NMOS is thereby turned on.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: April 27, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Katsumi Miyazaki
  • Patent number: 7705625
    Abstract: Source transistor configurations are described for reducing leakage and delay within integrated circuits. Virtual power and ground nodes are supported with the use of stacked transistor configurations, such as a two transistor stack between a first virtual supply connection and VSS, and a second virtual supply connection and VDD. Gate drives of these stacked transistors are modulated with different voltage levels in response to the operating power mode of the circuit, for example active mode, active-standby mode, and deep power-down mode. Means for driving these source stacks are described. In one embodiment separate virtual nodes are adapted for different types of circuits, such as buffers, row address strobe, and column address strobe. Other techniques, such as directional placement of the transistors is also described.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: April 27, 2010
    Assignee: Zmos Technology, Inc.
    Inventors: Seung-Moon Yoo, Jae Hoon Yoo, Jeongduk Sohn, Sung Ju Son, Myung Chan Choi, Young Tae Kim, Oh Sang Yoon, Sang-Kyun Han
  • Patent number: 7701253
    Abstract: A booster circuit for reducing the nominal latency of a logic gate. The booster circuit includes a charge sharing mechanism to transfer a stored charge to the output of the logic gate in response to a logic state transition on the input of the logic gate. The transfer of stored charge also reduces the charge drawn from the supply during the output transition.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 20, 2010
    Assignee: Oracle America, Inc.
    Inventor: Scott M. Fairbanks
  • Patent number: 7701262
    Abstract: A transmission line driver and a serial interface data transmission device including the same are provided. The transmission line driver includes a pre-driver configured to generate and output differential input data signals based on a serial transmission data signal, a differential amplifier configured to receive the differential input data signals and to output differential output data signals, and a common mode controller configured to drive the differential output data signals to a predetermined common mode voltage in an idle mode. Accordingly, power consumption can be reduced and a common mode specification can be supported.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chi Won Kim, Ji Young Kim, Myoung Bo Kwak, Jong Shin Shin, Seung Hee Yang, Hyun-Goo Kim, Jae Hyun Park
  • Patent number: 7702293
    Abstract: A multi-mode I/O circuit or cell (10) is provided for transmitting and receiving data between ICs, where each IC contains at least one of the I/O circuits. Each data link includes transmitter circuitry (12) and receiver circuitry (14). The transmitter circuitry sends data to a receiver circuitry in another IC, and the receiver circuitry receives data from a transmitter circuitry in another IC. The I/O circuit is constructed with CMOS-based transistors (e.g., CMOS or BiCMOS) that are selectively interconnected together by a plurality of switches to operate as two single-ended, current or voltage mode links, or as a single differential current or voltage mode link. In the preferred embodiment the transmitter circuitry sends data to the receiver circuitry in another IC over a first pair of adjacently disposed conductors, and the receiver circuitry receives data from the transmitter circuitry in another IC over a second pair of adjacently disposed conductors.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: April 20, 2010
    Assignee: Nokia Corporation
    Inventors: Antti Ruha, Tarmo Ruotsalainen, Jussi-Pekka Tervaluoto
  • Publication number: 20100090721
    Abstract: A buffer of a semiconductor memory apparatus includes a buffering section configured to generate an output signal by buffering an input signal. A mismatch compensation section generates a control voltage in correspondence with sizes of a second transistor of the same type as a first transistor constituting the buffering section, wherein the buffering section controls a transition time of the output signal in response to a level of the control voltage.
    Type: Application
    Filed: June 30, 2009
    Publication date: April 15, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sang Jin BYEON
  • Patent number: 7696793
    Abstract: A differential signal driver circuit is provided with a driver circuit and a common feedback circuit. The driver circuit is responsive to differential input signals for generating differential output signals from operation currents generated by two current sources. The common feedback circuit controls the current sources to regulate the current levels of the operation currents in response to the differential output signals.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: April 13, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Souji Sunairi
  • Patent number: 7696787
    Abstract: A signal history controlled slew-rate transmission method and bus interface transmitter provide an improved channel equalization mechanism having low complexity. A variable slew-rate feed-forward pre-emphasis circuit changes the slew rate of the applied pre-emphasis in conformity with the history of the transmitted signal. The pre-emphasis circuit may be implemented by a pair of current sources supplying the output of the transmitter, and having differing current values. The current sources are controlled such that upon a signal value change, a high slew rate is provided and when the signal value does not change for two consecutive signal periods, the slew rate is reduced. A current source having a controlled magnitude may be employed to provide a slew rate that changes over time and is continuously reduced until another transmission value change occurs.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Daniel N. De Araujo, Daniel M. Dreps, Bhyrav M. Mutnury
  • Patent number: 7696807
    Abstract: A high voltage reception terminal is formed in a semiconductor integrated circuit without increasing the number of manufacturing processes and the manufacturing cost. A transfer gate configured from a NMOS, which is the high withstand voltage transistor, and a pull-up resistor are formed. An input terminal of the transfer gate is connected to the high voltage reception terminal and an output terminal of the transfer gate is connected to a CMOS inverter through an input resistor. One end of the pull-up resistor is connected to the output terminal of the transfer gate and the other end of the pull-up resistor receives source voltage VDD (5V). The transfer gate lowers the inputted high voltage VX (VX>VDD) to VDD-Vt1?. The pull-up resistor biases the voltage at the output terminal of the transfer gate to VDD and boosts the voltage at the output terminal that has been lowered by the transfer gate to about VDD.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 13, 2010
    Assignees: SANYO Electric Co., Ltd., SANYO Semiconductor Co., Ltd.
    Inventor: Shuichi Takahashi
  • Patent number: 7692450
    Abstract: A bi-directional buffer is connected between a first node and a second node, wherein the first node is connected by a first pull-up resistor to a first voltage supply rail, and the second node is connected by a second pull-up resistor to a second voltage supply rail. In an embodiment, the bi-directional buffer is enabled when a voltage of the first node does not exceed a first threshold voltage, and/or a voltage of the second node does not exceed a second threshold voltage. However, when the voltage of the first node exceeds the first threshold voltage, and the voltage of the second node exceeds the second threshold voltage, the bi-directional buffer is disabled, which disconnects the first and second nodes. This allows the first node to be pulled up to the first voltage supply rail, and the second node to be pulled up to the second voltage supply rail.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: April 6, 2010
    Assignee: Intersil Americas Inc.
    Inventor: Anatoly Aranovsky
  • Patent number: 7692451
    Abstract: A pulse generation section generates a pulse which is at H-level for the predetermined period of time from the timing of the input signal DATA changing to L-level. A main output section outputs a signal of L-level with transistors P1, N1, and N2 turned ON, while the pulse generation section outputs a pulse. When the pulse falls, the transistors P1 and N1 are turned OFF, and a potential of an output node is held at L-level by resistors of a L-level holding section.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: April 6, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Toru Ishikawa
  • Publication number: 20100079167
    Abstract: A differential voltage mode driver and digital impedance calibration of same is provided. In one embodiment, the invention relates to a method of calibrating a differential driver circuit having a plurality of parallel driver stages, the differential driver circuit for driving a differential signal over a transmission line having an impedance, the method including determining an indication of an impedance of a plurality of parallel replica stages, wherein the plurality of parallel replica stages are replicas of the plurality of parallel driver stages, determining a number of the plurality of parallel replica stages to approximately match the measured impedance with the transmission line impedance, and activating a number of the plurality of parallel driver stages equal to the number of the plurality of parallel replica stages. In another embodiment, the invention relates to a differential voltage mode driver using at least one H-bridge driver stage.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Inventor: Bo Bogeskov Thomsen
  • Patent number: 7688113
    Abstract: A transceiver suitable for interfacing a logic device to a shared bus includes a transmit node that receives an input signal from the logic device and an I/O node, that is coupled to the shared bus. The transceiver may be designed for use with a shared-bus, single master, multiple slave architecture, e.g., a Local Interconnect Network (LIN). In a LIN compliant implementation, the transceiver may be suitable for use in at least some types of automobiles and other motorized vehicles. Control logic coupled to the transmit node may assert a current driver enable signal in response to detecting an assertion of the input signal. A current driver of the transceiver is configured to draw a time varying driver current from the shared bus node after detecting an assertion of the current driver enable signal. The driver current may cause a sinusoidal transition of the shared bus voltage.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ivan Carlos Ribeiro Nascimento, Walter Luis L. Tercariol
  • Patent number: 7688114
    Abstract: A ratio asymmetric inverter has a signal input, signal output, first and second power inputs, pullup and pulldown transistors, and at least one delay element. The pullup transistor has a gate terminal, a source terminal coupled to the first power input, and a drain terminal coupled to the signal output. The pulldown transistor has a gate terminal, a drain terminal coupled to the signal output, and a source terminal coupled to the second power input. The signal input is respectively coupled to the gate terminals of the pullup transistor and the pulldown transistor via first and second signal paths. The at least one delay element is included in only one of the first and second signal paths, to impart a longer propagation delay to the one of the first and second signal paths.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 30, 2010
    Assignee: Agilent Technologies, Inc.
    Inventor: Claudio San Roman Denegri
  • Patent number: 7688115
    Abstract: A CMOS output driver is provided for driving a capacitive load over a circuit trace in high speed applications. The CMOS output driver comprises a signal input and a signal output. The output driver has a first buffer amplifier with an input connected to the signal input and an output connected to the signal output through a resistor. A second buffer amplifier is also provided, which has an input connected to the signal input and an output connected to the signal output through a capacitor.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 30, 2010
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Horst Jungert
  • Patent number: 7683670
    Abstract: Embodiments that decrease power consumption of interconnecting devices in integrated circuits are disclosed. Embodiments reduce power consumption in integrated circuits by generating full and reduced swing signals at an output of a driver module in response to a control signal during and deactivating one or more elements to conserve power after an input signal remains unchanged for a period of time. Another embodiment reduces power consumption in a circuit, the embodiment comprising a swing module coupled with a swing selector and an output controller. The swing module may generate full or low swing signals depending on the state of the swing selector. The output controller may increase the output impedance of the swing module after an input signal to the swing module remains unchanged for a quantity of time. Various apparatus embodiments include portable computing devices and cellular telephones.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Zhibin Cheng, Satyajit Dutta, Peter J. Klim
  • Patent number: 7683671
    Abstract: An output driver having an output that is not dependant on the variation of the voltage level of a variable supply voltage. The output driver, having at least two power supply voltages and which is not influenced by the variation of the voltage level of a variable power supply, leads to a constant output slew rate.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: March 23, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Yan Lee
  • Patent number: 7683668
    Abstract: A level shifter (10) includes a first transistor (12) having a gate configured to receive a first input signal, and a second transistor (14) having a gate configured to receive a second input signal. A first feedback circuit is connected to drains of the first transistor (12) and the second transistor (14). A second feedback circuit is connected to the first feedback circuit.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Krishna Thakur, Deependra K Jain, Raghav Mehta
  • Patent number: 7683667
    Abstract: Embodiments relate to a level shifter which uses a single voltage source, has an excellent operation characteristic even when a difference between a low voltage and a high voltage is large, and can be easily designed. Embodiments relate to a level shifter for shifting a voltage level between an input terminal connected to a circuit block which operates by a low voltage source and an output terminal connected to a circuit block which operates by a high voltage source. In embodiments, the level shifter may include a pull-up PMOS and a pull-down NMOS, both of which are connected between the high voltage source and ground in the form of an inverter and have an output node connected to the output terminal. The level shifter may include a control node which is connected to inputs of the pull-up and pull-down NMOS in the form of the inverter. The level shifter may have an input gate for connecting the control node to the high voltage source or ground according to a voltage level of the input terminal.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: March 23, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Min Hwahn Kim
  • Patent number: 7683672
    Abstract: Disclosed is a dynamically controlled, output slew rate pad driver that generates a controlled voltage on an interface node of an interface circuit, such as an input circuit, an output circuit, or a combined input/output circuit, to control the process of slewing the controlled voltage on the interface node. The slewing occurs substantially independently of capacitive loads connected to the interface node. Prior to initiation of the slewing process, an initial charge is generated on a storage capacitor. The storage capacitor is then connected to the gate of a driver transistor to charge the input parasitic gate capacitance of the driver transistor to approximately a gate threshold voltage of the driver transistor. A constant current source is also provided that is applied to the input of an integrating amplifier and an integrating capacitor that is connected to the interface node.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: March 23, 2010
    Inventor: Donald Bartlett
  • Patent number: 7679396
    Abstract: Method and apparatus are disclosed for implementing low noise circuits. The method includes providing a first subcircuit and a second subcircuit, where the first subcircuit and the second subcircuit include substantially same circuit elements and have substantially same configuration and layout, providing one or more coupling capacitors configured to couple between a circuit power and a circuit ground that power the first subcircuit and the second subcircuit, providing one or more pairs of differential input signals to the first subcircuit and the second subcircuit, where the first subcircuit receives a differential signal and the second subcircuit receives a complement of the differential signal, operating the first subcircuit and the second subcircuit to generate one or more pairs of differential output signals using the one or more pairs of differential input signals.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: March 16, 2010
    Inventor: Richard F.C. Kao
  • Patent number: 7679397
    Abstract: Techniques are provided for controlling an on-chip termination (OCT) in an output driver. The OCT control circuit calibrates the effective resistance of transistors in the output driver to match an external resistor using a feedback loop. The feedback loop monitors the output voltage and generates an analog calibration signal that varies the output impedance of a selected group of the output transistors that are enabled to drive the output terminal. Digital signals under the control of the user select the number of output transistors to be enabled based on the output driver requirements of the circuit. The analog calibration signal varies the signal level driving the selected output transistors to modify the effective output impedance of the circuit for better termination matching.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: March 16, 2010
    Assignee: Altera Corporation
    Inventors: Yew Fatt Kok, Chooi Pei Lim, Kok Heng Choe
  • Patent number: 7679399
    Abstract: A programmable interconnect structure for an integrated circuit comprises: a pass-gate fabricated on a substrate layer to electrically connect a first node to a second node; and a configuration circuit including at least one memory element to control said pass-gate fabricated substantially above said substrate layer; and a programmable method to select between isolating said first and second nodes and connecting said first and second nodes. A programmable buffer structure for an integrated circuit comprises: a first and a second terminal; and a programmable pull-up and a programmable pull-down circuit coupled between said first and second terminals; and a configuration circuit including at least one memory element coupled to said pull-up and pull-down circuits; and a programmable method to select between isolating said first terminal from second terminal by deactivating said pull-up and pull-down circuits, and coupling said first terminal to second terminal by activating said pull-up and pull-down circuits.
    Type: Grant
    Filed: February 16, 2008
    Date of Patent: March 16, 2010
    Assignee: Tier Logic, Inc.
    Inventor: Raminda Udaya Madurawe
  • Patent number: 7679395
    Abstract: Switching and repeating applications using an impedance matched source follower improve performance of high speed links such as PCI Express, HDMI, DisplayPort and DVI by reducing attenuation and other degradation of high speed signals, including those with transmit pre-emphasis, by avoiding impedance discontinuities over process, voltage and temperature variations and by driving a broader range of loads, e.g., heavily capacitive loads. A circuit for switching or repeating signals on a single-ended or differential high speed link may comprise a source follower with input and output impedances matched to input and output transmission lines on the high speed link. The source follower is biased by a constant transconductance circuit, an external calibration circuit or other circuit to provide an essentially constant output impedance over process, voltage and temperature variations.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 16, 2010
    Assignee: Integrated Device Technology, Inc.
    Inventors: Yunfu Yang, Shengyuan Zhang, Yu Min Zhang, Shoujun Wang
  • Patent number: 7679402
    Abstract: A circuit incorporating a current starved ring oscillator is coupled to a power gate switch in an integrated circuit. The circuit incorporating the current starved ring oscillator amplifies a voltage difference between a virtual ground associated with the power gate switch and ground, and converts the difference to a frequency. Digital logic monitors the output of the ring oscillator using a counter and a reference clock. Control circuitry controls operation of the integrated circuit in dependence on the monitored conditions associated with the power gate switch. A method monitors a virtual ground voltage across a power gate switch in an integrated circuit; and controls operation of the integrated circuit in dependence on the monitored virtual ground voltage.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: March 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: J. Adam Butts, Gary S. Ditlow, Stephen V. Kosonocky, Brian C. Monwai
  • Publication number: 20100060315
    Abstract: An output driver calibration circuit includes a programmable drive strength output pullup driver including a strongest transistor and a number of other transistors, a programmable drive strength output pulldown driver including a strongest transistor and a number of other transistors, and a calibration circuit for generating a number of control signals for controlling the transistors in the output pullup driver and the transistors in the output pulldown driver, wherein the control signals are generated simultaneously, except for two the strongest driver transistors.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 11, 2010
    Applicant: ProMOS Technologies PTE.LTD.
    Inventor: Steve Eaton
  • Patent number: 7675322
    Abstract: A level shifting circuit includes a level shifting unit and an output buffer unit. The level shifting unit generates first and second output signals responsive to first and second input signals. The first and second input signals range between first and second voltage levels, and the first and second input signals are a first differential pair. The first and second output signals range between the first voltage level and a third voltage level greater than the second voltage level, and the first and second output signals are a second differential pair. The output buffer unit inverts the first and second output signals to provide third and fourth output signals, respectively. Duty ratios of the first and second output signals are determined based on delay times of the first and second input signals.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 9, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Uk Park
  • Patent number: 7675315
    Abstract: A low-impedance output stage which operates from a low voltage power supply. In an embodiment, the output stage contains an operational amplifier and two PMOS transistors used in a feedback configuration resulting in low output impedance. The output stage may also include a capacitor connected between the output terminal of the output stage and the input of the PMOS transistor providing the output, resulting in an overall output impedance which remains low even at higher frequencies, thus enabling use of the output stage to drive capacitive loads without causing resonance.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: March 9, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Preetam Charan Anand Tadeparthy
  • Patent number: 7675324
    Abstract: At least one of the disclosed systems includes driver logic that is capable of driving a device and pre-driver logic coupled to the driver logic and that drives the driver logic. If the pre-driver logic receives an input signal of a first type, the pre-driver logic activates a first transistor such that the pre-driver logic provides an output signal. If the pre-driver logic receives an input signal of a second type, the pre-driver logic activates a second transistor and a third transistor that together cause the pre-driver logic to provide a different output signal. If the third transistor is not activated, the pre-driver logic provides the output signal.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: March 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: William Chad Waldrop, Daniel Penney
  • Patent number: 7667492
    Abstract: Methods and corresponding systems for buffering an input signal include outputting a first logic value in response to the input signal being below a lower threshold. A second logic value is output in response to the input signal rising above the lower threshold. Thereafter, the second logic value is maintained until the input exceeds a higher threshold and thereafter falls below the higher threshold. In response to the input signal falling below the higher threshold, the first logic value is output, and maintained at the first logic value, until the input falls below the lower threshold and thereafter rises above the lower threshold.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kiyoshi Kase, May Len, Dzung T. Tran
  • Patent number: 7668021
    Abstract: A semiconductor memory device has a data output device. The data output device is provided with a slew rate control unit for detecting the number of transitions of a plurality of output data to output slew rate control information; and an output driving unit for driving the plurality of output data with a pull-up drivability and a pull-down drivability adjusted based on the slew rate control information.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: February 23, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Tae-Sik Yun
  • Patent number: 7667491
    Abstract: Method and apparatus are provided for buffering a data signal to a low voltage logic device. A circuit for buffering the data signal to the low voltage logic device includes an output buffer (12) having first and second inputs and an output and at least one N-type isolation transistor (13, 19) having a source coupled to one or both of the second input and the output. The first input receives the data signal, the second input receives a supply potential, and the output couples to the low voltage logic device. The isolation transistor has a drain for receiving a first potential and is configured to supply a second potential to the output buffer when the gate receives a bias potential. The second potential based on the first potential. The bias potential is greater than the supply potential.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: February 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul T. Bennett, John M. Pigott
  • Patent number: 7663406
    Abstract: An output circuit including an input terminal; an output terminal; a PMOS transistor connected with a positive side of a power voltage and the output terminal; a NMOS transistor connected with a negative side of the power supply voltage and the output terminal; a first inverter, to which a gate voltage of the PMOS transistor is input and which exhibits hysteresis in threshold voltage; and a second inverter, to which a gate voltage of the NMOS transistor is input and which exhibits hysteresis in threshold voltage, wherein an OR logic signal of the input signal and a signal obtained by inverting an output signal from the second inverter is input to a gate of the PMOS transistor, and an AND logic signal of the input signal and a signal obtained by inverting an output signal from the first inverter is input to a gate of the NMOS transistor.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: February 16, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Koichi Hagino
  • Patent number: 7663407
    Abstract: A semiconductor device includes a pre-buffer for transferring a data signal on the basis of a first power supply voltage, a main buffer for amplifying and outputting the data signal transferred by the pre-buffer on the basis of a second power supply voltage different from the first power supply voltage, a switch unit for controlling a conductive state between the pre-buffer and the main buffer on the basis of a switch control signal, and a control circuit for generating the switch control signal for controlling the pre-buffer to set an output level of the pre-buffer to ground potential in accordance with transition of logical level of the switch control signal.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 16, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Tomoya Nishitani, Kenichi Kawakami
  • Patent number: 7663399
    Abstract: An output driver for use in a semiconductor memory device includes a pull-up metal oxide semiconductor (MOS) transistor for pulling-up a voltage loaded on an output node in response to a pull-up control signal; a pull-up linear element connected between the pull-up MOS transistor and the output node for increasing a linearity of an output current; a pull-down MOS transistor for pulling-down the voltage loaded on the output node in response to a pull-down control signal; and a pull-down linear element connected between the pull-down MOS transistor and the output node for increasing the linearity of the output current, wherein the pull-up MOS transistor and the pull-up linear element are different typed MOS transistors and the pull-down MOS transistor and the pull-down linear element are different typed MOS transistors.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: February 16, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Kwang-Myoung Rho
  • Patent number: 7663405
    Abstract: An organic TFT (OTFT) inverter arrangement comprises an inverter stage including a series arrangement of first and second MOS OTFTs (T1, T2) connected between first and second supply terminals (VDD), the first and second OTFTs having first and second gates, respectively. An input terminal (VIN) is connected to the first gate, while an output terminal (VOUT) is connected to the node interconnecting the first and second OTFTs (T1, T2). A bias-control stage is connected between the first gate and the second gate. The bias-control stage is an inverting stage, such that, when an input voltage on the first gate rises, a voltage on the second gate falls, and vice-versa. The bias-control stage comprises a series arrangement of third and fourth OTFTs (T3, T4) connected between the first and second supply terminals (VDD, VSS), and a series arrangement of fifth and sixth OTFTs (T11, T12) connected between the first and second supply terminals (VDD, VSS).
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: February 16, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Simon Tam
  • Patent number: 7663413
    Abstract: A line driver circuit for stabilizing a signal that is output through a transmission line, wherein the line driver circuit receives a first signal having a first swing width corresponding to a difference between a first voltage and a second voltage, creates a second signal having a second swing width less than the first swing width, and outputs the second signal through a transmission line. The line driver circuit includes: a pull-up circuit that pulls up the second signal to a high level; a pull-down circuit that is connected to the pull-up circuit and pulls down the second signal to a low level; and an initializing circuit that is connected to a node of the transmission line, outputs a signal having a voltage of the low level or the high level to the node of the transmission line, and initializes the voltage at the node of the transmission line to the low level or the high level.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: February 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seong-Jin Jang
  • Patent number: 7659746
    Abstract: An integrated circuit includes multiple power domains. Supply current switch circuits (SCSCs) are distributed across each power domain. When a signal is present on a control node within a SCSC, the SCSC couples a local supply bus of the power domain to a global supply bus. An enable signal path extends through the SCSCs so that an enable signal can be propagated down a chain of SCSCs from control node to control node, thereby turning the SCSCs on one by one. When the domain is to be powered up, a control circuit asserts an enable signal that propagates down a first chain of SCSCs. After a programmable amount of time, the control circuit asserts a second enable signal that propagates down a second chain. By spreading the turning on of SCSCs over time, large currents that would otherwise be associated with coupling the local and global buses together are avoided.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: February 9, 2010
    Assignee: QUALCOMM, Incorporated
    Inventors: Lew G. Chua-Eoan, Matthew Levi Severson, Sorin Adrian Dobre, Tsvetomir P. Petrov, Rajat Goel
  • Patent number: 7659748
    Abstract: An electronic device with a CMOS circuit (CC) comprises a first driver circuit (10) having a first and second PMOS transistor (P1, P2) and a first and second NMOS transistor (N1, N2). The electronic device furthermore comprise a second driver circuit (20) with a third and fourth PMOS transistor (P3, P4) and a third and fourth NMOS transistor (N3, N4). The second driver circuit (20) is complementary to the first driver circuit (10) and switches in the opposite direction to the first driver circuit (10). A gate of the second and fourth PMOS transistor (P2, P4) is coupled to a first bias voltage (REPp) and a gate of the second and fourth NMOS transistor (N2, N4) is coupled to a second bias voltage (REFn). A first capacitance (C3) is coupled between the gate and the drain of the fourth PMOS transistor (P4) and a second capacitance (C4) is coupled between the gate and the drain source of the fourth NMOS transistor (N4).
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 9, 2010
    Assignee: NXP B.V.
    Inventor: Sunil Chandra
  • Patent number: 7659747
    Abstract: A transmission device including: a driver unit which generates an output signal having an amplitude by a resistance division of a power-supply voltage; and an output-amplitude correction unit which generates current according to variation in the power-supply voltage, and corrects the amplitude by using the current.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: February 9, 2010
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Hiroshi Shiraishi, Tetsuya Hayashi, Tomokazu Higuchi
  • Patent number: 7659756
    Abstract: A switched current source has a first voltage source, a second voltage source, and a third voltage source. A first transistor has a drain terminal coupled to one terminal of a load and a source terminal coupled to the third voltage source. A second transistor has drain, gate and source terminals. The drain terminal of the second transistor is coupled to the gate terminal of the first transistor. The source terminal of the second transistor is coupled to the source terminal of the first transistor. The gate terminal of the second transistor is coupled to the first voltage source. A third transistor has drain, gate and source terminals. The drain terminal of the third transistor is coupled to the gate terminal of the first transistor. The source terminal of the third transistor is coupled to the second voltage source. The gate terminal of the third transistor is coupled to the first voltage source.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: February 9, 2010
    Inventor: James T. Walker
  • Patent number: 7656209
    Abstract: This document discusses, among other things, output slew rate control. Methods and structures are described to provide slew rate control of an output driver circuit such as a DRAM output driver on a die. A selectable combination of series coupled transistors are configured as a parallel array of complementary inverter pairs to provide a divided voltage to a calibrator. The calibrator is configured to respond to a differential voltage to adjust the divided voltage such that the differential voltage is forced to zero. The calibrator outputs a plurality of discrete signals from an up/down counter to switch on and off the individual transistors of the parallel array to increase and decrease a collective current. In some embodiments, transistor channel currents are modulated to step-adjust a voltage based on a ratio associated with a static resistance. In various embodiments, the divided voltage is an analog voltage based on a resistance associated with trim circuitry.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: February 2, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Shizhong Mei
  • Patent number: 7657767
    Abstract: In one embodiment of the present invention, a technique is provided to control leakage of a cache sub-array. Other embodiments are disclosed herein. A sleep and shut-off circuit is connected between a virtual supply terminal and a first physical supply terminal to reduce leakage from the cache sub-array when the cache sub-array is disabled in a shut-off mode. The cache sub-array is connected between the virtual supply terminal and a second physical supply terminal. An active circuit is connected to the sleep and shut-off circuit in parallel to enable the cache sub-array in a normal mode and to disable the cache sub-array in the shut-off mode.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: February 2, 2010
    Assignee: Intel Corporation
    Inventors: Stefan Rusu, Tsung-Yung Chang, Kevin Zhang, Fatih Hamzaoglu, Jonathan Shoemaker, Ming Huang
  • Patent number: 7652505
    Abstract: In a level conversion circuit, two P channel MOS transistors form a current mirror circuit. When an input signal rises from the “L” level to the “H” level, an N channel MOS transistor connected to a drain of one P channel MOS transistor is brought out of conduction to prevent a leak current from flowing through two P channel MOS transistors, which decreases a power consumption. In addition, when the input signal rises from the “L” level to the “H” level, a P channel MOS transistor connected to a drain of the other P channel MOS transistor is brought into conduction to fix a potential of a node of the drain of the other P channel MOS transistor to the “H” level, which prevents the potential of the node from becoming unstable.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: January 26, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Teruaki Kanzaki
  • Patent number: 7652506
    Abstract: A complementary signal generating circuit according to an embodiment of the present invention includes: an inverting element inverting a first signal to generate a second signal; a first transistor connecting a first power supply potential and a first output terminal electrically in accordance with the first signal; a second transistor connecting the first output terminal and a second power supply potential electrically in accordance with the second signal; a third transistor connecting the first power supply potential and a second output terminal electrically in accordance with the second signal; and a fourth transistor connecting the second output terminal and the second power supply potential electrically in accordance with the first signal.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 26, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Mikio Aoki
  • Patent number: 7649384
    Abstract: A high-voltage tolerant output driver for use in a switching regulator is provided herein. The driver allows the switching regulator to regulate supply voltages that exceed device breakdown limits for the process technology from which the high-voltage tolerant output driver is fabricated. Unregulated supply voltages can vary over a wide range. The regulator only needs two intermediate voltages.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: January 19, 2010
    Assignee: Broadcom Corporation
    Inventors: Seng Poh Ho, Tak Ying Wong, Yow Ching Cheng, Ricky Setiawan
  • Patent number: 7646229
    Abstract: This document discusses, among other things, output slew rate control. Methods and structures are described to provide slew rate control of an output driver circuit such as a DRAM output driver on a die. A selectable combination of series coupled transistors are configured as a parallel array of complementary inverter pairs to provide a divided voltage to a calibrator. The calibrator is configured to respond to a differential voltage to adjust the divided voltage such that the differential voltage is forced to zero. The calibrator outputs a plurality of discrete signals from an up/down counter to switch on and off the individual transistors of the parallel array to increase and decrease a collective current. In some embodiments, transistor channel currents are modulated to step-adjust a voltage based on a ratio associated with a static resistance. In various embodiments, the divided voltage is an analog voltage based on a resistance associated with trim circuitry.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: January 12, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Shizhong Mei
  • Patent number: 7646220
    Abstract: A rail-to-rail high speed subLVDS receiver demonstrates good jitter and duty cycle performance for high-speed signals at low power supply levels. A sample receiver includes a voltage shifter for shifting the voltage levels of a differential input signal so that a shifted differential input signal is produced. The shifted differential input signal can be applied to a first differential pair, and the differential input signal can be applied to a second differential pair. The outputs of the first and second differential pairs can be summed together to produce a differential output signal. The differential output signal can be output using an output block. A clamp circuit can be used to adjust the gain of the first differential pair responsive to a common mode voltage of the first and second differential input signals.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: January 12, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventor: Charles Qingle Wu
  • Patent number: 7642810
    Abstract: An input circuit for a semiconductor integrated circuit in which an operational state is constant even when a process condition, a temperature, a voltage, and the like are varied at the time of operation is provided. The input circuit includes a first input unit that performs a first amplifying operation on a potential difference between a reference voltage and an input signal and outputs a result of the amplification, and a second input unit that performs a second amplifying operation on a signal amplified by the first input unit and outputs a result of the amplification.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: January 5, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Shin-Deok Kang, Dong-Uk Lee
  • Patent number: RE41215
    Abstract: A circuit with a large load driving capability, which is structured by single polarity TFTs, is provided. With a capacitor (154) formed between a gate electrode and an output electrode of a TFT (152), the electric potential of the gate electrode of the TFT (152) is increased by a boot strap and normal output with respect to an input signal is obtained without amplitude attenuation of an output signal due to the TFT threshold value. In addition, a capacitor (155) formed between a gate electrode and an output electrode of a TFT (153) compensates for increasing the electric potential of the gate electrode of the TFT (152), and a larger load driving capability is obtained.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: April 13, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki Miyake, Yutaka Shionoiri