Intermediate Conversion To Time Interval Patents (Class 341/166)
  • Patent number: 9019141
    Abstract: An imaging apparatus and a method of driving the same that can generate a digital data of a high resolution pixel signal are provided. The imaging apparatus includes: a pixel (10-1) for generating a signal by photoelectric conversion; a comparing circuit (30-1) for comparing a signal based on the pixel with a time-dependent reference signal; a counter circuit (40-1) performing a counting operating until an inversion of a magnitude relation between the signal based on the pixel and the time-dependent reference signal; and a selecting circuit (30-2) for setting a time-dependent change rate of the reference signal, according to a signal level of the signal based on the pixel.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 28, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiji Hashimoto, Yasushi Matsuno
  • Patent number: 9019136
    Abstract: A sigma-delta modulator is provided for generating a digital output signal. The sigma-delta modulator is used to generate a digital output signal. The sigma-delta modulator includes a multi-stage loop filter and a quantizer. The multi-stage loop filter receives an analog input signal and generates an integrated output signal according to the analog input signal. The quantizer is coupled to the multi-stage loop filter. The quantizer receives the integrated output signal and quantizes the integrated output signal to generate the digital output signal. Different feed-forward paths of the sigma-delta modulator are available for different frequency bands.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: April 28, 2015
    Assignee: MediaTek Inc.
    Inventors: Chen-Yen Ho, Hung-Chieh Tsai, Yu-Hsin Lin
  • Patent number: 8994573
    Abstract: A digital-to-time converter (DTC) comprises a gate controller configured to generate a gate enable signal based on first and second digital values so that the gate enable signal has a first enable period and a second enable period for each pair of a first digital value and a second digital value. A gate conditionally passes a main clock signal to a gate output in response to the gate enable signal, the gate thus providing a gated signal at a gate output. A frequency divider generates a frequency divided signal as the output signal of the digital-to-time converter based on the gated signal. The DTC may be calibrated by a time-to-digital converter connected between an input for the main clock signal and an output of a delay element of the DTC.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 31, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Stephan Henzler, Markus Schimper
  • Patent number: 8988262
    Abstract: A delay circuit includes a first inverter in which a delay time of rising is larger than a delay time of falling, and a second inverter which is connected in series with the first inverter and in which a delay time of falling is larger than a delay time of rising. Transistors for each of the first and second inverters are connected in series between a power supply terminal and a ground terminal.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisuke Miyashita
  • Patent number: 8988269
    Abstract: A time difference adjustment circuit includes two flip-flop circuits, a delay circuit, and a reset circuit. The delay circuit includes first and second transistors of a first polarity and third and fourth transistors of a second polarity, wherein drains of the first and third transistors are coupled to each other, drains of the second and fourth transistors are coupled to each other, the drains of the first and third transistors and a gate of the fourth transistor are coupled to each other, an input signal is coupled to a gate of the first transistor, an output signal is supplied from the drains of the second and fourth transistors, and first and second reset signals are respectively coupled to gates of the second and third transistors.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 24, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Shiro Dosho
  • Patent number: 8981987
    Abstract: An imaging device includes a comparator that compares a noise signal with each of a first reference signal and a second reference signal having potentials with different changing quantities per unit time, and that compares a photoelectric conversion signal with each of the first reference signal and the second reference signal. Also, the imaging device AD-converts signals obtained by amplifying the noise signal by a first gain and a second gain having different gains, and AD-converts a signal obtained by amplifying the photoelectric conversion signal by one of a first gain and a second gain.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Seiji Hashimoto, Takashi Muto, Daisuke Yoshida, Hirofumi Totsuka, Yasushi Matsuno
  • Patent number: 8976054
    Abstract: A time-to-digital conversion circuit for converting a time difference between two input signals to a 1-bit digital value, and adjusting the time difference between the two input signals to generate two output signals includes: a phase comparator configured to compare phases of the two input signals with each other to generate the digital value; a phase selector configured to output one of the two input signals which has a leading phase as a first signal, and the other of the two input signals which has a lagging phase as a second signal; and a delay unit configured to output the first signal with a delay, wherein the time-to-digital conversion circuit outputs the signal output from the delay unit and the second signal as the two output signals.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shiro Dosho, Masao Takayama, Takuji Miki
  • Patent number: 8976052
    Abstract: A counter includes a buffer unit and a ripple counter. The buffer unit generates at least one least significant signal of a count by buffering at least one clock signal until a termination time point. The ripple counter generates at least one most significant signal of the count by sequentially toggling in response to at least one of the least significant signal. The counter performs multiple data rate counting with enhance operation speed and reduced power consumption.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-Min Kim, Kyoung-Min Koh, Yoon-Seok Han
  • Patent number: 8969771
    Abstract: An imaging system includes an A/D converter including a holding unit holding a pixel signal as a voltage level, a comparator comparing the voltage level held with a reference level, a circuit capable of changing the voltage level so as to approach the reference level at first and second rates, wherein the voltage level is changed at the first rate to determine higher bits in accordance with inversion of a relationship between the reference level and the voltage level, after that, the voltage level is changed at the second rate to determine lower bits in accordance with inversion of the relationship between the reference level and the voltage level, and an adjusting unit which adjusts the voltage level during a period until the voltage level is changed at the second rate after determination of the higher bits so that the lower bits and the voltage level hold a linear relationship.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasuji Ikeda, Hiroki Hiyama, Kazuo Yamazaki
  • Patent number: 8970421
    Abstract: Disclosed is a time-to-digital (TDC) converter comprising an analog voltage source. An analog-to-digital converter quantizes two voltage samples in response to receiving a first input signal at a first time t1 and a second input signal at a second time t2. The first and second digital signals are combined to produce a digital signal that represents the difference (t2?t1).
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: March 3, 2015
    Assignee: Marvell International Ltd.
    Inventors: Xiang Gao, Chih-Wei Yao, Chi-Hung Lin, Li Lin
  • Patent number: 8970420
    Abstract: Representative implementations of devices and techniques provide bipolar time-to-digital conversion. For example, either a positive time duration or a negative time duration may be converted to a digital representation by a linear time-to-digital converter (TDC). A set of logic functions may be applied to the input of the TDC to provide start and/or stop signals for the TDC. Further, a correction component may be applied to an input or an output of the TDC to compensate for a delay offset of the TDC.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Stephan Henzler, Markus Schimper, Stefan Tertinek
  • Publication number: 20150054566
    Abstract: An electrical signal is processed by digitizing the electrical signal to produce a stream of digitized data in the time domain, wherein the stream has an original frequency spectrum, transmitting the stream to N signal paths (N>1), and down-converting and filtering the stream in each of the N signal paths to produce N streams of digitized data in the time domain, wherein the N streams have N frequency spectra, respectively, and the N frequency spectra cover N different portions of the original frequency spectrum, respectively.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventor: Robin A. Bordow
  • Publication number: 20150041625
    Abstract: A time to digital converter includes a sample module operable to sample an input signal at multiple different instances of time. A transition detection module, formed of comparison elements, processes the sampled input signal at successive time instances so as to detect transitions in the input signal in terms of time. An output module generates detected transitions in the input signal on multiple parallel outputs.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 12, 2015
    Applicant: STMicroelectronics (Research & Development) Limited
    Inventors: Neale Dutton, Robert K. Henderson, Salvatore Gnecchi
  • Patent number: 8941524
    Abstract: A TD converter is provided for digitally converting a delay time value into a digital value. In the TD converter, an oscillator circuit part inputs time domain data. A first-state counter circuit part measures a number of waves of an output oscillation waveform from the oscillator circuit part when time domain data is in a first state, and a second-state counter circuit part measures a number of waves of the output oscillation waveform from the oscillator circuit part when the time domain data is in a second state. An output signal generator part generates an output signal based on output count values of the first-state counter circuit part and the second-state counter circuit part, and a frequency control circuit controls the oscillator circuit part to always oscillate and to control an oscillation frequency of the oscillator circuit part.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: January 27, 2015
    Assignee: Semiconductor Technology Academic Research Center
    Inventors: Hiroshi Kawaguchi, Masahiko Yoshimoto, Toshihiro Konishi, Shintaro Izumi, Keisuke Okuno
  • Patent number: 8941526
    Abstract: A time integrator integrates time axis information represented by a phase difference between two signals. The time integrator includes a pulse generation circuit configured to convert a time difference between edges of two input signals to a difference between pulse widths of two pulse signals, and to output the two pulse signals, a load circuit having load characteristics changed by the two pulse signals, and an oscillation circuit coupled to the load circuit, and having an oscillation frequency changing in accordance with the load characteristics of the load circuit. An output of the oscillation circuit is output as a result of time integration.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 27, 2015
    Assignee: Panasonic Intellectual Property Management Co. Ltd.
    Inventors: Shiro Dosho, Masao Takayama, Takuji Miki
  • Publication number: 20150022385
    Abstract: Examples are provided for time-interleaved analog-to-digital conversion with redundancy. The redundancy may include high-order and nested redundancies. An apparatus may include multiple analog-to-digital converter (ADC) blocks coupled to one another to form a time-interleaved ADC. Each ADC block may include multiple ADC slices, wherein a count of the ADC blocks is M and some of the ADC slices may be redundant slices. A clock circuit may be configured to provide multiple clock signals. A portion N of M ADC blocks may be configured to be active, in a normal mode of operation, where N and M are integer numbers and N is smaller than M. A remaining portion of the M ADC blocks may be redundant ADC blocks, one or more of which may be selectively active, in a healing mode of operation, and be swapped for one or more failed ADC blocks using the plurality of clock signals.
    Type: Application
    Filed: July 17, 2013
    Publication date: January 22, 2015
    Inventors: Sandeep Louis D'SOUZA, Krishna Shivaram, Craig Allison Hornbuckle
  • Patent number: 8928507
    Abstract: Methods and systems for time interleaved analog-to-digital converter timing mismatch calibration and compensation may include receiving an analog signal on a chip, converting the analog signal to a digital signal utilizing a time interleaved analog-to-digital-converter (ADC), and reducing a blocker signal that is generated by timing offsets in the time interleaved ADC by estimating complex coupling coefficients between a desired digital output signal and the blocker signal utilizing a decorrelation algorithm on frequencies within a desired frequency bandwidth. The decorrelation algorithm may include a symmetric adaptive decorrelation algorithm. The received analog signal may be generated by a calibration tone generator on the chip. An aliased signal may be summed with an output signal from a multiplier. The complex coupling coefficients may be determined utilizing the decorrelation algorithm on the summed signals.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: January 6, 2015
    Assignee: Maxlinear, Inc.
    Inventors: Pawandeep Taluja, Mingrui Zhu, Xuefeng Chen, Anand Anandakumer, Sheng Ye, Timothy Leo Gallagher
  • Publication number: 20140375486
    Abstract: A first switching unit configured to switch a first state for inputting a first clock signal input from a first input terminal, and a second state for inputting an output signal of a second delay element, to a first delay element. A second switching unit configured to switch a first state for inputting a second clock signal input from a second input terminal, and a second state for inputting an output signal of a first delay element, to a second delay element. After the two clock signals are respectively taken in the first delay elements and the second delay elements by putting the first and second switching units into the first state, the control unit puts the first and second switching units into the second state. An output unit outputs a phase difference obtained by decoding values stored in FFs in the second state.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Win CHAIVIPAS, Atsushi MATSUDA
  • Publication number: 20140368372
    Abstract: A time to digital converter includes: a first measurement unit measuring a time difference between a start signal and a stop signal as a first time unit by using a first delay line; a second measurement unit measuring a time difference between the stop signal and the start signal delayed by the first delay line as a second time unit by using a second delay line and a third delay line and comparing an output signal of one delay cell included in the second delay line with an output signal of at least two delay cells included in the third delay line; and an output unit outputting a final time difference between the start signal and the stop signal as a digital code on the basis of measurement results of the first measurement unit and the second measurement unit.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Inventors: Yeomyung Kim, Tae Wook Kim
  • Patent number: 8913978
    Abstract: A multiphase mixer using a rotary traveling wave oscillator is disclosed. In addition to the oscillator, the mixer includes first and second mixer circuits. The rotary traveling wave oscillator generates a first set of N/2 phase and a second set of N/2 phases, where each phase has a frequency that is a factor of N/2 less than the incoming radio frequency signal. The first set of phases are sine signals and the second set of phases are cosine signals. The first mixer circuit generates a first down-converted signal from the first set of phases and the incoming rf signal. The second mixer circuit generates a second down-converted signal from the second set of phases and the rf signal.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 16, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Gregoire Le Grand de Mercey
  • Patent number: 8907835
    Abstract: An A/D conversion circuit may include: a delay circuit that includes a plurality of delay units having a first pulse input terminal, a pulse output terminal, and an analog signal input terminal, wherein each first pulse input terminal of the plurality of delay units is connected to one of the pulse output terminals corresponding to the plurality of delay units, and a pulse output signal input to the first pulse input terminal is delayed in accordance with an analog signal input to the analog signal input terminal and output from the pulse output terminal, and one of the plurality of delay units has a second pulse input terminal to which a pulse signal is input from outside; a state variation detection circuit; and an encoding signal latch circuit.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: December 9, 2014
    Assignees: Olympus Corporation, Denso Corporation
    Inventor: Takanori Tanaka
  • Publication number: 20140347205
    Abstract: A time-to-digital converter includes first and second phase distribution circuits and N time-to-digital conversion circuits. The first and second phase distribution circuits each includes a plurality of frequency dividers connected in a tree structure. The first and second phase distribution circuits each divides a signal received by the frequency dividers of root nodes into N signals. The first and second phase distribution circuits each outputs the N signals each having a different phase. The N time-to-digital conversion circuits each converts a phase difference between an i-th signal (where i is an integer from 0 to N-1) that is output from the first phase distribution circuit and another i-th signal that is output from the second phase distribution circuit into a digital value.
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventor: Shiro DOSHO
  • Patent number: 8896477
    Abstract: An edge detector includes flip-flops receiving phase signals of a ring oscillator, a resetter canceling the reset states of the flip-flops at the edge timing of an input signal, and a logical operator performing a logical operation on output signals of the flip-flops. A phase state detector detects a phase state of the ring oscillator occurring at the edge timing of the input signal based on the output signals of the flip-flops. A time-to-digital converter converts an edge interval between the input signal and an output signal of the logical operator into a digital value. A latch latches a value of a counter counting the number of cycles of an output signal of the ring oscillator, at the edge timing of the input signal. An operator calculates a digital value of a received signal from output signals of the latch, the phase state detector, and the time-to-digital converter.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Shiro Dosho, Masao Takayama
  • Patent number: 8896478
    Abstract: A successive approximation analog-to-digital converter (SAR ADC) includes a capacitor array and a comparator. The capacitor array has M capacitors which are arranged to perform capacitor switching operations sequentially, wherein a sum of capacitance values of the M capacitors is equal to (2N?1) unit capacitors, M>N, and M and N are both positive integers. The comparator is arranged for comparing an output of the capacitor array and an analog input sequentially.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: November 25, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Jen-Huan Tsai, Po-Chiun Huang
  • Patent number: 8890741
    Abstract: An A/D converter having high accuracy and high throughput irrespective of characteristic variations of analog circuits is provided. The A/D converter includes a voltage-to-time converter configured to synchronize with a sampling clock signal and convert an input analog voltage to a time difference between two signals, and a plurality of time-to-digital converters each configured to convert the time difference between the two signals to a digital value. The plurality of time-to-digital converters operate in an interleaved manner.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Shiro Dosho, Masao Takayama, Takuji Miki
  • Patent number: 8890738
    Abstract: The present disclosure provides a time-to-digital (TDC) converter, comprising: a coarse TDC receiving a start signal and a stop signal, delaying the first start signal in a first time unit to generate n first delayed start signals (where n is an integer equal to or larger than 2), measuring a time difference between the first delayed start signal and the stop signal in the first time unit, and generating second delayed start signals that are obtained by delaying the first delayed start signals in a time unit shorter than the first time unit; and a fine TDC receiving and delaying the second delayed start signal generated from the coarse TDC and receiving the stop signal, and measuring a time difference between the second delayed start signal and the stop signal in a second time unit.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: November 18, 2014
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Tae Wook Kim, Yeomyung Kim, Gunhee Han
  • Publication number: 20140333358
    Abstract: A re-circulating time-to-digital converter (TDC) can include a triggered reference ring oscillator (TRRO) and a delay module. The triggered reference ring oscillator can, when triggered by a reference signal edge, generate a periodic ring oscillator signal with a ring oscillator period that is a selected ratio of a voltage-controlled oscillator (VCO) period. The delay module can store, in a plurality of latches, samples of a VCO signal docked by the periodic ring oscillator signal. Each latch can generate an output of the sample, and each latch output can represent a time difference polarity between VCO signal and TRRO signal. In another example, the re-circulating TDC can include the triggered reference ring oscillator, a digital frequency lock module, and a TDC post-process module. The digital frequency lock module can generate a ring oscillator control signal, which sets the ring oscillator period for the triggered reference ring oscillator.
    Type: Application
    Filed: April 10, 2012
    Publication date: November 13, 2014
    Inventors: Hyung Seok Kim, Ashoke Ravi, William Y. Li, Kailash Chandrashekar
  • Publication number: 20140336987
    Abstract: A radiation detector module for use in a time-of-flight positron emission tomography (TOF-PET) scanner generates a trigger signal indicative of a detected radiation event. A timing circuit including a first time-to-digital converter (TDC) and a second TDC is configured to output a corrected timestamp for the detected radiation event based on a first timestamp determined by the first TDC and a second timestamp determined by the second TDC. The first TDC is synchronized to a first reference clock signal and the second TDC is synchronized to a second reference clock signal, the first and second reference clock signals being asynchronous.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas FRACH, Gordian PRESCHER
  • Patent number: 8884804
    Abstract: An apparatus relating generally to time-to-digital conversion is disclosed. In this apparatus, a time-to-digital converter is coupled to a period sensor. The period sensor includes a pulse generator to generate a pulse. An integrator of the period sensor is coupled to receive the pulse to generate an analog voltage signal responsive to the pulse. The time-to-digital converter includes an analog-to-digital converter coupled to provide a digital signal associated with the analog voltage signal.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: November 11, 2014
    Assignee: Xilinx, Inc.
    Inventors: Amitava Majumdar, Siva Charan Nimmagadda, Baanurathan Sadasivam, Richard W. Swanson, Yohan Frans
  • Publication number: 20140330117
    Abstract: An apparatus for inserting delay according to an embodiment includes a signal generating circuit, a plurality of carry elements, and a delay chain circuit. The delay chain circuit includes one or more delay modules selected from the plurality of carry elements, at least one feedback line connected between at least one of the delay modules and the signal generating circuit, and a plurality of enable inputs. Each of the plurality of enable inputs is provided in a respective one of the delay modules. The delay chain circuit is configured to generate an amount of delay based on a delay selection signal that is received at the enable inputs and that selects the amount of delay, and is configured to provide the selected amount of delay to the signal generating circuit, which is configured to incorporate the delay into the start signal.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Gregory J. Mann
  • Patent number: 8878715
    Abstract: A time-to-digital converting circuit includes a first flip-flop and a second flip-flop. The time-to-digital converting circuit a first delay controlling circuit that outputs a first data signal obtained by controlling a delay time of the reference data signal input thereto via the first signal input terminal based on the first output signal and a first clock signal obtained by controlling a delay time of the reference clock signal input thereto via the second signal input terminal based on the first output signal.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Daisuke Miyashita
  • Publication number: 20140320329
    Abstract: An edge detector includes flip-flops receiving phase signals of a ring oscillator, a resetter canceling the reset states of the flip-flops at the edge timing of an input signal, and a logical operator performing a logical operation on output signals of the flip-flops. A phase state detector detects a phase state of the ring oscillator occurring at the edge timing of the input signal based on the output signals of the flip-flops. A time-to-digital converter converts an edge interval between the input signal and an output signal of the logical operator into a digital value. A latch latches a value of a counter counting the number of cycles of an output signal of the ring oscillator, at the edge timing of the input signal. An operator calculates a digital value of a received signal from output signals of the latch, the phase state detector, and the time-to-digital converter.
    Type: Application
    Filed: April 29, 2014
    Publication date: October 30, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Shiro DOSHO, Masao TAKAYAMA
  • Patent number: 8872692
    Abstract: Provided are a distance measuring device using an impulse signal and a receiving device thereof. The distance measuring device includes: a transmitting device transmitting an impulse signal; and a receiving device receiving the impulse signal and measuring a time interval (hereinafter, referred to as a delay time) between a transmitting timing and a receiving timing of the impulse signal, wherein the receiving device measures the delay time through a Time to Digital Converter (TDC) technique. According to the present invention, the distance measuring device measures the distance accurately and speedly.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: October 28, 2014
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Tae Wook Kim, Man Keun Kang
  • Patent number: 8854243
    Abstract: A low-power and high-speed ADC includes: a successive approximation converter circuit configured to sequentially compare and coarsely convert the analog input signal voltage into a digital signal with a number of higher-order bits, and also to output a residual voltage; a fixed-quantity change time measurement converter circuit configured to finely convert the residual voltage into a digital signal with a number n of lower-order bits by changing the residual voltage at a fixed rate of change and by measuring the time until a predetermined value is reached; and an encoder circuit configured to generate a digital signal with the predetermined number of bits by combining the digital signal with the number of higher-order bits output from the successive approximation converter circuit and the digital signal with the number of lower-order bits output from the fixed-quantity change time measurement converter circuit.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: October 7, 2014
    Assignees: Fujitsu Limited, Fujitsu Semiconductor Limited
    Inventors: Masato Yoshioka, Yanfei Chen, Tatsuya Ide
  • Patent number: 8847812
    Abstract: In a time-to-digital conversion stage, a time-to-digital conversion circuit outputs an n-bit digital signal, which represents an integer value ranging from ?(2n-1?1) to +(2n-1?1), based on a phase difference between a first and a second signals input thereto; a time difference amplifier circuit amplifies the phase difference between the first and the second signals 2n-1 times, and outputs two signals having an amplified phase difference therebetween; a delay adjustment circuit adds a phase difference dependent on the digital signal to the two signals output from the time difference amplifier circuit, and outputs another two signals; an output detection circuit detects that the delay adjustment circuit has output the another two signals, and outputs a detection signal; and a storage circuit latches the digital signal in synchronism with the detection signal. Multi-stage coupling of the time-to-digital conversion stages forms a pipeline time-to-digital converter.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: September 30, 2014
    Assignee: Panasonic Corporation
    Inventors: Shiro Dosho, Takuji Miki
  • Publication number: 20140266353
    Abstract: A time-to-digital converter converts the difference between transition times of a reference clock signal and an oscillating signal to a digital signal whose value is proportional to the transitions timing difference. The time-to-digital converter includes an edge detector, a time-to-voltage converter, and an analog-to-digital converter. The edge detector is adapted to detect, during each period of the reference clock signal, the edge (transition) of the oscillating signal that is closest to the edge of the reference clock signal. The time-to-voltage converter is adapted to generate an analog signal proportional to a difference in time between the detected edge of the oscillating signal and the edge of the reference clock signal. The analog-to-digital converter is adapted to convert the analog signal to a digital signal whose value is proportional the difference between the occurrence of the detected edge of the oscillating signal and the edge of the reference clock signal.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Yi Tang, Bo Sun
  • Publication number: 20140266848
    Abstract: Representative implementations of devices and techniques provide bipolar time-to-digital conversion. For example, either a positive time duration or a negative time duration may be converted to a digital representation by a linear time-to-digital converter (TDC). A set of logic functions may be applied to the input of the TDC to provide start and/or stop signals for the TDC. Further, a correction component may be applied to an input or an output of the TDC to compensate for a delay offset of the TDC.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Stephan HENZLER, Markus SCHIMPER, Stefan TERTINEK
  • Patent number: 8830110
    Abstract: A window-enabled TDC and method of detecting phase of a reference signal. One embodiment of the window-enabled TDC includes: (1) a window generator configured to receive a reference signal and a clock signal, and (2) a TDC circuit coupled to the window generator and configured to be enabled based on the reference signal and disabled based on the clock signal.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: September 9, 2014
    Assignee: Nvidia Corporation
    Inventors: Dong-Myung Choi, Madhusudhan Sarda, Anu Subbaraman, Kwanjee Ng
  • Publication number: 20140232827
    Abstract: Time-to-digital converter system including: an event detector configured for detecting an event and generating an event detection signal upon detection of the event; and a time-to-digital converter coupled or connectable to the event detector and including a fine resolution part configured for counting fine time intervals, organized such that the fine resolution part is activated in response to the event detection signal and deactivated in response to a reference clock. 3D imager including an array of pixels, with in each pixel such a time-to-digital converter system, and further including a reference clock generator.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 21, 2014
    Applicant: FASTREE 3D BV
    Inventors: Priyanka Kumar, Robert Staszewski, Edoardo Charbon
  • Publication number: 20140225758
    Abstract: A technique includes receiving an analog signal and generating at least one second signal that has a timing indicative of a magnitude of the analog signal. The technique includes acquiring a plurality of measurements of the timing, where the measurements vary according to a stochastic distribution; and providing a digital representation of the analog signal based at least in part on the measurements.
    Type: Application
    Filed: May 30, 2012
    Publication date: August 14, 2014
    Inventors: Hasnain Lakdawala, Ravi Ashoke, Degani Ofir, Alpman Erkan, Julia H. Lu, Gordon Eshel
  • Patent number: 8797203
    Abstract: Disclosed is a low-power and high-resolution time-to-digital converter including: a coarse delay cell configured to delay a reference clock by a coarse delay time and output the reference clock; a rising-edge retimer configured to output a rising-edge retimed clock synchronized with the rising-edge of a DCO clock in response to the reference clock; a falling-edge retimer configured to output a falling-edge retimed clock synchronized with the falling-edge of the DCO clock; a first sampler configured to latches output of the coarse delay cell in response to the rising-edge retimed clock and the falling-edge retimed clock; and a pseudo-thermometer code edge detector configured to detect a rising-edge fractional phase error between the reference clock and the rising-edge retimed clock as a coarse phase error from a signal output by the first sampler, and detect a falling-edge fractional phase error between the reference clock and the falling-edge retimed clock.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: August 5, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Ja Yol Lee
  • Publication number: 20140210528
    Abstract: One or more techniques or systems for locking a phase locked loop (PLL) are provided herein. In some embodiments, a multi-phase time-to-digital converter (TDC) includes a first phase finder, a phase predictor, a second phase finder, and a phase switch. For example, the first phase finder is configured to generate a first fractional phase signal based on a multi-phase variable clock (CKV) signal. For example, the phase predictor is configured to generate a phase select (QSEL) signal or a multi-phase CKV select (CKVSEL) signal based on a frequency command word (FCW) signal or the multi-phase CKV signal. For example, the second phase finder is configured to generate a second fractional phase signal based on the CKVSEL signal or the QSEL signal. For example, the phase switch is configured to select the first or second fractional phase signal based on a phase error (PHE) signal.
    Type: Application
    Filed: November 25, 2013
    Publication date: July 31, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kuang-Kai Yen, Feng Wei Kuo, Huan-Neng Chen, Lee Tsung Hsiung, Hsien-Yuan Liao, Robert Bogdan Staszewski, Chewn-Pu Jou
  • Publication number: 20140203957
    Abstract: A continuous time input stage including a first digital-to-analog converter (DAC) including a first DAC code input, a second DAC including a second DAC code input, a first set of switches coupled to the output of the first DAC, a second set of switches coupled to the output of the second DAC, and an amplifier configured to receive the output of either the first DAC or the second DAC.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 24, 2014
    Applicant: Analog Devices Technology
    Inventors: Roberto S. MAURINO, Sanjay RAJASEKHAR, Abhilasha KAWLE
  • Patent number: 8786474
    Abstract: An apparatus and method for inserting delay into a start signal of a metastable ring oscillator chain-based time-to-digital circuit (TDC). Included therein is a signal generating circuit that generates the start signal, a plurality of carry elements connected as a chain, each of the carry elements having an input to receive a stop signal, a delay chain circuit including one or more delay modules selected from the plurality of carry elements, at least one feedback line connected between at least one of the delay modules and the signal generating circuit, and a plurality of enable inputs each provided in a respective one of the delay modules. The delay chain circuit generates an amount of delay based on a delay selection signal that is received at the enable inputs and that selects the amount of delay. The delay chain circuit additionally provides the selected amount of delay to the signal generating circuit, which incorporates the delay into the start signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 22, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventor: Gregory J. Mann
  • Patent number: 8760329
    Abstract: A method is provided. An analog signal is received. The analog input signal is compared to first and second reference signals to generate a first comparison result, and the first comparison result and a first time stamp corresponding to the first comparison result are registered. A first portion of a digital signal is generated from the first comparison result. If the comparison result remains substantially the same for a predetermined interval, an ADC is enabled to generate a second comparison result at a sampling instant. A second time stamp that corresponds to the sampling instant is generated. The second comparison result and a second time stamp corresponding to the first comparison result are registered, and a second portion of the digital signal is generated from the second comparison result.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 24, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Ganesan Thiagarajan, Udayan Dasgupta, Venugopal Gopinathan
  • Patent number: 8754797
    Abstract: An apparatus is provided. A comparison circuit is configured to receive an analog signal. A reference circuit is coupled to the comparison circuit and is configured to provide a plurality of reference signals to the comparison circuit. A conversion circuit is coupled to the comparison circuit and is configured to detect a change in the output of the comparison circuit. A time-to-digital converter (TDC) is coupled to the comparison circuit. A timer is coupled to the comparison circuit. A rate control circuit is coupled to the conversion circuit. An output circuit is coupled to the rate control circuit and the TDC, where the output circuit is configured to output at least one of a synchronous digital representation of the analog signal and an asynchronous digital representation of the analog signal.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Venugopal Gopinathan, Udayan Dasgupta, Ganesan Thiagarajan
  • Patent number: 8754793
    Abstract: Apparatuses and methods related to time-to-digital converters (TDCs) are herein described. Generally, a time-to-digital converter is a device which measures a time period or time interval and outputs a digital value representing the measured time period. In an implementation, an apparatus is provided comprising a time-to-digital converter circuit, which further comprises a built-in self test (BIST). The built-in self test may be implemented using one or more oscillators coupled to the time-to-digital converter via one or more multiplexer devices.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: June 17, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventor: Stephan Henzler
  • Publication number: 20140152484
    Abstract: An oversampling time-to-digital converter includes an input pulse generation circuit generating two pulse signals, a reference pulse generation circuit generating two pulse signals, a swap circuit swapping two pulse signals, a multiplexer selecting an output of the input pulse generation circuit or the swap circuit, a time-to-current conversion circuit outputting two pulse currents in accordance with an output of the multiplexer, a current mirror circuit whose input and output terminals receive the two pulse currents, an integration circuit integrating a differential current between the pulse current connected to the output terminal of the current mirror circuit and an output current of the current mirror circuit, and a comparison circuit comparing an output signal of the integration circuit to a threshold voltage. An output signal of the comparison circuit is given to the swap circuit as a control signal.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 5, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Shiro DOSHO, Masao TAKAYAMA
  • Publication number: 20140152477
    Abstract: A time interleaving Analog-to-Digital Converter (ADC) comprises a plurality of ADCs; a timing generator that generates a clock signal for each of the ADCs such that edges of said clock signals trigger sampling of an input signal by the ADCs; and a timing adjustment circuit to receive and adjust the clock signals before the clock signals are received by the ADCs such that samplings of said input signal are spaced in time and occur at a rate of 1/N times a desired sampling rate; and circuit for adjusting the bandwidth of the plurality of ADCs.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Applicant: CREST SEMICONDUCTORS, INC.
    Inventors: Donald E. Lewis, Ryan James Kier, Rex K. Hales, Yusuf Haque
  • Patent number: 8736338
    Abstract: A method and circuit for providing on-chip measurement of the delay between two signals includes first and second delay chains (241, 242) having different delay values connected to sampling latches (222-227) which each include a data input coupled between adjacent delay elements of the first delay chain and a clock input coupled between adjacent delay elements of the second delay chain, thereby capturing a high precision delay measurement for the signals.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: May 27, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lipeng Cao, Carol G. Pyron, Kenneth R. Burch, Ramon V. Enriquez