By Varying Effective Area Of Electrode Patents (Class 361/292)
  • Patent number: 7499257
    Abstract: A micro-electro-mechanical system varactor. The varactor includes a substrate, a lower bias conductor partially overlaying the substrate, a first signal conductor partially overlaying the substrate, a dielectric layer at least partially overlaying the first signal conductor, a support structure coupled to the substrate, and a flexible structure coupled to the support structure. The flexible structure is suspended over the substrate, includes an upper bias conductor overlaying at least part of the lower bias conductor and a top conductor overlaying at least part of the first signal conductor, configured to deflect in response to a bias voltage applied between the upper bias conductor and the lower bias conductor, and configured for separation between the top conductor and the dielectric layer by a varying separation distance dependent upon the bias voltage.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 3, 2009
    Assignee: Motorola, Inc.
    Inventors: Robert B. Lempkowski, Lih-Tyng Hwang
  • Patent number: 7446994
    Abstract: A lower movable electrode 35, having line sections 35a, 35a on both ends and a capacitor section 35b in the center, and an upper movable electrode 37, having line sections 37a, 37a on both ends and a capacitor section 37b in the center, are placed so that the capacitor sections 35b, 37b face each other, and drive electrodes of lower-movable-electrode actuators 27a, 27b, 27c, 27d driving the lower movable electrode 35 and upper-movable-electrode actuators 29a, 29b, 29c, 29d driving the upper movable electrode 37 are electrically separated from the lower movable electrode 35 and upper movable electrode 37. These actuators 27a to 27d and/or 29a to 29d move the lower movable electrode 35 and/or upper movable electrode 37 to adjust the distance between both capacitor sections 35b, 37b, and control the electrostatic capacity.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: November 4, 2008
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Tadashi Nakatani
  • Patent number: 7440254
    Abstract: A micro-electromechanical variable capacitor with first and second capacitor plates spaced apart to define a gap therebetween. The first plate has two control electrodes and an active electrode. The second plate is movable relative to first plate when a voltage is applied to produce a potential difference across the control electrode and the second capacitor plate. This has the effect of varying the capacitance of the capacitor. The facing surface of at least one of the plates is formed in such a way that it has a roughened surface. The degree of roughness is sufficient to prevent the facing surfaces adhering together through stiction.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: October 21, 2008
    Assignee: RFMD (UK) Limited
    Inventor: Andrew James Gallant
  • Patent number: 7411774
    Abstract: A charge storage device having a capacitance that is variable by alteration of the relative permittivity of the dielectric positioned between conductive electrodes within the device. The device consists of two conductive plates sandwiching a conductive grid, typically embedded within a dielectric material. Charging the grid with a negative or positive potential changes the value of the dielectric constant (the relative permittivity) and thereby changes the capacitance of the device.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: August 12, 2008
    Inventor: William F. Leeper, II
  • Publication number: 20080180876
    Abstract: A variable capacitor is provided which is appropriate for suppressing fluctuation in driving voltage characteristic and for achieving a larger variation ratio of static capacitance. The variable capacitor includes a fixed electrode and a movable electrodetrode. The fixed electrode includes a first opposing face, while the movable electrode includes a second opposing face that faces the first opposing face. The movable electrode further includes a curved portion that protrudes toward the fixed electrode. The variable capacitor also includes a dielectric pattern provided on the first opposing face.
    Type: Application
    Filed: January 24, 2008
    Publication date: July 31, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Yu Yonezawa, Xiaoyu Mi, Satoshi Ueda
  • Patent number: 7394642
    Abstract: A tubular capacitor with variable capacitance, including a cylindrical tube (3) of dielectric material, a metallic outer electrode (1) which surrounds the cylindrical tube (3), and an inner electrode which can axially move in the inner bore (41) of the cylindrical tube (3) and which abuts the inner bore (41), wherein the inner electrode includes a metallic rod (2; 2a; 2b; 2c), is characterized in that the metallic rod (2; 2a; 2b; 2c) is axially extended at its end (5?), located in the inner bore (41) of the cylindrical tube (3), using a rod (9; 9a; 9b; 9c) of dielectric material. The inventive tubular capacitor has an increased dielectric strength and improves the resolution of NMR spectrometers.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: July 1, 2008
    Assignee: Bruker Biospin AG
    Inventors: Beat Grossniklaus, Daniel Marek, Roberto Seydoux, Oskar Schett
  • Patent number: 7385800
    Abstract: According to one aspect, the subject matter described herein includes a MEMS fixed capacitor and a method for fabricating the MEMS fixed capacitor. The MEMS fixed capacitor can include a first stationary, capacitive plate on a substrate. Further, the MEMS fixed capacitor can include a non-conductive, stationary beam suspended above the substrate. The MEMS fixed capacitor can also include a second stationary, capacitive plate spaced a predetermined distance from the first stationary, capacitive plate for producing a predetermined capacitance between the capacitive plates.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: June 10, 2008
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, Shawn Jay Cunningham
  • Patent number: 7369394
    Abstract: A variable capacitor includes a supporting substrate and a plurality of variable capacitance elements, and bias lines. The plurality of variable capacitance elements is formed on the supporting substrate, each of which is composed of a lower-laid first electrode layer, an upper-laid second electrode layer, and a dielectric layer sandwiched therebetween whose dielectric constant changes with direct current bias voltage. In the variable capacitance elements which are adjacent to each other, the second electrode layer of a first variable capacitance element and the first electrode layer of a second variable capacitance element are electrically connected in series with each other. The bias lines each include at least one of resistance component and inductance component for applying the direct current bias voltage. The variable capacitance elements are each connected to the bias lines.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: May 6, 2008
    Assignee: Kyocera Corporation
    Inventor: Hideharu Kurioka
  • Patent number: 7324323
    Abstract: A heat-sensitive apparatus includes a substrate with a top surface, one or more bars being rotatably joined to the surface and having bimorph portions, and a plate rotatably joined to the surface and substantially rigidly joined to the one or more bars. Each bimorph portion bends in response to being heated. The one or more bars and the plate are configured to cause the plate to move farther away from the top surface in response to the one or more bimorph portions being heated.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: January 29, 2008
    Assignee: Lucent Technologies Inc.
    Inventors: Vladimir Anatolyevich Aksyuk, Maria Elina Simon, Richart Elliott Slusher
  • Patent number: 7319580
    Abstract: According to one embodiment a microelectromechanical (MEMS) switch is disclosed. The MEMS switch includes a substrate, a plurality of actuation electrodes mounted on the substrate, a plurality of bottom electrodes mounted on the substrate, a capacitor having subcomponents mounted on the two or more bottom electrodes and a top bendable electrode mounted on the substrate. The top electrode collapses a first magnitude towards the actuation electrodes whenever a first voltage is applied to one or more of the actuation electrodes and collapses a second magnitude towards the actuation electrodes whenever a second voltage is applied to the actuation electrodes.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: January 15, 2008
    Assignee: Intel Corporation
    Inventor: Tsung-Kuan Allen Chou
  • Patent number: 7283347
    Abstract: A digital variable capacitor package is provided as having a ground plane disposed on predetermined portion of the top surface of a substrate. An elongated signal electrode may also be disposed on the substrate and including a first end defining an input and a second end extending to a substantially central region of the top surface of the substrate. This elongated signal electrode is disposed to be electrically isolated from the ground plane. A number of elongated cantilevers are disposed on the substrate and each include first ends coupled to the second end of the signal electrode and each further include second ends suspended over different predetermined portions of the ground plane. In operation, one or more of the cantilevers may be actuated to move portion thereof into close proximity to the ground plane for providing one or more discrete capacitance values.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: October 16, 2007
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: James R. Reid, Jr.
  • Patent number: 7277267
    Abstract: A capacitive transducer of multi-layer construction includes two rotor plates supported by flexible springs, the plates being spaced apart and rigidly connected by a stem. One rotor plate my be used as either a pickup electrode or a grounded target electrode for determining position, displacement, or load force. The second rotor plate may be used for electrostatic actuation without interfering with or destroying circuitry associated with the first rotor plate. A number of improvements are disclosed including a hollow rotor plate structure for reduced moving mass, buckling resistant features for the springs, improved spring anchor joint design for reduced creep and hysteresis, and material selection and matching for reduced thermal sensitivity.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: October 2, 2007
    Inventor: Wayne Allen Bonin
  • Patent number: 7242569
    Abstract: Capacitors 10, 20, 40, 50, 70, 80) having a fluid dielectric material that is transported or undergoes a phase change are disclosed. The dielectric medium change results in a change in the total dielectric constant of the material between the electrodes (12, 14, 72, 74, 81, 82), thus changing the capacitance of the capacitors. Transporting or phase changing the dielectric fluids into and out of a the electric field of the capacitor, changes the effective dielectric constant and the capacitance of the capacitor.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: July 10, 2007
    Assignee: nGimat, Co.
    Inventors: Andrew T. Hunt, Mark G. Allen
  • Patent number: 7203052
    Abstract: A MEMS tunable capacitor and method of fabricating the same, includes a plurality of fixed charge plates on a substrate, the plurality of fixed charge plates having a same height, being arranged in a shape of comb-teeth and being electrically connected to one another, a capacitor dielectric layer covering the plurality of fixed charge plates, a movable charge plate structure spaced apart from the capacitor dielectric layer, and arranged on the plurality of fixed charge plates, wherein the movable charge plate structure includes a plurality of movable charge plates arranged corresponding the plurality of fixed charge plates, and an actuator connected to the movable charge plate structure allowing the movable charge plate structure to move in a horizontal direction.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: April 10, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Kang-soo Chu, Weon-Hong Kim
  • Patent number: 7190565
    Abstract: An adjustable capacitor has a tubular housing including a first insulating section and a second section having a conductive portion at the exterior surface thereof forming an external terminal. An external terminal conductor is joined to an exterior terminal portion of the capacitor housing, for connecting the terminal to an external circuit. The external terminal conductor has a thickness, over its length, not less than a thickness of the housing. The external terminal conductor can have a width greater than the width of the housing, and a thickness not appreciably less than the average thickness of the housing. The external terminal conductor can be press-fitted onto the housing to form a secure electrical connection, attached by another suitable means, or integrally formed therewith.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: March 13, 2007
    Assignee: Johanson Manufacturing Corporation
    Inventor: Yakov Marantz
  • Patent number: 7161791
    Abstract: A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: January 9, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Jonathan J. Lynch, Sarabjit Mehta, John Pasiecznik, Peter Petre
  • Patent number: 7088567
    Abstract: Capacitors (10,20,40,50,70,80) having a fluid dielectric material that is transported or undergoes a phase change are disclosed. The dielectric medium change results in a change in the total dielectric constant of the material between the electrodes (12, 14, 72, 74, 81, 82), thus changing the capacitance of the capacitors. Transporting or phase changing the dielectric fluids into and out of a the electric field of the capacitor, changes the effective dielectric constant and the capacitance of the capacitor.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: August 8, 2006
    Assignee: nGimat, Co.
    Inventors: Andrew T. Hunt, Mark G. Allen
  • Patent number: 7085121
    Abstract: A device for varying the capacitance of an electronic circuit is disclosed. The device comprises a flexible membrane located above the electronic circuit, a metal layer connected to the flexible membrane, and bias circuitry located above the membrane. Variation of the capacitance of the electronic circuit is obtained by pulling the membrane upwards by means of the bias circuitry. The disclosed device provides a sizeable capacitance variation and high Q factor, resulting in overall low filter insertion loss. A nearly constant group delay over a wide operating bandwidth is also obtained.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: August 1, 2006
    Assignee: HRL Laboratories, LLC
    Inventors: Jonathan J. Lynch, Sarabjit Mehta, John Pasiecznik, Peter Petre
  • Patent number: 7085122
    Abstract: A MEMS tunable capacitor with angular vertical comb-drive (AVC) actuators is described where high capacitances and a wide continuous tuning range is achieved in a compact space. The comb fingers rotate through a small vertical angle which allows a wider tuning range than in conventional lateral comb drive devices. Fabrication of the device is straightforward, and involves a single deep reactive ion etching step followed by release and out-of-plane assembly of the angular combs.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 1, 2006
    Assignee: The Regents of the University of California
    Inventors: Ming C. Wu, Hung D. Nguyen, Doo-Young Hah, Pamela R. Patterson
  • Patent number: 7081663
    Abstract: A semiconductor junction varactor utilizes gate enhancement for enabling the varactor to achieve a high ratio of maximum capacitance to minimum capacitance. The varactor has a gate region (131 or 181) divided into multiple portions of differing zero-point threshold voltages for enabling the varactor capacitance to vary relatively gradually with a control voltage applied to the varactor.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: July 25, 2006
    Assignee: National Semiconductor Corporation
    Inventor: Constantin Bulucea
  • Patent number: 7042699
    Abstract: A vacuum variable capacitor is includes of a vacuum container which is formed by sealing both end of a cylindrical insulator with a fixed-side end plate and a movable-side end plate, a movable conductive member which is disposed opposite to the fixed-side end plate in the vacuum container, a fixed electrode which is provided on the fixed-side end plate, a movable electrode which is provided on the movable conductive member, a bellows provided in the vacuum container, a rotating portion which is rotatably disposed outside of the vacuum container, and a ball screw through which the movable conductive member is supported by the rotating member.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 9, 2006
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Naoki Hayashi
  • Patent number: 7042698
    Abstract: A MEMS tunable capacitor and method of fabricating the same, includes a plurality of fixed charge plates on a substrate, the plurality of fixed charge plates having a same height, being arranged in a shape of comb-teeth and being electrically connected to one another, a capacitor dielectric layer covering the plurality of fixed charge plates, a movable charge plate structure spaced apart from the capacitor dielectric layer, and arranged on the plurality of fixed charge plates, wherein the movable charge plate structure includes a plurality of movable charge plates arranged corresponding the plurality of fixed charge plates, and an actuator connected to the movable charge plate structure allowing the movable charge plate structure to move in a horizontal direction.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: May 9, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seok-Jun Won, Kang-soo Chu, Weon-Hong Kim
  • Patent number: 7023684
    Abstract: A variable position sensor has a stationary portion and a moveable portion. A plurality of plates are positioned on one of the members with the surfaces of the plates forming segments of a larger surface. A single plate is mounted on the other of the two members. One pole of an electric potential is applied to a first of the plurality of plates on the one member and the second pole of the electric potential is applied to the single plate on the other member. Similarly a pole of an electric potential is separately applied to each of the other of the parallel plates and to the one plate. When the one plate is positioned adjacent one of the plurality of plates a capacitance is formed between the adjacent plates, and by detecting the capacitance the position of the one plate can be determined.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 4, 2006
    Inventor: Jack Chen
  • Patent number: 6970340
    Abstract: The present invention is directed to a capacitor apparatus of the capacity variable type. This capacitor apparatus is manufactured by Micro Electro-Mechanical System technology, and comprises an insulating substrate (2) in which at least two capacitor electrodes (3), (4) are formed on one surface (2a) in the state where they are insulated each other, an actuator (5) formed by insulating material and having an external shape to bridge over the respective capacitor electrodes (3), (4), the actuator (5) being such that a conductor which respectively constitutes capacitors between the conductor (6) and these capacitor electrodes (3), (4), and drive means (7) for allowing this actuator (5) to undergo an operation to come into contact with one principal surface (2a) of the insulating substrate (2) or to become away therefrom.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: November 29, 2005
    Assignee: Sony Corporation
    Inventor: Norikazu Nakayama
  • Patent number: 6961228
    Abstract: The present invention is directed to a capacitor apparatus of the capacity variable type. This capacitor apparatus is manufactured by Micro Electro-Mechanical System technology, and comprises an insulating substrate (2) in which at least two capacitor electrodes (3), (4) are formed on one surface (2a) in the state where they are insulated each other, an actuator (5) formed by insulating material and having an external shape to bridge over the respective capacitor electrodes (3), (4), the actuator (5) being such that a conductor which respectively constitutes capacitors between the conductor (6) and these capacitor electrodes (3), (4), and drive means (7) for allowing this actuator (5) to undergo an operation to come into contact with one principal surface (2a) of the insulating substrate (2) or to become away therefrom.
    Type: Grant
    Filed: April 23, 2005
    Date of Patent: November 1, 2005
    Assignee: Sony Corporation
    Inventor: Norikazu Nakayama
  • Patent number: 6952337
    Abstract: A variable capacitor is provided such that it is possible to make nonlinear distortion small and use at high power handling capability, and such that a variable rate of capacitance is not influenced by a high-frequency voltage substantially. A variable capacitor is used by changing capacitance through application across electrodes of direct current voltage and high-frequency voltage. When an effective voltage value of high-frequency voltage is within a range of voltage values of direct current voltage, there is substantially no fluctuation caused by application of high-frequency voltage with respect to a change of capacitance caused by application of direct current. Since it is possible to decrease susceptibility to the high-frequency voltage of the variable capacitor, it is possible to obtain a variable capacitor such that nonlinear distortion is small and power handling capability is high.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: October 4, 2005
    Assignee: Kyocera Corporation
    Inventor: Yukihiko Yashima
  • Patent number: 6920033
    Abstract: The invention relates to a variable capacitor which, due to its particular arrangement of electrodes, enables a significantly higher current flow than generally known constructions having the same or a similar structural shape, said capacitor also has an increased life expectancy and is compatible with existing capacitors in terms of connection. Such variable capacitors can be used in high frequency generators, in matchboxes and in interface networks for industrial high frequency applications, as regulatable filters in high frequency power electronics and in the power part of emission installations.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: July 19, 2005
    Assignee: Comet AG
    Inventors: Lothar Jahreiss, Bernhard Hug, Walter Bigler, Michael Hamberger
  • Patent number: 6897537
    Abstract: Micro-Electro-Mechanical System (MEMS) Variable Capacitor Apparatus and Related Methods. According to one embodiment, a MEMS variable capacitor is provided. The variable capacitor can include first and second electrodes being spaced apart, and at least one of the electrodes being movable when a voltage is applied across the first and second electrodes. The variable capacitor can also include a first conductive plate attached to and electrically isolated from the first electrode. Furthermore, the variable capacitor can include a second conductive plate attached to the second electrode and spaced from the first conductive plate for movement of at least one of the plates with respect to the other plate upon application of voltage across the first and second electrodes to change the capacitance between the first and second plates.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 24, 2005
    Assignee: Wispry, Inc.
    Inventor: Hector J. de los Santos
  • Patent number: 6885537
    Abstract: The present invention is directed to a capacitor apparatus of the capacity variable type. This capacitor apparatus is manufactured by Micro Electro-Mechanical System technology, and comprises an insulating substrate (2) in which at least two capacitor electrodes (3), (4) are formed on one surface (2a) in the state where they are insulated each other, an actuator (5) formed by insulating material and having an external shape to bridge over the respective capacitor electrodes (3), (4), the actuator (5) being such that a conductor which respectively constitutes capacitors between the conductor (6) and these capacitor electrodes (3), (4), and drive means (7) for allowing this actuator (5) to undergo an operation to come into contact with one principal surface (2a) of the insulating substrate (2) or to become away therefrom.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: April 26, 2005
    Assignee: Sony Corporation
    Inventor: Norikazu Nakayama
  • Patent number: 6865066
    Abstract: First and second varactors are disposed on a surface of a P-type substrate. The first varactor includes an N well disposed in the surface of the P-type substrate, a gate insulator disposed on the N well, and an N-type polysilicon layer disposed on the gate insulator. The second varactor includes an N well disposed in the surface of the P-type substrate, a gate insulator disposed on the N well, and a P-type polysilicon layer disposed on the gate insulator. The N-type polysilicon layer and P-type polysilicon layer are connected to a gate terminal. The N wells are connected to an SD terminal via P+ diffusion layers. The N-type polysilicon layer and P-type polysilicon layer have different work functions.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: March 8, 2005
    Assignee: NEC Electronics Corporation
    Inventors: Susumu Kurosawa, Yuki Fujimoto
  • Patent number: 6856499
    Abstract: A variable passive component is provided for fabrication on a microelectromechanical system (MEMS) device. A conductive portion is provided on a low-profile sliding dielectric sheet that cooperates with a conductive portion disposed on a substrate to provide a variable passive component. The passive component can be a variable inductor provided by moving a shorted spiral inductor formed on the dielectric sheet over a spiral inductor on the substrate with varying degrees of overlap causing varying inductance values. The passive component can be a variable capacitor that consists of a large conductive pad on a dielectric plate which slides over two adjacent pads on the substrate with varying overlap causing varying capacitance values.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: February 15, 2005
    Assignee: Northrop Gurmman Corporation
    Inventor: Robert B. Stokes
  • Patent number: 6747863
    Abstract: An electrostatic drive having a plurality of mover electrodes operatively secured to a mover, and a plurality of stator electrodes operatively secured to a stator. The mover and stator are configured to move relative to each other via electrostatic force generated between the mover electrodes and the stator electrodes. The electrostatic drive includes a driver configured to place the stator electrodes in any of a number of sequential voltage states, each being defined by a combination of LO and HI voltage levels at the individual stator electrodes. Transition from one voltage state to a sequentially adjacent voltage state produces a step size of relative movement between the mover and stator. For each of the sequential voltage states, the driver is further configured to selectively vary voltage applied at one of the stator electrodes to an amount between the LO and the HI voltage levels, in order to produce a proportionally smaller step size.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: June 8, 2004
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Donald J. Fasen
  • Patent number: 6646525
    Abstract: A microelectro-mechanical device which includes a fixed electrode formed on a substrate, the fixed electrode including a transparent, high resistance layer, and a moveable electrode formed with an anisotropic stress in a predetermined direction and disposed adjacent the fixed electrode. The device includes first and second electrically conductive regions which are isolated from one another by the fixed electrode. The moveable electrode moves to cover the fixed electrode and to electrically couple to the second conductive region, thus electrically coupling the first and second conductive regions, in response to a potential being applied across the fixed and moveable electrodes. The fixed electrode is transparent to electromagnetic signals or waves and the moveable electrode impedes or allows transmission of electromagnetic signals or waves.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: November 11, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Richard G. Drangmeister, Robert J. Parr, Lawrence J. Kushner
  • Patent number: 6636414
    Abstract: A high power slide tuning capacitor (200) integrated into a circuit board adapted to function at RF and microwave frequencies. The capacitor (200) includes a dielectric substrate (26) with a cavity (28) cut into a side of the substrate (26); a ground plane (24) mounted on a bottom surface of the dielectric substrate (26); a microstrip patch (22) mounted on a top surface of the dielectric substrate (26) and positioned above the cavity (28); and a movable dielectric stub (30) which engages the cavity (28) such that a variable length of the stub (30) is positioned beneath the microstrip patch (22). The microstrip patch (22) can be coupled to a desired circuit trace (20), effectively forming a shunt capacitor to ground.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: October 21, 2003
    Assignee: Raytheon Company
    Inventors: Thomas L. Obert, Kenneth W. Brown, Thomas A. Drake
  • Patent number: 6600644
    Abstract: A microelectronic tunable capacitor and a method for fabricating the capacitor are described. The capacitor is formed by a micro-actuator, a first fixed capacitor plate and a second swayable capacitor plate suspended over the first plate. The micro-actuator is formed by a pair of fixed electrodes positioned spaced-apart from each other sandwiching without contact a suspended arm electrode swayable between the pair of fixed eletrodes. The second swayable capacitor plate is mounted to the suspended arm and sways by an electrostatic force between the pair of fixed electrodes to suitably adjust a desirable capacitance for the tunable capacitor.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: July 29, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Hung Chiou, Kai-Hsiang Yen, Ran-Jin Lin, Jia-Hroung Wu, Kun-Ho Chou
  • Patent number: 6549394
    Abstract: A capacitor having a bottom plate, a top plate and a support connected to the center portion of the top plate for positioning the top plate over the bottom plate and separated therefrom by a gap. The outer portion of the top plate moves relative to the bottom plate when a potential is applied between the plates. The outer portion may be connected to the center portion of the top plate by springs such that the movement of the top plate relative to the bottom plate is accommodated by bending at least one of the springs. The capacitor may also include an insulating layer between the top and bottom plates disposed so as to prevent the top plate from shorting to the bottom plate. A spacer for setting the minimum distance between the outer portion of the top plate and the bottom plate may also be included.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: April 15, 2003
    Assignee: Agilent Technologies, Inc.
    Inventor: Kirt Reed Williams
  • Patent number: 6504703
    Abstract: A capacitive transducer apparatus converts mechanical force to electrical signal parameters by change of spacing between plates of a plurality of capacitors. The apparatus has two mechanical components. The first component includes an articulating member such as a post surrounded by a first capacitive plate. Means are provided for causing the articulating member to articulate responsive to user manipulation thereof, and thereafter, to return to a quiescent position. The second component includes a second capacitive plate made up of a plurality of printed metalized members disposed about the articulating member substantially parallel to the first capacitive plate. A circuit is provided for detecting respective signals from a plurality of capacitors formed by the plates, the respective signals varying in value depending on articulation of the articulating member which alters the capacitance of the respective capacitors depending on the direction and magnitude of an applied force.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: January 7, 2003
    Assignee: Bokam Engineering
    Inventors: Boris Kamentser, Eugenia Kamentser
  • Patent number: 6501637
    Abstract: A trimmer capacitor includes anchor portions that are arranged to be stepped down from the surface of a fixed electrode and are embedded in a stator near the upper surface of the stator at the tip portions of the fixed electrode. Because the tip portion of the fixed electrode has a section that is exactly perpendicular or nearly perpendicular to the surface of the fixed electrode in the region from the surface of the fixed electrode to the anchor portions, even if the upper surface of the stator is polished in the process for forming the stator, neither the area of the fixed electrode nor the capacitance changes.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: December 31, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masanori Oshima, Shuichi Taniguchi, Hiroyuki Watanabe
  • Patent number: 6473289
    Abstract: An improved vacuum variable capacitor can include one or more characteristics that provide advantages over previous vacuum variable capacitors. In particular, the vacuum variable capacitor can be constructed so as to enable the capacitance to be adjusted more easily, reduce parasitic electrical characteristics that degrade the performance of the vacuum variable capacitor, increase the strength of the capacitor plates of the vacuum variable capacitor, reduce the size of the vacuum variable capacitor, and/or make the shape of the vacuum variable capacitor more easily integrated into a system of which the vacuum variable capacitor is part.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: October 29, 2002
    Assignee: Paralax, LLC
    Inventors: Robert E. Weisse, Stephen E. Hilliker
  • Patent number: 6430023
    Abstract: An input device for a personal computer or the like has an elastic member, a slider horizontally movable on the elastic member, and a key top operatively connected to the elastic member through the slider. The elastic member 5 has a coupling portion provided with a flange which vertically movably fits in a fit hole formed in the slider. A horizontal movement of the key top causes the wall of the fit hole of the slider to press the flange, which in turn causes deformation of the flange and of the movable electrode, with the result that the size of the gap and, hence, capacitive value between the movable electrode and the fixed electrode are changed, whereby the direction of movement of the key top is detected with a high degree of accuracy.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 6, 2002
    Assignee: Alps Electric Co., Ltd.
    Inventor: Katsutoshi Suzuki
  • Patent number: 6377438
    Abstract: A microelectromechanical system (MEMS) tunable capacitor having low loss and a corresponding high Q is provided. The tunable capacitor includes a first substrate having a first capacitor plate disposed thereon. A fixed pivot structure is disposed on the first surface of the first substrate, proximate the first capacitor plate. The fixed pivot structure as a point of attachment for a flexible membrane that extends outward from the fixed pivot and generally overlies the first capacitor plate. A second substrate is attached to the underside of the flexible membrane and a second capacitor plate is disposed thereon such that the first and second capacitor plates face one another in a spaced apart relationship. A MEMS actuator is operably in contact with the flexible membrane for the purpose of providing an actuation force to the flexible membrane, thereby varying the capacitance between the first and second capacitor plates.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: April 23, 2002
    Assignee: MCNC
    Inventors: Philip A. Deane, Joseph Mancusi, Mark W. Roberson
  • Patent number: 6353527
    Abstract: A variable capacitor includes a driver member including one metal sheet, a head having a driver groove provided therein, engagement portions engaged with a rotor, and a spring function portion in pressure-contact with the rotor are integral with each other. The spring function portion includes a first plate portion extending from one end of the head, which is bent in the first bending portion, and elongated, passing a center shaft, and a second plate portion extending from the end of the first plate portion, which is bent in the second bending portion, and elongated, passing the center shaft. The second plate portion functions as a pressure-contact portion for the rotor.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: March 5, 2002
    Assignee: Murata Manufacturing Co., LTD
    Inventors: Motohiro Kinoshita, Takeshi Doi, Yukinori Ueda
  • Patent number: 6218632
    Abstract: The present invention is directed to a weight sensing apparatus (10) for a vehicle seat (22). The weight sensing apparatus (10) includes a differential capacitor (150) including a first capacitor (152) and a second capacitor (176). The first capacitor (152) includes first and second opposed plate assemblies (154 and 156). The second capacitor (179) includes a third plate assembly (180) and the second plate assembly (156). Each plate assembly (154, 156, and 180) includes a plurality of electrically conductive elongated members that extend in an axial direction. The second plate assembly (156) is interposed between the first and third plate assemblies (154 and 180) and is movable in an axial direction relative to the first and third plate assemblies (154 and 180) in response to a load being applied to a vehicle seat. A source of alternating current supplies electrical energy to the differential capacitor (150) and an output circuit is electrically connected with the differential capacitor (150).
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: April 17, 2001
    Assignee: TRW Inc.
    Inventors: Michael C. McCarthy, Thomas J. Lemense, Michael G. Fullerton
  • Patent number: 6147855
    Abstract: A variable capacitor that provides a full range of capacitance, while reducing the amount of rotation necessary to effect maximum variation in capacitance, and while eliminating any wear-related deterioration in device performance includes at least two coplanar, electrically isolated sets of parallel electroconductive members so configured as to form a fixed set of capacitor plates, each of which may be separately electrically connected to an electrical circuit. A movable group having at least one member including at least one electroconductive area is positioned parallel to, and spaced from, the fixed set of plates. The movable group is adapted for rotation about an axis perpendicular to a surface plane of the first set of plates to vary an amount by which said movable group overlaps the surface of each of said capacitor plates, and thereby provide variable capacitive coupling between the two isolated electroconductive members that comprise the fixed set of capacitor plates.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: November 14, 2000
    Assignee: Applied Materials, Inc.
    Inventor: William N. Taylor, Jr.
  • Patent number: 6127908
    Abstract: A microelectro-mechanical device which includes a fixed electrode formed on a substrate, the fixed electrode including a transparent, high resistance layer, and a moveable electrode formed with an anisotropic stress in a predetermined direction and disposed adjacent the fixed electrode. The device includes first and second electrically conductive regions which are isolated from one another by the fixed electrode. The moveable electrode moves to cover the fixed electrode and to electrically couple to the second conductive region, thus electrically coupling the first and second conductive regions, in response to a potential being applied across the fixed and moveable electrodes. The fixed electrode is transparent to electromagnetic signals or waves and the moveable electrode impedes or allows transmission of electromagnetic signals or waves.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: October 3, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Carl O. Bozler, Richard G. Drangmeister, Robert J. Parr, Lawrence J. Kushner
  • Patent number: 6088214
    Abstract: An array (100) of voltage variable capacitors (110) is provided in which voltage variable capacitors (110) are fabricated with piezoelectric displacement devices (150). Voltage variable capacitors (110) have first plates (120) which are coupled to displacement devices (150). First plates (120) are dielectrically coupled to second plates (130). Displacement device (150) has a stack of metallic layers (154), voltage variable material blocks (152), and voltage supply terminals (170) and (180). Voltage differences are established across voltage variable material blocks (152) using voltage supply terminals (170) and (180). A voltage difference causes a voltage variable material layer to change thickness, and this causes first plate (120) to move relative to second plate (130). Voltage variable material is selected from a group of piezoelectric ceramics, which can include lead-titanate (PbTiO.sub.3), lead-zirconate (PbZrO.sub.3), barium-titanate (BaTiO.sub.3), and lead-zirconate-titanate (PbZr.sub.x Ti.sub.1-x O.
    Type: Grant
    Filed: June 1, 1998
    Date of Patent: July 11, 2000
    Assignee: Motorola, Inc.
    Inventors: Hugh Robert Malone, James R. Phillips, Donald W. Forst, Deborah Sue Dendy, Dean Lawrence Cook
  • Patent number: 5896032
    Abstract: A small position detection and positioning device detects relative displacement between two members with high precision. A moving medium-type memory device using such positioning device is also provided. The position detection device includes a linear array of first electrodes at equal pitches on one of the two members that have relative displacement in at least one dimension, and a linear array of at least one second electrode on the other member. The first electrodes are positioned opposite the second electrodes and separated from them by a minute gap. The first electrodes are divided into a first electrode set composed of alternate ones of the first electrodes, and a second electrode set composed of alternate ones of the first electrodes not in the first electrode set. A signal source which applies a first alternating signal to the first electrode set and a second alternating signal that differs in phase by 180.degree.
    Type: Grant
    Filed: June 11, 1996
    Date of Patent: April 20, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Takaaki Yagi, Mitsuchika Saito
  • Patent number: 5867360
    Abstract: In a variable capacitor having a stator with a stator electrode and a rotor with a rotor electrode both of which are housed in a recess section of a casing while allowing the recess section to be closed by a cover, enabling the rotor to be brought into stable close contact with the stator. To this end, a cover (46) made of a chosen metal includes a cover main body (55) which covers the upper opening of a recess section (45) except for an adjustment hole (54) that exposes a driver groove (30) of the rotor (43), leg sections (56, 57) which engage a casing (44) letting the cover main body (55) be secured to the casing (44), and a rotor terminal. The cover main body (55) has a size corresponding to the outer diameter of the variable capacitor (41). This cover main body (55) may have a vent shape so as to create intended elastic force which may act to compress the rotor (43) against the stator (42).
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: February 2, 1999
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroyuki Kishishita, Yukinori Ueda
  • Patent number: 5856769
    Abstract: A resonator for a high frequency electric oscillator is disclosed. The resonator is and integrated capacitor and inductor. The capacitance and inductance of the resonator are continuously and simultaneously adjustable. The resonator includes a coaxial portion and a conductor portion. The coaxial portion has an inner dielectric with a longitudinal aperture and an outer conductive sheath or outer conductor. The conductor portion has a straight section slidable in the aperture and a V shaped bent or oblique section.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: January 5, 1999
    Assignee: Vari-L Company, Inc.
    Inventor: Joseph H. Kiser
  • Patent number: 5768088
    Abstract: A multiple position or continuously variable capacitive switch which operates by producing a series of discernable changes in the capacitance between a pair of conductors (14,16) disposed in a spaced coplanar relationship on a surface of a non-conductive substrate (12). A dielectric layer (18) is applied over the conductors (14,16) and exposed areas of the substrate (12) surface. A resilient conductive pad (20) is positioned atop the dielectric layer (18) and a user movable actuator (28) is moved to controllably increase the capacitance between the conductors (14,16) by creating progressively greater areas of compression between conductive pad (20) and dielectric layer (18).
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: June 16, 1998
    Assignee: Eaton Corporation
    Inventors: Edwin D. Lorenz, Michael G. Taranowski