Fluorescence Patents (Class 378/44)
  • Patent number: 11022572
    Abstract: Provided is a substrate contamination analysis system capable of individually analyzing impurities present in a film and impurities present on a surface of the film. The substrate contamination analysis system includes: a vapor phase decomposition device configured to expose a film formed on a surface of a first substrate to a gas that reacts with the film, to thereby dissolve the film; a recovery device configured to perform a first recovery operation of moving an object to be measured to a first measurement position before the film is dissolved and a second recovery operation of moving the object to be measured to a second measurement position after the film is dissolved; and an analyzer configured to analyze the object to be measured every time the recovery device performs the first recovery operation and the second recovery operation.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 1, 2021
    Assignee: RIGAKU CORPORATION
    Inventor: Motoyuki Yamagami
  • Patent number: 10989678
    Abstract: Provided is an X-ray analysis system with which it is possible to set appropriate conditions for vapor phase decomposition with ease. The X-ray analysis system includes an X-ray spectrometer and a vapor phase decomposition apparatus. The X-ray spectrometer includes: an X-ray source configured to irradiate a measurement sample having a thin film present on its surface with primary X-rays; a detector configured to measure an intensity of reflected X-rays, or an intensity of fluorescent X-rays; and a calculation unit configured to calculate a film thickness or a coating mass of the thin film based on the intensity of the reflected X-rays or the fluorescent X-rays. The vapor phase decomposition apparatus includes: a vapor phase decomposition portion configured to perform vapor phase decomposition on the thin film; and a control portion configured to determine a vapor phase decomposition time based on the film thickness or the coating mass.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: April 27, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Hiroshi Kono, Satoshi Murakami
  • Patent number: 10983073
    Abstract: A hybrid inspection system of the present invention is an inspection system including a first inspection device (1) for inspecting a sample (11) based on X-ray measurement data obtained by irradiating the sample (11) with X-rays, and a second inspection device (2) for inspecting the sample (11) by a measuring method using no X-rays. The X-ray measurement data obtained by the first inspection device or an analysis result of the X-ray measurement data is output to the second inspection device (2). In the second inspection device (2), the structure of the sample (11) is analyzed by using the X-ray measurement data input from the first inspection device (1) or the analysis result of the X-ray measurement data.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: April 20, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Yoshiyasu Ito
  • Patent number: 10976273
    Abstract: An x-ray spectrometer system includes an x-ray source, an x-ray optical system, a mount, and an x-ray spectrometer. The x-ray optical system is configured to receive, focus, and spectrally filter x-rays from the x-ray source to form an x-ray beam having a spectrum that is attenuated in an energy range above a predetermined energy and having a focus at a predetermined focal plane.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 13, 2021
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Srivatsan Seshadri, Janos Kirz, Sylvia Jia Yun Lewis
  • Patent number: 10948438
    Abstract: An X-ray fluorescence spectrometric system includes: a job execution unit configured to execute a job; a storage unit configured to store in advance a time required for each of operations in association with the each of the operations; a calculation unit configured to calculate, when the job is generated, a time to be taken until execution of the job is completed, for each job based on the time stored in the storage unit; and a control unit configured to newly store, when the job is executed, a time taken for the operation in the storage unit in association with the operation. The calculation unit is configured to further calculate, when the job is executed, the time to be taken until the execution of the job is completed, based on the time newly stored in the storage unit.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: March 16, 2021
    Assignee: RIGAKU CORPORATION
    Inventors: Hiroaki Kita, Seiitsu Kurita
  • Patent number: 10932669
    Abstract: [Technical Problem] To provide an inspection device for inspecting a tissue using reflected light from a tissue, and a control method, a system, a light guide, and a scale of the inspection device. [Solution to Problem] An inspection device 100 of the present invention comprises an imaging device 106 and an inspection module 115 for allowing the imaging device 106 to take a tissue image. The inspection module 115 includes an objective lens 104 for focusing reflected light from a tissue to the imaging device 106; a plurality of LEDs 103a for surrounding the optic axis of the objective lens 104 and exposing light to the tissue; a circular polarization filter 102 comprising polarization state-regulating parts 102a for exposing the light from the LEDs 103a to the tissue directly or as circularly polarized light; and an alignment mechanism 110a for aligning the polarization state-regulating part 102a with the position of the LED 103a.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: March 2, 2021
    Assignee: Derma Medical Inc.
    Inventor: Takashi Shinozaki
  • Patent number: 10908062
    Abstract: An airborne particle collection system includes a monitoring device and a collection media. The monitoring device includes a housing having an air-intake slot, and a motor. The collection media includes an adhesive-coated tape contained within a removable cartridge inserted into the housing. The removable cartridge includes a particle intake zone, proximate to the air-intake slot, and through which the adhesive-coated tape is exposed to capture airborne particles passing through the air-intake slot, and an inspection zone at which the airborne particles captured at the intake zone are transported for optical imaging. The motor moves the airborne particles captured by the adhesive-coated tape from the particle intake zone to the inspection zone.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: February 2, 2021
    Assignee: Scanit Technologies, Inc.
    Inventors: Pedro Manautou, Joel Kent, An-Chun Tien
  • Patent number: 10883945
    Abstract: A simultaneous multi-elements analysis type X-ray fluorescence spectrometer according to the present invention includes: a sample table (2) on which a sample (1) is placed and a conveyance arm (22) for the sample (1). The sample table (2) has a cutout (2e) formed therein, through which the conveyance arm (22) is allowed to pass in a vertical direction. Regarding respective measurement points (Pn) on a blank wafer (1b), a background correction unit (21) previously stores, as background intensities at the measurement points (Pn), intensities obtained by subtracting a measured intensity at a reference measurement point (P0) located above the cutout (2e) from each of measured intensities at the measurement points (Pn), and regarding respective measurement points (Pn) on an analytical sample (1a), the background correction unit (21) subtracts the background intensities at the measurement points (Pn) from measured intensities at the measurement points (Pn), thereby correcting background.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: January 5, 2021
    Assignee: Rigaku Corporation
    Inventors: Seiji Fujimura, Yu Aoki
  • Patent number: 10788799
    Abstract: An analyzing apparatus is disclosed that is capable of preventing an intentional or negligent interventional action on an analysis. An analyzing apparatus 1 is connected to a controlling computer 2 and performs a predetermined analysis according to a control instruction given through the controlling computer 2. The analyzing apparatus 1 includes an operation unit 11 for enabling a user to perform an input operation for controlling the analyzing apparatus 1. When the analyzing apparatus 1 is under control of the controlling computer 2, the input operation performed through the operation unit 11 is disabled.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: September 29, 2020
    Assignee: SHIMADZU CORPORATION
    Inventor: Yusuke Yokoi
  • Patent number: 10775324
    Abstract: Provided is a sample holder for an X-ray fluorescence spectrometer, which enables measurement of a liquid sample that is in a small amount and cannot be dropped and dried, when the measurement is performed with a tube-above optics X-ray fluorescence spectrometer. The sample holder for an X-ray fluorescence spectrometer includes: a first substrate including: a support substrate having a hole in which a liquid sample is placed; a first polymer film, which is bonded to a surface of the support substrate on an X-ray incident side so as to cover the hole; and an adhesive layer, which is provided on a back surface of the surface of the support substrate to which the first polymer film is bonded; and a second substrate including: a fixed substrate having a hole at a position corresponding to the hole of the support substrate; and a second polymer film, which is bonded to a surface of the fixed substrate on the X-ray incident side, the second substrate being bonded to the first substrate with the adhesive layer.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: September 15, 2020
    Assignee: RIGAKU CORPORATION
    Inventors: Wataru Matsuda, Minoru Inoue
  • Patent number: 10746884
    Abstract: An apparatus for capturing a radiation image includes a radiation source configured to emit radiation, a wavelength converter configured to receive the radiation emitted from the radiation source through an entrance plane after the emitted radiation has been transmitted by an object, to convert the received radiation to scintillation light, and to output the scintillation light from the entrance plane, a first optical system configured to focus on the entrance plane and to image the output scintillation light thereby generating a first radiation image of the object, and a first image sensor configured to capture the first radiation image to generate first image data.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: August 18, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mototsugu Sugiyama, Toshiyasu Suyama
  • Patent number: 10705035
    Abstract: A method of making X-ray fluorescence, XRF, measurements of a layered sample is described. At least two measurements are made, one through one surface of the sample and another through the opposite surface. This may be conveniently done by inverting the sample between the measurements. The data from the additional measurements may be used to calculate multiple parameters of the sample, such as the concentration, density or thickness of each of the layers.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: July 7, 2020
    Assignee: MALVERN PANALYTICAL B.V.
    Inventors: Armand Jonkers, Justyna Wiedemair
  • Patent number: 10705033
    Abstract: A sample handling apparatus/technique/method for a material analyze including a sample carrier for presenting a pressurized sample (e.g., LPG) to a sample focal area of the analyzer; a removable fixture for charging the pressurized sample into the sample carrier; the removable fixture including at least one port to provide sample to and from the fixture and carrier. The sample handling apparatus may include a retainer, wherein the sample carrier is removeably combined with the fixture using the retainer, the apparatus being insertable into the analyzer for sample analysis; and wherein the retainer includes an aperture for presenting the sample to the focal area from a filmed, lower end of the carrier in proximity therewith.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 7, 2020
    Assignee: X-RAY OPTICAL SYSTEMS, INC.
    Inventors: Joseph J Spinazola, III, Jay Burdett, Zewu Chen, Daniel Dunham
  • Patent number: 10656105
    Abstract: An x-ray source and an x-ray interferometry system utilizing the x-ray source are provided. The x-ray source includes a target that includes a substrate and a plurality of structures. The substrate includes a thermally conductive first material and a first surface. The plurality of structures is on or embedded in at least a portion of the first surface. The structures are separate from one another and are in thermal communication with the substrate. The structures include at least one second material different from the first material, the at least one second material configured to generate x-rays upon irradiation by electrons having energies in an energy range of 0.5 keV to 160 keV. The x-ray source further includes an electron source configured to generate the electrons and to direct the electrons to impinge the target and to irradiate at least some of the structures along a direction that is at a non-zero angle relative to a surface normal of the portion of the first surface.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 19, 2020
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz, David Vine
  • Patent number: 10634628
    Abstract: An apparatus for X-ray measurement, includes an X-ray source, an X-ray detector, an optical inclinometer, and a processor. The X-ray source is configured to generate and direct an X-ray beam to be incident at a grazing angle on a surface of a sample. The X-ray detector is configured to measure X-ray fluorescence emitted from the surface of the sample in response to being excited by the X-ray beam. The optical inclinometer is configured to measure an inclination of the surface of the sample. The processor is configured to calibrate the grazing angle of the X-ray beam based on the measured inclination, and to further fine-tune the grazing angle based on the X-ray fluorescence measured by the X-ray detector.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 28, 2020
    Assignee: BRUKER TECHNOLOGIES LTD.
    Inventors: Nikolai Kasper, Juliette P. M. van der Meer, Elad Yaacov Schwarcz, Matthew Wormington
  • Patent number: 10580123
    Abstract: A device includes illuminator configured to emit first and second illumination signal having first and second illumination intensities, respectively, in the direction of a surface region of an object to be measured, the second illumination intensity being smaller than the first illumination intensity. The device includes sensor configured to provide a first and second measurement signals based on first and second reflections of the first and second illumination signals on the surface region, respectively. The device includes evaluator configured to combine the first and second measurement signals with each other so as to obtain a combination result from which a position of the first illumination signal on the surface region may be derived, wherein an influence of a reflectance of the surface region within the combination result is reduced as compared to the influence on the first and second measurement signals.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 3, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER
    Inventors: Jens Döge, Christoph Hoppe, Holger Priwitzer
  • Patent number: 10514344
    Abstract: Methods are provided for producing disposable diagnostic test elements and monitoring a property thereof, where such methods include detecting X-ray fluorescent (XRF) signals of one or more metallic components in a composite of first and second layers applied to a substrate using XRF spectrometry, determining a quantity value for each metallic component in a measured area from the XRF signals, and then calculating an areal coating quantity of the first and the second layers using the quantity values of the metallic components. Additionally or alternatively, the methods can include determining a batch specific code from the XRF signals that can be used when performing a test with a test element. Further provided are systems for monitoring a property of disposable test elements.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: December 24, 2019
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Peter Stephan, Herbert Fink, Stefan Niedermaier
  • Patent number: 10514345
    Abstract: An X-ray thin film inspection device according to the present invention has an X-ray irradiation unit 40 mounted in a first rotation arm 32, an X-ray detector 50 mounted in a second rotation arm 33, a fluorescence X-ray detector 60 for detecting fluorescent X-ray occurring from an inspection target due to irradiation of X-ray, a temperature measuring unit 110 for measuring the temperature corresponding to the temperature of the X-ray thin film inspection device, and a temperature correcting system (central processing unit 100) for correcting an inspection position on the basis of the temperature measured by the temperature measuring unit 110.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: December 24, 2019
    Assignee: RIGAKU CORPORATION
    Inventors: Kiyoshi Ogata, Kazuhiko Omote, Yoshiyasu Ito, Hiroshi Motono, Muneo Yoshida, Hideaki Takahashi
  • Patent number: 10509000
    Abstract: A handheld XRF device having a shutter including a calibration material. An automatic calibration sequence may be performed with the shutter in the closed position.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 17, 2019
    Assignee: Tribo Labs
    Inventors: Tianqing He, Carlos Camara, Mark G. Valentine, Dan Cuadra, Eric W. Wong, German Om, Andy Kotowski, Justen Harper
  • Patent number: 10466185
    Abstract: An x-ray interrogation system having one or more x-ray beams interrogates an object (i.e., object). A structured source producing an array of x-ray micro-sources can be imaged onto the object. Each of the one or more beams may have a high resolution, such as for example a diameter of about 15 microns or less, at the surface of the object. The illuminating one or more micro-beams can be high resolution in one dimension and/or two dimensions, and can be directed at the object to illuminate the object. The incident beam that illuminates the object has an energy that is greater than the x-ray fluorescence energy.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: November 5, 2019
    Assignee: SIGRAY, INC.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Patent number: 10458928
    Abstract: Embodiments of the present disclosure provide a collimating device and a ray inspection device. The collimating device comprises: a beam guiding cylinder, a first collimator mounted at an inlet end of the beam guiding cylinder; a second collimator mounted an outlet end of the beam guiding cylinder; a beam guiding cylinder adjusting device disposed adjacent to the inlet of the beam guiding cylinder to adjust a direction of the beam guiding cylinder such that the first collimator is aligned with the first direction. The outlet end of the beam guiding cylinder is fixed to the frame and the second collimator is aligned with an object to be irradiated by a radiation beam, and the beam guiding cylinder is configured to have flexibility to allow the adjusting device to adjust a direction towards which the inlet end of the beam guiding cylinder is directed, in a direction transverse to the first direction.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: October 29, 2019
    Assignees: Nuctech Company Limited, Nuctech Jiangsu Company Limited
    Inventors: Zhiqiang Chen, Wanlong Wu, Ziran Zhao, Guangwei Ding, Ming Ruan, Xilei Luo
  • Patent number: 10446288
    Abstract: The present invention provides a ray beam guiding device for guiding a ray beam in a ray inspection apparatus. The ray beam guiding device is provided in a housing of the ray inspection apparatus, and two ends of the ray beam guiding device are connected to a front collimator and a rear collimator, respectively. The ray beam guiding device comprises a plurality of guiding walls and a guiding cavity surrounded by the guiding walls. The guiding wall is formed of a first material which is capable of absorbing rays or the first material is coated on an inside of the guiding wall, and the guiding cavity has a central axis extending in a direction from the rear collimator to the front collimator, and the ray beam guiding device further comprises at least one fin plate provided in the guiding cavity of the ray beam guiding device. The at least one fin plate is configured for blocking and/or absorbing scattered rays.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: October 15, 2019
    Assignees: Nuctech Company Limited, Nuctech Jiangsu Company Limited
    Inventors: Zhiqiang Chen, Yuanjing Li, Ziran Zhao, Wanlong Wu, Junli Li, Ming Ruan, Guangwei Ding
  • Patent number: 10408772
    Abstract: An analysis system 10 can include an analysis tool 20, such as an XRF analyzer, a LIBS spectrometer, an XRD analyzer, or Raman spectroscopy equipment which can communicate wirelessly with other devices. The system 10 can also include remote-processor software configured to be loaded onto a handheld electronic device 23 and/or remote-computer software configured to be loaded onto a remote-computer 28. The analysis tool 20 can include a microphone 18 and/or an output device 31 to allow a user 19 to communicate conveniently with the analysis tool 20.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: September 10, 2019
    Assignee: Moxtek, Inc.
    Inventors: Vincent Floyd Jones, Daniel N. Paas, Brad Harris, Bill Hansen
  • Patent number: 10342633
    Abstract: A medical image data processing system comprising processing circuitry configured to receive three-dimensional medical imaging data; and process the three-dimensional medical imaging data to generate using a virtual light source an image for display, wherein the processing circuitry is configured to vary at least one parameter relevant to the virtual light source in dependence on at least one of a position of a medical device inserted into a human or animal body, a position of a viewing point for virtual endoscopic imaging, and the progress of a procedure.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: July 9, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Magnus Wahrenberg, Tristan Lawton, Timothy Day
  • Patent number: 10295485
    Abstract: An x-ray transmission spectrometer system to be used with a compact x-ray source to measure x-ray absorption with both high spatial and high spectral resolution. The spectrometer system comprises a compact high brightness x-ray source, an optical system with a low pass spectral filter property to focus the x-rays through an object to be examined, and a spectrometer comprising a crystal analyzer (and, in some embodiments, a mosaic crystal) to disperse the transmitted beam, and in some instances an array detector. The high brightness/high flux x-ray source may have a take-off angle between 0 and 15 degrees, and be coupled to an optical system that collects and focuses the high flux x-rays to micron-scale spots, leading to high flux density. The x-ray optical system may also act as a “low-pass” filter, allowing a predetermined bandwidth of x-rays to be observed at one time while excluding the higher harmonics.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: May 21, 2019
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Srivatsan Seshadri, Janos Kirz, Sylvia Jia Yun Lewis
  • Patent number: 10184905
    Abstract: Three or more tubular radiation detectors are arranged around an irradiation axis of radiation directed to a sample from an irradiation unit such that the end face thereof is opposed to the position irradiated with radiation. The radiation emitted from the sample enters the radiation detector through an end face and is detected. In the radiation detector, the length in the direction parallel to the straight line which is on the plane orthogonal to the irradiation axis and is perpendicular to the central axis continuously decreases from a position along the central axis to the end face. The size of each radiation detector around the irradiation axis is reduced as it approaches the end face, preventing the radiation detectors from interfering with one another and allowing the radiation detector to be closer to the sample compared to the conventional case. This makes it possible for the radiation detection apparatus to detect radiation from the sample with high efficiency.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: January 22, 2019
    Assignee: HORIBA, LTD.
    Inventors: Kengo Yasui, Daisuke Matsunaga
  • Patent number: 10175184
    Abstract: The invention includes an XRF analyzer with reduced x-ray attenuation between sample and target and between sample and detector. Attenuation can be reduced by removing atmospheric-air paths through which the x-rays must travel. Reduced x-ray attenuation can allow for easier detection of low-atomic-number elements. Cost saving can be achieved by reducing the number of x-ray windows.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: January 8, 2019
    Assignee: Moxtek, Inc.
    Inventors: Richard Creighton, Steven Morris, Shawn Chin, Sanjay Kamtekar
  • Patent number: 10101469
    Abstract: A radiation image acquisition device includes: a radiation source which emits radiation; a wavelength conversion member which generates scintillation light according to incidence of the radiation emitted from the radiation source and transmitted by an object; first imaging means which condenses and images the scintillation light emitted from an entrance surface for the radiation in the wavelength conversion member; and second imaging means which condenses and images the scintillation light emitted from a surface opposite to the entrance surface in the wavelength conversion member, wherein one of the first imaging means and the second imaging means condenses the scintillation light emitted from the entrance surface or the opposite surface in a direction of a normal thereto, and wherein the other condenses the scintillation light emitted from the entrance surface or the opposite surface in a direction inclined with respect to a direction of a normal thereto.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 16, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mototsugu Sugiyama, Toshiyasu Suyama
  • Patent number: 10082390
    Abstract: Methods and systems for feed-forward of multi-layer and multi-process information using XPS and XRF technolgies are disclosed. In an example, a method of thin film characterization includes measuring first XPS and XRF intensity signals for a sample having a first layer above a substrate. A thickness of the first layer is determined based on the first XPS and XRF intensity signals. The information for the first layer and for the substrate is combined to estimate an effective substrate. Second XPS and XRF intensity signals are measured for a sample having a second layer above the first layer above the substrate. The method also involves determining a thickness of the second layer based on the second XPS and XRF intensity signals, the thickness accounting for the effective substrate.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: September 25, 2018
    Assignee: NOVA MEASURING INSTRUMENTS INC.
    Inventors: Heath A. Pois, Wei Ti Lee, Lawrence V. Bot, Michael C. Kwan, Mark Klare, Charles Thomas Larson
  • Patent number: 10022105
    Abstract: A radiographic imaging apparatus includes an electronic cassette and a console device for radio communication with the electronic cassette. The electronic cassette includes a transmitter for transmitting a beacon for the radio communication. A regulation unit regulates beaconing of the beacon in a predetermined specific state among plural operational states. The console device includes a receiver for receiving the beacon. A communication failure detector checks whether a communication failure has occurred in the radio communication according to a receiving state of the beacon in the receiver. A display panel or speaker generates alert notification to notify the communication failure assuming that the communication failure detector judges that the communication failure has occurred. An operational state detector checks whether the electronic cassette is in the specific state.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: July 17, 2018
    Assignee: FUJIFILM Corporation
    Inventor: Yoshimitsu Kudo
  • Patent number: 10012604
    Abstract: An apparatus includes at least one X-ray source that emits X-rays toward a sample, an X-ray fluorescence (XRF) detector that detects X-ray radiation scattered from the sample, an internal standard that emits scattered X-ray radiation in response to X-rays emitted from the at least one X-ray source, and a carriage assembly that translates the at least one X-ray source and XRF detector between a sample measurement position and an internal standard measurement position.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: July 3, 2018
    Assignee: THERMO GAMMA-METRICS PTY LTD
    Inventors: Bryan John Crosby, Simon Liemar, Peter William Hayles, Charlie Minghua Mao, Tejas Indravadanbhai Shah, Hao Zeng
  • Patent number: 10012605
    Abstract: A measurement line evaluation unit (23): calculates, for all of specified measurement lines, estimated measured intensities by theoretical calculation on the basis of a composition and/or a thickness specified for a thin film; changes, by a predetermined amount, only an estimated measured intensity of one measurement line, and obtains quantitative values of the composition and/or the thickness of the thin film after change of the estimated measured intensity, for each changed measurement line, by a fundamental parameter method; and estimates a quantitative error and/or determines possibility of analysis, on the basis of the obtained quantitative values and the specified composition and/or the specified thickness.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 3, 2018
    Assignee: Rigaku Corporation
    Inventors: Yasujiro Yamada, Shinya Hara, Makoto Doi
  • Patent number: 9961753
    Abstract: A portable XRF analyzer includes a hand shield and a handle. In one embodiment, the XRF analyzer further comprises a power component spaced-apart from an engine component. The handle and the hand shield extend in parallel between the engine component and the power component, attaching the engine component to the power component. In another embodiment, the XRF analyzer further comprises two housing portions, each integrally formed in a single, monolithic body formed together at the same time. The two housing portions are joined together to form an XRF analyzer housing. In another embodiment, the hand shield is shorter than the handle.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: May 1, 2018
    Assignee: Moxtek, Inc.
    Inventors: Vincent Floyd Jones, Daniel N. Paas
  • Patent number: 9874531
    Abstract: Periodic spatial patterns of x-ray illumination are used to gather information about periodic objects. The structured illumination may be created using the interaction of a coherent or partially coherent x-ray source with a beam splitting grating to create a Talbot interference pattern with periodic structure. The object having periodic structures to be measured is then placed into the structured illumination, and the ensemble of signals from the multiple illumination spots is analyzed to determine various properties of the object and its structures. Applications to x-ray absorption/transmission, small angle x-ray scattering, x-ray fluorescence, x-ray reflectance, and x-ray diffraction are all possible using the method of the invention.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: January 23, 2018
    Assignee: Sigray, Inc.
    Inventors: Wenbing Yun, Sylvia Jia Yun Lewis, Janos Kirz
  • Patent number: 9767559
    Abstract: A system and method for reconstructing locations of sensors in radiopaque images may estimate sensor locations in two groups of good radiographic images and use them to estimate candidate sensor locations in a group of bad radiographic images B1, . . . , Bn in which many sensors are indiscernible. A first iterative process pervading from the first image B1 to the last image Bn may determine a first set of candidate sensor locations, and a second iterative process pervading from the last image Bn to the first image B1 may determine a second set of candidate sensor location for each image. Location of a sensor in each image Bi may be estimated based on the pertinent first and second candidate sensor locations related, or determined for, the particular sensor in the particular image. Sensor locations still missing in the series of images are, then, estimated using the already estimated sensor locations.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: September 19, 2017
    Assignee: GIVEN IMAGING LTD.
    Inventor: Stas Rozenfeld
  • Patent number: 9719949
    Abstract: A sample plate is for X-ray analysis to which a sample is fixed in performing an analysis using an X-ray fluorescent analyzer, and includes: a plate-like body that supports the sample; and a code-indicated portion provided on the plate-like body in which information on the sample is encoded and indicated.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: August 1, 2017
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Masahiro Sakuta
  • Patent number: 9689815
    Abstract: An XRF analyzer can include a rotatable filter structure to separately position at least two different x-ray source modification regions between an x-ray source and a focal point and at least two different x-ray detector modification regions between an x-ray detector and the focal point. An XRF analyzer can include a rotatable source filter wheel between an x-ray source and a focal point and a rotatable detector filter wheel between an x-ray detector and the focal point. The source filter wheel can include multiple x-ray source modification regions. The detector filter wheel can include multiple x-ray detector modification regions. A gear wheel can mesh with a gear on the source filter wheel and with a gear on the detector filter wheel and can cause the source filter wheel and the detector filter wheel to rotate together.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: June 27, 2017
    Assignee: Moxtek, Inc.
    Inventor: Vincent Floyd Jones
  • Patent number: 9667190
    Abstract: Disclosed herein is a device for controlling a sample temperature during photoelectric measurement of the sample. The device for controlling a sample temperature during photoelectric measurement of the sample includes: a sample stage to which a measurement target sample is fixed; a cooling unit for cooling the sample by injecting air; and a temperature measuring unit having a thermometer that measures a temperature of the sample. The device has an effect of easily controlling the temperature of a measurement target sample by employing a direct control method for a sample temperature, in which air or cooled air is injected to the sample.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: May 30, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: SeoungKyu Ahn, Kyung Hoon Yoon, Jae Ho Yun, Jun Sik Cho, SeJin Ahn, Jihye Gwak, Kee Shik Shin, Kihwan Kim, Joo Hyung Park, Young Joo Eo, Jin Su Yoo, Ara Cho
  • Patent number: 9649078
    Abstract: A hybrid x-ray device for mounted and portable use. The hybrid x-ray device can include a housing, an x-ray source, a support connector, a shield connector, and an interlock. The x-ray source is coupled to the housing and configured to generate x-ray radiation. The support connector is coupled to the housing and configured to mechanically couple to a support arm. The shield connector is coupled to the housing and configured to mechanically couple to a removable radiation shield. The interlock is coupled to the x-ray source and configured to disable activation of the x-ray source when both: (a) the support connector is mechanically uncoupled from the support arm, and (b) the shield connector is mechanically uncoupled from the removable radiation shield.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: May 16, 2017
    Assignee: DENTAL IMAGING TECHNOLOGIES CORPORATION
    Inventors: Sameer Anand Joshi, Bradley S. Carlson
  • Patent number: 9594037
    Abstract: In an analyzing apparatus for analyzing compositions using a fluorescent X-ray in the atmosphere, a calibration to eliminate influences caused by a time-dependent change is performed. The analyzing apparatus includes an emission unit, a detection unit, an environment measurement unit, and a time-dependent change calculation unit. The emission unit emits a primary X-ray. The detection unit detects an intensity of a secondary X-ray passing through the atmosphere. The environment measurement unit measures an environment parameter defining the atmosphere. The time-dependent change calculation unit calculates a time-dependent change of the intensity of the secondary X-ray between a first timing and a second timing, based on a first environment parameter, a first intensity of the secondary X-ray, a second environment parameter, and a second intensity of the secondary X-ray.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: March 14, 2017
    Assignee: Horiba, Ltd.
    Inventors: Yusuke Mizuno, Tomoki Aoyama
  • Patent number: 9551677
    Abstract: A method includes directing an X-ray beam to be incident at a grazing angle on a location on a surface of the sample. An X-ray fluorescence excited at the location is measured. A reflection angle of the X-ray beam from the surface and a transmission angle of the X-ray beam are measured. An angle of incidence of the X-ray beam on the surface is evaluated using the measured reflection and transmission angles, and the measured X-ray fluorescence is analyzed using the evaluated angle of incidence.
    Type: Grant
    Filed: November 27, 2014
    Date of Patent: January 24, 2017
    Assignee: BRUKER JV ISRAEL LTD.
    Inventors: Isaac Mazor, Asher Peled
  • Patent number: 9513233
    Abstract: Systems and methods are provided for staining tissue with multiple biologically specific heavy metal stains and then performing X-ray imaging, either in projection or tomography modes, using either a plurality of illumination energies or an energy sensitive detection scheme. The resulting energy-weighted measurements can then be used to decompose the resulting images into quantitative images of the distribution of stains. The decomposed images may be false-colored and recombined to make virtual X-ray histology images. The techniques thereby allow for effective differentiation between two or more X-ray dyes, which had previously been unattainable in 3D imaging, particularly 3D imaging of features at the micron resolution scale. While techniques are described in certain example implementations, such as with microtomography, the techniques are scalable to larger fields of view, allowing for use in 3D color, X-ray virtual histology of pathology specimens.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 6, 2016
    Assignees: THE UNIVERSITY OF CHICAGO, THE PENN STATE RESEARCH FOUNDATION, UCHICAGO ARGONNE, LLC
    Inventors: Patrick La Riviere, Yuxin Steve Wang, Darin Clark, Keith Cheng
  • Patent number: 9450536
    Abstract: An inspection apparatus includes an irradiation part that emits plural pieces of pulse light having different wavelengths to irradiate a multi-junction type solar cell; a wavelength setting part that sets the wavelengths of the plural pieces of pulse light with which the multi-junction type solar cell is irradiated by the irradiation part; and a detection part that detects an electric field intensity of an electromagnetic wave emitted from the multi-junction type solar cell in response to the plural pieces of pulse light with which the multi-junction type solar cell is irradiated by the irradiation part. The irradiation part includes a delay element that delays a time the multi-junction type solar cell is irradiated with the pulse light by a time ?t11 relative to the pulse light.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: September 20, 2016
    Assignees: SCREEN HOLDINGS CO., LTD., OSAKA UNIVERSITY
    Inventors: Hidetoshi Nakanishi, Akira Ito, Iwao Kawayama, Masayoshi Tonouchi
  • Patent number: 9430925
    Abstract: Embodiments disclosed herein provide a detector unit and sensor chamber with matter retention member and method for making the same. In one embodiment, a smoke chamber can include a detection circuitry member having a surface, a particle trapping member mounted to the surface, and a chamber coupled to the detection circuitry member. The chamber can include a planar member, and several baffles extending away from the planar member in the direction towards the detection circuitry member and disposed around a periphery of the planar member, wherein a distal end of each baffle interfaces with the particle trapping member.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: August 30, 2016
    Assignee: GOOGLE INC.
    Inventor: Adam Mittleman
  • Patent number: 9398888
    Abstract: In a radiation imaging system performing a difference process using a stored mask image based on a radiation image obtained before a contrast agent is injected and a radiation image obtained after the contrast agent is injected, a controller displays a first graphic representing a first timing when irradiation of a radial ray is started, a second graphic representing a second timing when the mask image is stored, and a third graphic representing a third timing when the contrast agent is injected in this order along a time axis and controls the second and third timings by the second and third graphics. The controller moves, when one of the second and third graphics is moved along the time axis, the other of the second and third graphics such that an interval between the first and third graphics becomes larger than an interval between the first and second graphics.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 26, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hironori Yamashita
  • Patent number: 9297773
    Abstract: X-ray fluorescence (XRF) monitoring of characteristic peaks while etching thin-film layers can reveal coverage defects and thickness nonuniformity in the top film. To measure coverage and uniformity while screening candidate layer materials and processes, the candidate layers may be formed above an underlayer of a different composition. A wet etchant that selectively etches the underlayer faster than the candidate layer is applied to the candidate layer, and the XRF spectrum is monitored. Pinholes, cracks, islands, and nonuniform thickness in the candidate layer produce characteristic features in the time-dependent behavior of XRF peaks from the underlayer and/or the candidate layer. “Etch/XRF” tests can be used to rapidly and objectively identify the most uniform contiguous candidate layers to advance to further screening or production. XRF may also be calibrated against a known thickness indicator to detect the approach of a desired endpoint in an etch process.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: March 29, 2016
    Assignee: Intermolecular, Inc.
    Inventor: Edwin Adhiprakasha
  • Patent number: 9279890
    Abstract: A radiation image acquisition device includes: a radiation source which emits radiation; a wavelength conversion member of a flat plate shape which generates scintillation light according to incidence of the radiation emitted from the radiation source and transmitted by an object; first imaging means which condenses and images the scintillation light emitted from an entrance surface for the radiation in the wavelength conversion member in a direction of a normal to the entrance surface; and second imaging means which condenses and images the scintillation light emitted from a surface opposite to the entrance surface in the wavelength conversion member in a direction of a normal to the opposite surface.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 8, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mototsugu Sugiyama, Toshiyasu Suyama
  • Patent number: 9268039
    Abstract: A radiation image acquisition device includes: a radiation source which emits radiation; a wavelength conversion member of a flat plate shape which generates scintillation light according to incidence of the radiation emitted from the radiation source and transmitted by an object; first imaging means which condenses and images the scintillation light emitted from an entrance surface for the radiation in the wavelength conversion member in a direction inclined with respect to a direction of a normal to the entrance surface; and second imaging means which condenses and images the scintillation light emitted from a surface opposite to the entrance surface in the wavelength conversion member in a direction inclined with respect to a direction of a normal to the opposite surface.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: February 23, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mototsugu Sugiyama, Toshiyasu Suyama
  • Patent number: 9255996
    Abstract: A radiation image acquisition device includes: a radiation source which emits radiation; a wavelength conversion member which generates scintillation light according to incidence of the radiation emitted from the radiation source and transmitted by an object; first imaging means which condenses and images the scintillation light emitted from an entrance surface for the radiation in the wavelength conversion member; and second imaging means which condenses and images the scintillation light emitted from a surface opposite to the entrance surface in the wavelength conversion member, wherein one of the first imaging means and the second imaging means condenses the scintillation light emitted from the entrance surface or the opposite surface in a direction of a normal thereto, and wherein the other condenses the scintillation light emitted from the entrance surface or the opposite surface in a direction inclined with respect to a direction of a normal thereto.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: February 9, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mototsugu Sugiyama, Toshiyasu Suyama
  • Patent number: 9213007
    Abstract: A foreign matter detector includes an X-ray source which irradiates a sample moving in a constant direction with primary X-rays, a parallel two-dimensional slit which includes a plurality of slits arranged in at least a moving direction of the sample and emits parallel secondary X-rays by extracting a parallel component of secondary X-rays generated from the sample, a dispersing element which disperses the parallel secondary X-rays to obtain a specific X-ray fluorescence, a TDI sensor which receives the X-ray fluorescence, and a control unit which controls the TDI sensor to detect a foreign matter corresponding to the X-ray fluorescence. The control unit integrates a luminance value of the X-ray fluorescence received by the TDI sensor while matching a direction and a speed of charge transfer of the TDI sensor to a direction and a speed of movement of the sample.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 15, 2015
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Yoshiki Matoba