Nickel Base Patents (Class 420/441)
  • Publication number: 20130272916
    Abstract: The present invention relates to a means to protect gas turbine components against corrosion from a gaseous stream, produced from an oxidation reaction the reaction being conducted in a continuous oxidation reactor
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Applicant: INVISTA North America S.a r.l.
    Inventor: James Anthony RICHARDSON
  • Publication number: 20130266817
    Abstract: Processes for producing a nickel-titanium alloy are disclosed. The processes are characterized by the production of nickel-titanium alloy articles having improved microstructure. A pre-alloyed nickel-titanium alloy is melted and atomized to form molten nickel-titanium alloy particles. The molten nickel-titanium alloy particles are cooled to form nickel-titanium alloy powder. The nickel-titanium alloy powder is consolidated to form a fully-densified nickel-titanium alloy preform that is hot worked to form a nickel-titanium alloy article. Any second phases present in the nickel-titanium alloy article have a mean size of less than 10 micrometers measured according to ASTM E1245-03 (2008) or an equivalent method.
    Type: Application
    Filed: June 3, 2013
    Publication date: October 10, 2013
    Applicant: ATI PROPERTIES, INC.
    Inventor: C. Craig Wojcik
  • Patent number: 8551396
    Abstract: Provided herein are materials that can achieve up to 14% hydrogen absorption by weight in ambient conditions, which is a marked improvement over the hydrogen absorption values found in the prior art. Further provided are experimental conditions necessary to produce these materials. In order to produce the hydrogen storage material, a transition metal (or Lithium) is vaporized in a pi bond gas in conditions that permit only a few bonding collisions to occur between the vaporized transition metal atoms and pi bond gas molecules before the resulting bonded material is collected.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 8, 2013
    Assignee: University of Virginia Patent Foundation
    Inventors: Bellave S. Shivaram, Adam B. Phillips
  • Patent number: 8551193
    Abstract: A target includes nickel and a secondary metal. The secondary metal has a volume percentage between about 1 percent and about 10 percent. The secondary metal has a density between about 5,000 kg/m3 and about 15,000 kg/m3.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Chieh Chang, Ying-Lang Wang, Kei-Wei Chen
  • Publication number: 20130243642
    Abstract: A metallic coating or alloy is provided, which is nickel based, and includes at least ? and ?? phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 19, 2013
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, JR., Werner Stamm
  • Publication number: 20130224561
    Abstract: A braze alloy composition for sealing a ceramic component to a metal component in an electrochemical cell is presented. The braze alloy composition includes nickel, germanium, and an active metal element. The braze alloy includes germanium in an amount greater than about 5 weight percent, and the active metal element in an amount less than about 10 weight percent. A method for sealing a ceramic component to a metal component in an electrochemical cell and, an electrochemical cell sealed thereby, are also provided.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raghavendra Rao Adharapurapu, Sundeep Kumar, Mohamed Rahmane
  • Publication number: 20130221287
    Abstract: A metal particle which is a non-nucleated, spherical porous material having continuous open pores, and which is formed from dendritic crystals which have grown uniformly outward from the center without requiring a nucleating agent. A method for producing a metal particle which includes the steps of: mixing a metal salt and a polycarboxylic acid in a liquid phase; adding a reducing agent to the resultant mixture to deposit metal particles; and drying the deposited metal particles. The metal particle produced by the method, which is a non-nucleated, spherical porous material having continuous open pores, is unlikely to suffer bonding or aggregation of the metal particles and exhibits excellent dispersibility, and, when the metal particle is used in a conductive composition, such as a conductive paste, a cured product having satisfactory conduction properties can be obtained at a relatively low temperature, making it possible to easily control the specific gravity or resistance.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 29, 2013
    Inventors: Tomoyuki Takahash, Akito Yoshii
  • Publication number: 20130168614
    Abstract: Disclosed are nickel allyl amidinate precursors having the formula: wherein each of R1, R2, R3, R4, R5, R6, R7, and R8 are independently selected from H; a C1-C4 linear, branched, or cyclic alkyl group, a C1-C4 linear, branched, or cyclic alkylsilyl group (mono, bis, or tris alkyl); a C1-C4 linear, branched, or cyclic alkylamino group; or a C1-C4 linear, branched, or cyclic fluoroalkyl group. Also disclosed are methods of synthesizing and using the disclosed precursors to deposit nickel-containing films on one or more substrates via a vapor deposition process.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: L'Air Liquide Société Anonyme pour ''Etude et l'Exploitation des Procédés Georges Claude
    Inventor: Clément LANSALOT-MATRAS
  • Patent number: 8475711
    Abstract: Processes for producing a nickel-titanium alloy are disclosed. The processes are characterized by the production of nickel-titanium alloy articles having improved microstructure. A pre-alloyed nickel-titanium alloy is melted and atomized to form molten nickel-titanium alloy particles. The molten nickel-titanium alloy particles are cooled to form nickel-titanium alloy powder. The nickel-titanium alloy powder is consolidated to form a fully-densified nickel-titanium alloy preform that is hot worked to form a nickel-titanium alloy article. Any second phases present in the nickel-titanium alloy article have a mean size of less than 10 micrometers measured according to ASTM E1245-03 (2008) or an equivalent method.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 2, 2013
    Assignee: ATI Properties, Inc.
    Inventor: C. Craig Wojcik
  • Publication number: 20130156627
    Abstract: Disclosing herein is a method for manufacturing nickel-titanium compositions. The method includes disposing a powdered composition in a mold; the powdered composition comprising nickel and titanium; the titanium being present in an amount of about 38 to about 42 wt % and the nickel being present in an amount of about 58 to about 62 wt %; sintering the powdered composition to produce a sintered preform; compacting the preform; machining the preform to form an article; heat treating the article; the annealing being conducted at a temperature of about 1650° F. to about 1900° F. at a pressure of about 3 Torr to about 5 Kg?f/cm2 for a time period of about 10 minutes to about 5 hours; and quenching the article.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 20, 2013
    Applicants: NASA GLENN RESEARCH CENTER, ABBOTT BALL COMPANY
    Inventors: Abbott Ball Company, NASA Glenn Research Center
  • Patent number: 8440031
    Abstract: A nickel-titanium-rare earth (Ni—Ti-RE) alloy comprises nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, boron at a concentration of up to about 0.1 at. %, with the balance of the alloy being titanium. In addition to enhanced radiopacity compared to binary Ni—Ti alloys and improved workability, the Ni—Ti-RE alloy preferably exhibits superelastic behavior. A method of processing a Ni—Ti-RE alloy includes providing a nickel-titanium-rare earth alloy comprising nickel at a concentration of from about 35 at. % to about 65 at. %, a rare earth element at a concentration of from about 1.5 at. % to about 15 at. %, the balance being titanium; heating the alloy in a homogenization temperature range below a critical temperature; and forming spheroids of a rare earth-rich second phase in the alloy while in the homogenization temperature range.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: May 14, 2013
    Assignees: Cook Medical Technologies LLC, University of Limerick
    Inventors: Tofail Ansar Md. Syed, James M. Carlson, Abbasi A. Gandhi, Peter Tiernan, Lisa O'Donoghue, James Butler
  • Patent number: 8430981
    Abstract: Ni-Ti (nickel-titanium) based alloys. and related semi-finished products and methods are described, where the nickel content is comprised between 50.7 and 52.0 atomic % .
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 30, 2013
    Assignee: Saes Smart Materials
    Inventors: Francis E. Sczerzenie, Alberto Coda
  • Publication number: 20130087363
    Abstract: Metal nanowires with high linearity can be produced using metal salts at a relatively low temperature. A transparent conductive film can be formed using the metal nanowires. Particularly, the transparent conductive film has high transmittance, low sheet resistance, and good thermal, chemical and mechanical stability. The transparent conductive film has a high electrical conductivity due to the high linearity of the metal nanowires. The metal nanowires take up 5% or less of the volume of the transparent conductive film, ensuring high transmittance of the transparent conductive film. Furthermore, the metal nanowires are useful as replacements for existing conductive materials, such as ITO, conductive polymers, carbon nanotubes and graphene. The metal nanowires can be applied to flexible substrates and other various substrates due to their good adhesion and high applicability to the substrates. Moreover, the metal nanowires can find application in various fields, such as displays and solar cell devices.
    Type: Application
    Filed: February 23, 2012
    Publication date: April 11, 2013
    Inventors: Young-Jei OH, Byung-yong WANG
  • Patent number: 8388890
    Abstract: A nickel based alloy coating and a method for applying the nickel based alloy as a coating to a substrate. The nickel based alloy comprises about 0.1-15% rhenium, about 5-55% of an element selected from the group consisting of cobalt, iron and combinations thereof, sulfur included as a microalloying addition in amounts from about 100 parts per million (ppm) to about 300 ppm, the balance nickel and incidental impurities. The nickel-based alloy of the present invention is applied to a substrate, usually an electromechanical device such as a MEMS, by well-known plating techniques. However, the plating bath must include sufficient sulfur to result in deposition of 100-300 ppm sulfur as a microalloyed element. The coated substrate is heat treated to develop a two phase microstructure in the coating.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 5, 2013
    Assignee: Tyco Electronics Corporation
    Inventors: Robert D Hilty, Valerie Lawrence, George J Chou
  • Patent number: 8377374
    Abstract: A hydrogen-absorbing alloy, which is used as a negative electrode material of nickel-metal hydride secondary batteries for hybrid electric vehicles, and particularly for batteries to drive electric motors of hybrid electric vehicles, is an AB5-type alloy having a CaCu5-type crystal structure and the general formula RNiaCobAlcMnd (R: mixture of rare earth metals), wherein 4.15?a?4.4, 0.15?b?0.35, 1?c/d?1.7, 5.25?a+b+c+d?5.45.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: February 19, 2013
    Assignee: Chuo Denki Kogyo Co., Ltd.
    Inventors: Yasushi Kojima, Hiroyuki Ikeda, Satoru Furukawa, Kazutaka Sugiyama, Nobuo Kobayashi
  • Publication number: 20130039800
    Abstract: A hard metal material and a method of manufacturing a component of the hard metal material are disclosed. The hard metal material comprises 5-50 volume % particles of a refractory material dispersed in a host metal. The method comprises forming a slurry of 5-50 volume % particles of the refractory material dispersed in a liquid host metal in an inert atmosphere and pouring the slurry into a mould and forming a casting of the component.
    Type: Application
    Filed: February 1, 2011
    Publication date: February 14, 2013
    Applicant: WEIR MINERALS AUSTRALIA LTD
    Inventor: Kevin Dolman
  • Publication number: 20130004362
    Abstract: A process for producing a medical instrument, such as a stent and a guide wire, which has an excellent fatigue life; and a medical instrument, such as a stent and a guide wire, which has an excellent fatigue life. The process for producing a medical instrument includes: a preparation step of preparing a medical instrument including a NiTi-based alloy as a base material; and an ion irradiation step of irradiating the medical instrument prepared in the preparation step with Xe ions. The medical instrument is produced by irradiating a medical instrument including a NiTi-based alloy as a base material with Xe ions.
    Type: Application
    Filed: March 10, 2011
    Publication date: January 3, 2013
    Applicants: NAGATA SEIKI KABUSHIKI KAISHA, TERUMO KABUSHIKI KAISHA
    Inventors: Ryoichi Soba, Hiraku Murayama, Kensuke Uemura
  • Publication number: 20120315179
    Abstract: A manufacturing method includes providing a component, such as a superalloy aircraft component, with a substrate surface having damaged brittle compound particles from machining. The manufacturing method removes the damaged compound particles from the substrate surface without producing significant amount of new damaged compound particles in the substrate surface. In one example, the damaged compound particles are removed with an abrasive media. The method results in a machined substrate surface free from damaged intermetallic component particles.
    Type: Application
    Filed: April 25, 2012
    Publication date: December 13, 2012
    Inventors: Prabir R. Bhowal, Agnieszka M. Wusatowska-Sarnek
  • Publication number: 20120282132
    Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 8, 2012
    Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
  • Publication number: 20120283336
    Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 8, 2012
    Applicant: BASF SE
    Inventors: Nikolay A. Grigorenko, Andreas Muehlebach, Michael Muehlebach, Florian Muehlebach
  • Publication number: 20120244032
    Abstract: In order to produce a coating on a substrate, the substrate is placed adjacent to a target. Material is cold ablated off the target by focusing a number of consecutive laser pulses on the target, thus producing a number of consecutive plasma fronts that move at least partly to the direction of said substrate. The time difference between said consecutive laser pulses is so short that constituents resulting from a number of consecutive plasma fronts form a nucleus on a surface of the substrate where a mean energy of said constituents allows the spontaneous formation of a crystalline structure.
    Type: Application
    Filed: October 4, 2010
    Publication date: September 27, 2012
    Applicant: PICODEON LTD OY
    Inventors: Reijo Lappalainen, Vesa Myllymäki, Jukka Häyrynen
  • Publication number: 20120216922
    Abstract: The present invention provides a structural material having enhanced ductility characteristics at high temperatures and enhanced strength characteristics. The present invention provides an Ni3(Si, Ti)-based intermetallic compound characterized by containing from 25 to 500 ppm by weight of B with respect to a weight of an intermetallic compound having a composition of 100% by atom in total consisting of Ni as a main component, from 7.5 to 12.5% by atom of Si, from 4.5 to 11.5% by atom of Ti and from 0.5 to 5.0% by atom of W.
    Type: Application
    Filed: September 14, 2009
    Publication date: August 30, 2012
    Applicant: OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Yasuyuki Kaneno, Takayuki Takasugi
  • Publication number: 20120202090
    Abstract: An aluminum bonding alloy is an Ni—Mg alloy for bonding aluminum and a non-aluminum metal selected from steel, copper, nickel or titanium. The Ni—Mg alloy consists essentially of 0.08-0.90 mass % Mg, and the balance of Ni and inevitable impurities. A clad material includes a non-aluminum metal layer made of the non-aluminum metal and a bonding alloy layer made of the aluminum bonding alloy. The non-aluminum metal layer and the bonding alloy layer are bonded together by pressure welding and diffusion bonding.
    Type: Application
    Filed: October 25, 2010
    Publication date: August 9, 2012
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Shinji Yamamoto, Masaaki Ishio
  • Publication number: 20120189486
    Abstract: Semi-finished products for the production of devices containing thermoelastic materials with improved reliability and reproducibility are described. The semi-finished products are based on an alloy of Ni—Ti plus elements X and/or Y. The nickel amount is comprised between 40 and 52 atom %, X is comprised between 0.1 and 1 atom %, Y is comprised between 1 and 10 atom % and the balance is titanium. The one or more additional elements X are chosen from Al, Ta, Hf, Si, Ca, Ce, La, Re, Nb, V, W, Y, Zr, Mo, and B. The one or more additional elements Y are chosen from Al, Ag, Au, Co, Cr, Fe, Mn, Mo, Nb, Pd, Pt, Ta and W.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 26, 2012
    Applicant: SAES SMART MATERIALS
    Inventors: Francis E. SCZERZENIE, Graeme William PAUL
  • Publication number: 20120171071
    Abstract: The present invention provides a structural material having excellent hardness (strength) characteristics. The present invention provides an Ni3(Si, Ti)-based intermetallic compound characterized by containing from 25 to 500 ppm by weight of B with respect to a weight of an intermetallic compound having a composition of 100% by atom in total consisting of from 10.0 to 12.0% by atom of Si, 1.5% by atom or more but less than 7.5% by atom of Ti, more than 2.0% by atom but 8.0% by atom or less of Ta and a balance made up of Ni excepting impurities, and by having a microstructure composed of an L12 phase or a microstructure composed of an L12 phase and a second phase dispersion containing Ni and Ta.
    Type: Application
    Filed: September 14, 2010
    Publication date: July 5, 2012
    Applicant: OSAKA PREFECTURE UNIVERSITY PUBLIC CORPORATION
    Inventors: Yasuyuki Kaneno, Takayuki Takasugi
  • Publication number: 20120128526
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Publication number: 20120128525
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Patent number: 8182741
    Abstract: Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: May 22, 2012
    Assignees: The United States of America as represented by the National Aeronautics and Space Administration, Abbott Ball Company
    Inventors: Christopher DellaCorte, Glenn N. Glennon
  • Publication number: 20120110848
    Abstract: A method for repairing, refurbishing, or replacing a turbine engine component or sub-component includes the steps of providing a turbine engine component or sub-component having a site to be repaired, refurbished, or replaced providing a repair or replacement material having a sulfur content, which sulfur content is less than 10 ppm, and applying the repair or replacement material to the site on the turbine engine component to effect the repair, the refurbishment, or the replacement.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 10, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Edward R. Szela, Daniel A. Bales, Alan D. Cetel
  • Publication number: 20120100036
    Abstract: Disclosed are a method of manufacturing ultra fine metal powder used for an electrode for an MLCC and ultra fine metal powder manufactured by the same. The method of manufacturing ultra fine metal powder includes: preparing a master mold in which a pattern is formed; forming a sacrificial layer by applying a polymer material on the pattern; forming a metal layer on the sacrificial layer; and forming individual ultra fine metal powder by removing the sacrificial layer and separating the metal layer from the master mold.
    Type: Application
    Filed: March 30, 2011
    Publication date: April 26, 2012
    Inventors: Ji Hwan SHIN, Sung Kwon Wi, Jeong Min Cho
  • Publication number: 20120094271
    Abstract: The present invention provides method of identifying molecules that cooperatively and positively interact with either a ligand or a target molecule of a ligand/target molecule pair, or molecules that interact with a ligand/target molecule complex.
    Type: Application
    Filed: August 17, 2009
    Publication date: April 19, 2012
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Jinglin Fu, Neal W. Woodbury, Stephen Albert Johnston
  • Patent number: 8152941
    Abstract: Semi-finished products for the production of devices containing thermoelastic materials with improved reliability and reproducibility are described. The semi-finished products are based on an alloy of Ni—Ti plus elements X and/or Y. The nickel amount is comprised between 40 and 52 atom %, X is comprised between 0.1 and 1 atom %, Y is comprised between 1 and 10 atom % and the balance is titanium. The one or more additional elements X are chosen from Al, Ta, Hf, Si, Ca, Ce, La, Re, Nb, V, W, Y, Zr, Mo, and B. The one or more additional elements Y are chosen from Al, Ag, Au, Co, Cr, Fe, Mn, Mo, Nb, Pd, Pt, Ta and W.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 10, 2012
    Assignee: SAES Smart Materials
    Inventors: Francis E. Sczerzenie, Graeme William Paul
  • Publication number: 20120039740
    Abstract: Processes for producing a nickel-titanium alloy are disclosed. The processes are characterized by the production of nickel-titanium alloy articles having improved microstructure. A pre-alloyed nickel-titanium alloy is melted and atomized to form molten nickel-titanium alloy particles. The molten nickel-titanium alloy particles are cooled to form nickel-titanium alloy powder. The nickel-titanium alloy powder is consolidated to form a fully-densified nickel-titanium alloy preform that is hot worked to form a nickel-titanium alloy article. Any second phases present in the nickel-titanium alloy article have a mean size of less than 10 micrometers measured according to ASTM E1245-03 (2008) or an equivalent method.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 16, 2012
    Applicant: ATI Properties, Inc.
    Inventor: C. Craig Wojcik
  • Patent number: 8114526
    Abstract: A composite substrate for superconductors and methods for making the same are described. The composite substrate of the present invention includes at least a core layer having and a sheath layer having a cube texture on at least a portion its surface. In certain embodiments, the core layer can include a nickel-tungsten-molybdenum alloy having about 2-10 atomic percent tungsten and 2-15 atomic percent molybdenum. In some embodiments, the sheath layer can include nickel or a nickel-tungsten alloy having about 0 to 6 atomic percent tungsten. Generally, the core layer is stronger than the sheath layer and an interdiffusion zone can exist between the core layer and the sheath layer.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: February 14, 2012
    Assignee: American Superconductor Corporation
    Inventors: Cornelis Leo Hans Thieme, Elliott D. Thompson
  • Patent number: 8105715
    Abstract: A hydrogen absorbing alloy is provided that is represented by the general formula Ln1-xMgxNiyAz, where: Ln is at least one element selected from the group consisting of Ca, Zr, Ti, and rare-earth elements including Y; A is at least one element selected from the group consisting of Co, Mn, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P, and B; and x, y, and z satisfy the following conditions 0.05?x?0.25, 0<z?1.5, and 2.8?y+z?4.0, wherein Ln contains 20 mole % or more of Sm.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 31, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Jun Ishida, Yoshifumi Magari, Shigekazu Yasuoka
  • Publication number: 20110308958
    Abstract: A layer arrangement for a gravure cylinder including nickel in at least a first region through the entire thickness (d) thereof, with a mass fraction of at least 0.80, the arrangement being designed to permit an imaging by means of a laser in the first region and to serve as the outermost layer of the gravure cylinder for intaglio printing. A method for producing a layer arrangement for a printing form wherein the layer arrangement includes nickel in at least a first region through the entire thickness (d) thereof, with a mass fraction of at least 0.80 and at least in the radially external region has a solid lubricant component (X) has the following steps: the layer arrangement is produced on a cylinder core by galvanic coating and a printing image is generated on the layer arrangement for intaglio printing.
    Type: Application
    Filed: September 1, 2011
    Publication date: December 22, 2011
    Applicant: IPT International Plating Technologies GmbH
    Inventor: Matthias Kurrle
  • Publication number: 20110306508
    Abstract: The presence of mycotoxins in agricultural products necessitates large scale testing of a wide range of sample material to ensure the safety of food and feed. The mycotoxin ochratoxin A represents an enablement for all mycotoxins as the level of sensitivity necessary for regulatory requirements for this compound at the part per billion level are as low or lower than any other mycotoxin. This invention describes the identification of a set of DNA ligands with sufficiently high binding affinity and specificity for ochratoxin A to enable an improvement over existing methods for the separation, concentration and quantitative determination of ochratoxin A in sample material.
    Type: Application
    Filed: January 9, 2009
    Publication date: December 15, 2011
    Inventors: Gregory Allen Penner, Jorge Andres Cruz-Aguado
  • Publication number: 20110277568
    Abstract: Semi-finished products for the production of devices containing thermoelastic materials with improved reliability and reproducibility are described. The semi-finished products are based on an alloy of Ni—Ti plus elements X and/or Y. The nickel amount is comprised between 40 and 52 atom %, X is comprised between 0.1 and 1 atom %, Y is comprised between 1 and 10 atom % and the balance is titanium. The one or more additional elements X are chosen from Al, Ta, Hf, Si, Ca, Ce, La, Re, Nb, V, W, Y, Zr, Mo, and B. The one or more additional elements Y are chosen from Al, Ag, Au, Co, Cr, Fe, Mn, Mo, Nb, Pd, Pt, Ta and W.
    Type: Application
    Filed: October 28, 2010
    Publication date: November 17, 2011
    Applicant: SAES SMART MATERIALS
    Inventors: Francis E. Sczerzenie, Graeme William Paul
  • Patent number: 8048368
    Abstract: High-temperature materials, based on alloyed intermetallic NiAl, have the following chemical composition (values in % by weight): 26-30 Al, 1-6 Ta, 0.1-3 Fe, 0.1-1.5 Hf, 0.01-0.2 B, 0-1 Ti, 0.1-5 Pd, with the remainder Ni and production-related impurities. The materials have excellent properties, in particular good strength and extremely high oxidation resistance, at very high temperatures of 1300° C., for example.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 1, 2011
    Assignee: ALSTOM Technology Ltd.
    Inventors: Mohamed Youssef Nazmy, Markus Staubli, Andreas Künzler
  • Publication number: 20110201847
    Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.
    Type: Application
    Filed: May 29, 2009
    Publication date: August 18, 2011
    Inventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Grossmann, Silvia Neumann
  • Publication number: 20110200838
    Abstract: A metal matrix composites is used to laser clad a surface, such as a base metal machine element, and provide high wear and corrosion resistance, particularly useful for protecting surfaces in a salt water environment. The composites may comprise up to 25 wt % Mo and up to 20 wt % WC particles in a Nickel Alloy matrix; a nickel Alloy containing 5-30% Chromium, 0-20% Molybdenum, and 0-10% Tungsten or Niobium, with the balance being Nickel.
    Type: Application
    Filed: December 9, 2010
    Publication date: August 18, 2011
    Inventors: Ronald A. Thomas, Matthew T. Calcutt, Jennifer L. Seefelt-Momont, Michael M. Priebe
  • Publication number: 20110176988
    Abstract: The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and at
    Type: Application
    Filed: September 17, 2009
    Publication date: July 21, 2011
    Inventors: Junji Okamura, Masaru Kirishiki, Masanori Yoshimune, Hideaki Tsuneki
  • Publication number: 20110150693
    Abstract: A method for preparing a part in nickel-based superalloy is disclosed. The method comprises the following steps: elaborating a nickel-based superalloy with a composition capable of providing hardening by double precipitation of a gamma? phase and of a gamma? or delta phase; atomizing a melt of the superalloy in order to obtain a powder; sifting the powder; introducing the powder into a container; closing and applying vacuum to the container; densifiying the powder and the container in order to obtain an ingot or a billet; hot forming said ingot or said billet; wherein before the densification step, the powder and the container are heated for at least 4 hrs, at a temperature both above 1,140° C. and at least 10° C. less than the solidus temperature of the superalloy, and at a pressure causing densification of less than or equal to 15% of the powder volume.
    Type: Application
    Filed: August 24, 2009
    Publication date: June 23, 2011
    Inventor: Gérard Raisson
  • Publication number: 20110142711
    Abstract: The present invention provides an oxide dispersion strengthened alloy in which even with aluminum contained, the particle diameter and dispersion spacing of the oxide are decreased, and the strength at high temperature, the high temperature oxidation and the corrosion resistance can be improved. An oxide dispersion strengthened alloy being a nickel-base alloy containing aluminum, hafnium, and yttrium oxide, wherein a complex oxide of the yttrium oxide and hafnium oxide is dispersed in a matrix of the nickel-base alloy, with the aluminum contained.
    Type: Application
    Filed: August 17, 2009
    Publication date: June 16, 2011
    Applicant: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shigeharu Ukai, Soumei Oonuki, Shigenari Hayashi, Takeshi Hoshino
  • Publication number: 20110143159
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 16, 2011
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20110118100
    Abstract: A method of smelting a nickel intermediate product in a smelter that contains a molten bath of metal and slag to produce a nickel product, the method comprising supplying the nickel intermediate product and a solid reductant to the smelter and smelting the nickel intermediate product to produce molten nickel, and controlling the chemistry of the slag so that the slag has (a) a high solubility for elements and compounds in the nickel intermediate product that are regarded as contaminants in the nickel product and (b) a liquidus temperature in the range of 1300-1700 C.
    Type: Application
    Filed: February 12, 2009
    Publication date: May 19, 2011
    Inventors: Ivan Ratchev, Gregory David Rigby, René Ignacio Olivares, Grant Caffery
  • Patent number: 7938918
    Abstract: A high purity Ni—V alloy, high purity Ni—V alloy target and high purity Ni—V alloy thin film wherein the purity of the Ni—V alloy excluding Ni, V and gas components is 99.9 wt % or higher, and the V content variation among ingots, targets or thin films is within 0.4%. With these high purity Ni—V alloy, high purity Ni—V alloy target and high purity Ni—V alloy thin film having a purity of 99.9 wt % or higher, the variation among ingots, targets or thin films is small, the etching property is improved, and isotopic elements such as U and Th that emit alpha particles having an adverse effect on microcircuits in a semiconductor device are reduced rigorously. Further provided is a method of manufacturing such high purity Ni—V alloys capable of effectively reducing the foregoing impurities.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: May 10, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Yasuhiro Yamakoshi
  • Publication number: 20110103998
    Abstract: A method of producing a nickel product (including nickel alloy products and products such as nickel matte) from a nickel intermediate product is disclosed. The method comprises smelting a dried nickel intermediate product in a molten bath-based smelter and forming a molten pool containing a molten metal and a slag, with the molten metal being the nickel product. Intermediate and end products produced by the method are also disclosed.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 5, 2011
    Inventors: Ivan Ratchev, Grant Caffery, Simon Philip Sullivan, René Ignacio Olivares, Gregory David Rigby
  • Patent number: 7921778
    Abstract: A single phase metal alloy usually for forming a shaped charge liner for a penetrating jet or explosively formed penetrator forming warhead consists essentially of from a trace to 90%, by weight, of cobalt, from 10% to 50% by weight, of tungsten, and the balance nickel and inevitable impurities. One preferred composition is, by weight, from 16% to 22%, cobalt, from 35% to 40% tungsten and the balance is nickel and inevitable impurities. The alloy is worked and recrystallized and then formed into a desired product. In addition to a shaped charge liner, other useful products include a fragmentation warhead, a warhead casing, ammunition, radiation shielding and weighting.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: April 12, 2011
    Assignee: Aerojet - General Corporation
    Inventor: Michael T. Stawovy
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto