Abstract: The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.
Type:
Application
Filed:
October 7, 2008
Publication date:
March 3, 2011
Applicant:
BROWN UNIVERSITY
Inventors:
Robert H. Hurt, Steven P. Hamburg, Love Sarin, Indrek Kulaots
Abstract: There is disclosed a sputtering target material for producing an intermediate layer film of a perpendicular magnetic recording medium, which is capable of dramatically reducing the crystal grain size of a thin film formed by sputtering. The sputtering target material comprises, in at %, 1 to 20% of W; 0.1 to 10% in total of one or more elements selected from the group consisting of P, Zr, Si and B; and balance Ni.
Abstract: A metastable, peritectic alloy contains nickel in addition to tantalum and, optionally, niobium and/or tungsten. The alloy typically contains between from about 60 to 70 weight percent nickel and between from about 30 to 40 weight percent tantalum. The alloy may be prepared by melting the nickel and tantalum and/or a tantalum-nickel alloy under an inert gas or under a vacuum to a temperature of approximately 1475° C. to about 1550° C. The molten metal is then poured through a ceramic nozzle fitted with gas jets to atomize the molten stream into small droplets. The metastable characteristics of the corrosion resistant alloy are attained due to the rapid solidification of the molten alloy during the atomization process. The metastable alloy may further be used as cermet binder wherein another metal or interstitial alloy is incorporated by communition and/or blending into the alloy.
Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.
Type:
Application
Filed:
August 22, 2009
Publication date:
September 30, 2010
Inventors:
Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
Abstract: A process and braze paste suitable for filling and closing voids in relatively thin wall sections of high temperature components, such as an impingement plate of a combustor of a gas turbine engine. The process entails applying at least a first braze paste to the crack to form a braze paste patch comprising powders of first and second alloys and an organic binder. The first alloy has a higher melting temperature than the second alloy, and the powders of the first and second alloys are present in the braze paste patch at a weight ratio of about 30:70 to about 70:30 weight percent. The braze paste patch is then heated to burn off the binder and melt at least the powder of the second alloy to form a brazement within the crack that contains particles of the first alloy dispersed in a matrix formed by the second alloy.
Abstract: Provided herein are materials that can achieve up to 14% hydrogen absorption by weight in ambient conditions, which is a marked improvement over the hydrogen absorption values found in the prior art. Further provided are experimental conditions necessary to produce these materials. In order to produce the hydrogen storage material, a transition metal (or Lithium) is vaporized in a pi bond gas in conditions that permit only a few bonding collisions to occur between the vaporized transition metal atoms and pi bond gas molecules before the resulting bonded material is collected.
Type:
Application
Filed:
April 18, 2008
Publication date:
September 2, 2010
Applicant:
UNIVERSITY OF VIRGINIA PATENT FOUNDATION
Abstract: The invention provides a nickel-rhenium alloy powder that contains nickel as a main component, 0.1 to 10% by weight of rhenium and 50 to 10,000 ppm of silicon in terms of silicon atoms, and that is suitable, in particular, for the formation of an internal electrode layer for a multilayer ceramic electronic component. The obtained powder is homogeneously mixed and dispersed in an organic vehicle, together with other additives as needed, to prepare a conductor paste. When used in particular for forming an internal electrode of a multilayer ceramic electronic component, the nickel-rhenium alloy powder of the invention delays sintering initiation and slows down the progress of sintering during firing, even for extremely fine powders, while bringing the sintering shrinkage behaviors of electrode layers and ceramic layers closer to each other. Moreover, there occurs no electrode spheroidizing caused by oversintering. A thinner, dense internal electrode having excellent continuity can be formed as a result.
Abstract: A Ni-based brazing composition at least containing, in mass %, 1.0% or more and 1.3% or less of B, 4.0% or more and 6.0% or less of Si, and the balance consisting of Ni and unavoidable impurities, wherein the brazing composition forms wherein the brazing composition forms dispersed phase containing B or Si in a metal texture after the brazing, and a maximum length of the dispersed phase is 30 ?m or less.
Abstract: Provided is a multi-layered ceramic capacitor including an internal electrode, the surface of which is smoothened and in which electrode breakage can be reliably prevented. Also provided are a conductive paste and a nickel powder or an alloy powder containing nickel as a main component, which are used in the multi-layered ceramic capacitor, and a method for manufacturing the powder. The nickel powder or the alloy powder containing nickel as a main component of the present invention has a spherical shape, a mean particle diameter D50 in the range of 10 to 300 nm, and a ratio (Dmax/D50) of a maximum particle diameter Dmax to the mean particle diameter D50 of 3 or less.
Abstract: The process, according to the invention, comprises the following stages: (a) processing (1) of the laterite ore (O) by crushing, scrubbing, attrition, separation, and high-intensity magnetic separation; (b) Leaching (2) of the non-magnetic fraction (CN) obtained form the previous stage (a); (c) optionally, neutralization (3) of the effluent from the leaching and/or solid-liquid separation stages (4); (d) treatment of the effluents from stages (b) or (c) using an ion-exchange hybrid system (5) comprising at least one circuit for removal of impurities and at least one circuit for recovery of nickel and cobalt; (e) elution (6) of the ion-exchange resin used; (f) separation, purification, and recovery (7) of the nickel and cobalt.
Abstract: A nickel-rhenium alloy powder comprising nickel as a main component, 0.1 to 10% by weight of rhenium, and having an average particle size of 0.05 to 1.0 ?m is provided. The nickel-rhenium alloy powder has a surface oxide film containing a nickel oxide and a rhenium oxide, and the amount of oxygen in the surface oxide film is 0.1 to 3.0% by weight relative to the total weight of the powder. The nickel-rhenium alloy powder is suitable, in particular, for forming internal electrode layers of a multilayer ceramic electronic component. The obtained powder is homogeneously mixed and dispersed in an organic vehicle, together with other additives as needed, to prepare a conductor paste. The surface oxide film allows bringing the sintering shrinkage behavior of electrode layers and ceramic layers closer to each other when the nickel-rhenium alloy powder is used, in particular, for forming internal electrodes of a multilayer ceramic electronic component.
Abstract: A composition of matter comprises, in combination, in weight percent: a largest content of nickel; at least 16.0 percent cobalt; and at least 3.0 percent tantalum. The composition may be used in power metallurgical processes to form turbine engine turbine disks.
Abstract: Provided is high purity nickel or nickel alloy target for magnetron sputtering having superior sputtering film uniformity and in which the magnetic permeability of the target is 100 or more, and this high purity nickel or a nickel alloy target for magnetron sputtering capable of achieving a favorable film uniformity (evenness of film thickness) and superior in plasma ignition (firing) even during the manufacturing process employing a 300 mm wafer. The present invention also provides the manufacturing method of such high purity nickel or nickel alloy target.
Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.
Type:
Application
Filed:
July 8, 2009
Publication date:
June 10, 2010
Applicant:
Massachusetts Institute of Technology
Inventors:
Christopher A. Schuh, Jose M. San Juan, Ying Chen
Abstract: A method of treating Nitinol to train the structure thereof to remain in the martensite state, including the steps of subjecting the Nitinol to a strain and while subjected to the strain, thermally cycling the Nitinol between a cold bath of about 0° C. to 10° C. and a hot bath of about 100° C. to 180° C. for a minimum of about five cycles.
Abstract: A method is provided of using a highly impact-resistant and corrosion-resistant alloy material for an apparatus for use in hydration of 2-hydroxy-4-methylthiobutanenitrile to obtain 2-hydroxy-4-methylthiobutanamide, the material being readily fabricated for an apparatus with a complicated structure and being composed of an alloy which contains 16.0 to 22.0% by weight of a Cr element, 16.0 to 22.0% by weight of a Mo element, 1.0 to 2.5% by weight of a Ta element and a Ni element as the rest, or an alloy which contains 26.0 to 32.0% by weight of a Mo element and a Ni element as the rest.
Abstract: A hydrogen-permeable Nb—Ti—Ni alloy having a composition represented by Nb100-x-yTixNiy, wherein 10?x?60, and 10?y?50 by atomic %, with an oxygen content of 1000 ppm or less in an as-cast state, which comprises (a) a hydrogen-permeable primary phase containing 70 atomic % or more of Nb and 10 atomic % or less of Ni, and (b) a eutectic phase having a particle phase comprising Nb and Ti as main components with a small Ni content and having an average particle size of about 5 ?m or less, which is dispersed in a matrix phase comprising 60 atomic % or more in total of Ni and Ti and having hydrogen embrittlement resistance, the alloy having a structure substantially free from an intermetallic compound phase.
Abstract: A single crystal seed for use in casting a single crystal article, consisting essentially of, in weight %, about 5.0% to about 40.0% Mo, up to 0.1% C and balance essentially Ni.
Type:
Application
Filed:
July 20, 2009
Publication date:
March 11, 2010
Inventors:
Steven T. Schaadt, Brad J. Murphy, Lisa K. Koivisto
Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
Inventors:
Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
Abstract: Disclosed is a method of applying coatings to surfaces, wherein a gas flow forms a gas-powder mixture with a powder of a material selected from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, nickel, cobalt, iron, chromium, aluminum, silver, copper, mixtures of at least two thereof or their alloys with at least two thereof or with other metals, the powder has a particle size of from 0.5 to 150 ?m, an oxygen content of less than 500 ppm oxygen and a hydrogen content of less than 500 ppm, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed onto the surface of an object. The coatings prepared are used, for example, as corrosion protection coatings.
Type:
Application
Filed:
October 12, 2007
Publication date:
January 21, 2010
Applicant:
H.C. Starck GmbH & Co., KG
Inventors:
Stefan Zimmermann, Steven A. Miller, Leonid N. Shekter
Abstract: A composition of matter comprises, in combination, in weight percent: a largest content of nickel; at least 16.0 percent cobalt; and at least 3.0 percent tantalum. The composition may be used in power metallurgical processes to form turbine engine turbine disks.
Abstract: The invention provides a nickel-rhenium alloy powder that comprises nickel as a main component, 0.1 to 10% by weight of rhenium and 50 to 10,000 ppm of silicon in terms of silicon atoms, and that is suitable, in particular, for the formation of an internal electrode layer for a multilayer ceramic electronic component. The obtained powder is homogeneously mixed and dispersed in an organic vehicle, together with other additives as needed, to prepare a conductor paste. When used in particular for forming an internal electrode of a multilayer ceramic electronic component, the nickel-rhenium alloy powder of the invention delays sintering initiation and slows down sintering progress during firing, even for extremely fine powders, while bringing the sintering shrinkage behaviors of electrode layers and ceramic layers closer to each other. Moreover, there occurs no electrode spheroidizing caused by oversintering. A thinner, dense internal electrode having excellent continuity can be formed as a result.
Abstract: This invention provides a method for atomic transformations carried out under conditions akin to chemical catalysis. Liquid and solid state catalysts are used in a two-step process. We have found that the high ionic/electric activity of concentrated sodium hydroxide solution in combination with heating is sufficient to induce atomic transformation and provide a solid phase catalyst of high aluminum and silicon content. This product when heated at a temperature of 1000° C. yields numerous elements of higher atomic masses.
Abstract: A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 ?m and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
Abstract: A nickel material, which comprises by mass percent, C: 0.003 to 0.20% and one or more elements selected from Ti, Nb, V and Ta: a total content less than 1.0%, the contents of these elements satisfying the relationship specified by the formula of “( 12/48)Ti+( 12/93)Nb+( 12/51)V+( 12/181)Ta—C?0”, with the balance being Ni and impurities, does not deteriorate in the mechanical properties and corrosion resistance even when it is used at a high temperature for a long time and/or it is affected by the heat affect on the occasion of welding. Therefore, it can be suitably used as a member for use in various chemical plants including facilities for producing caustic soda, vinyl chloride and so on. Each element symbol in the above formula represents the content by mass percent of the element concerned.
Abstract: A metal nanoparticle composition includes a thermally decomposable or UV decomposable stabilizer. A method of forming conductive features on a substrate, includes providing a solution containing metal nanoparticles with a stabilizer; and liquid depositing the solution onto the substrate, wherein during the deposition or following the deposition of the solution onto the substrate, decomposing and removing the stabilizer, by thermal treatment or by UV treatment, at a temperature below about 180° C. to form conductive features on the substrate.
Type:
Application
Filed:
January 14, 2008
Publication date:
July 16, 2009
Applicant:
XEROX CORPORATION
Inventors:
Yuning LI, Yiliang WU, Hualong PAN, Ping LIU, Paul F. SMITH, Hadi K. MAHABADI
Abstract: Disclosed herein are a method of manufacturing a Ni-based superalloy component for a gas turbine using a one-step process of hot isostatic pressing (HIP) and heat treatment, and a component manufactured by the method. In the method, an HIP process and a heat treatment process, which have been performed to manufacture or repair a Ni-based superalloy component for a gas turbine, are performed as a one-step process using an HIP apparatus. Thus, component defects, such as micropores and microcracks, which are generated when casting, welding, or brazing the Ni-based superalloy component for a gas turbine used for a combined cycle thermal power plant or airplane, can be cured using an HIP apparatus at high temperature and high pressure and, at the same time, the physical properties of the Ni-based superalloy component can be optimized using the heat treatment process.
Type:
Application
Filed:
October 31, 2007
Publication date:
June 11, 2009
Applicant:
Korea Electric Power Corporation
Inventors:
Min-Tae KIM, Sung-Yong Chang, Jong-Bum Won, Won-Young Oh
Abstract: Engine components that include a compacted powder material comprising a nickel-based superalloy having less than five parts per million sulfur, by weight and methods of forming the components are provided. In an embodiment, by way of example only, a method includes flowing a gas into a can with a metal powder therein, the gas comprising hydrogen, the can configured to be used for a consolidation process, and the superalloy comprising sulfur. Gas is flowed into and then removed from the can. A sulfur content of the removed gas is determined during the process. The can and the metal powder therein are subjected to the consolidation process, if a determination is made that the sulfur content of the metal powder is below a threshold value, the threshold value being a value below about 1 part per million by weight.
Abstract: A radiopaque nitinol medical device such as a stent for use with or implantation in a body lumen is disclosed. The stent is made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol stent comparable to that of a stainless steel stent of the same size and strut pattern coated with a thin layer of gold. The nitinol stent has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin strut/wall thickness for high flexibility.
Abstract: A hydrogen absorbing alloy is provided that is represented by the general formula Ln1-xMgxNiyAz, where: Ln is at least one element selected from the group consisting of Ca, Zr, Ti, and rare-earth elements including Y; A is at least one element selected from the group consisting of Co, Mn, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P, and B; and x, y, and z satisfy the following conditions 0.05?x?0.25, 0<z?1.5, and 2.8?y+z?4.0, wherein Ln contains 20 mole % or more of Sm.
Type:
Application
Filed:
August 29, 2008
Publication date:
March 5, 2009
Inventors:
Jun Ishida, Yoshifumi Magari, Shigekazu Yasuoka
Abstract: Vapor turbine operating with geothermal vapors containing corrosive agents such as chlorides and/or sulfides in particular. The turbine comprises a series of rotor blades made of a nickel alloy containing a quantity of nickel ranging from 55% to 59% by weight to avoid the washing of the geothermal vapors, maintaining a high useful life of the series of rotor blades and vapor turbine.
Type:
Grant
Filed:
December 20, 2005
Date of Patent:
March 3, 2009
Assignee:
Nuovo Pignone S.p.A.
Inventors:
Carlo Cortese, Paolo Bendinelli, Marco De Iaco, Lorenzo Cosi, Marco Anselmi
Abstract: A warm-rolled, annealed, polycrystalline, cube-textured, {100}<100>, FCC-based alloy substrate is characterized by a yield strength greater than 200 MPa and a biaxial texture characterized by a FWHM of less than 15° in all directions.
Abstract: Stable atomic quantum clusters, AQCs, characterized by being composed of at least 500 metal atoms, its production process characterized by having a kinetic control and by maintaining a low concentration of reagents in the reaction medium, as well as the uses of these clusters as sensors (fluorescent, magnetic or chemical), electrocatalysts and as cytostatics and/or cytotoxics.
Type:
Application
Filed:
July 28, 2006
Publication date:
February 5, 2009
Applicant:
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA
Inventors:
Manuel Arturo Lopez Quintela, Jose Rivas Rey
Abstract: The present invention is directed at providing fine nickel particles with a sharp particle size distribution, and providing an electroconductive paste using the nickel particles. In order to obtain the nickel particles capable of achieving the purpose, a method for producing the nickel particle by elevating a temperature of the reactive solution containing a nickel salt and a polyol to a reduction temperature, and reducing the nickel salt in the reactive solution which is characterized in that the reactive solution is prepared to contain a carboxylic acid or an amine having a carboxyl functional group and/or an amino functional group, and a precious metal catalyst before the solution temperature is elevated to the reduction temperature. Nickel particles obtained with the production method have an average image analytical particle diameter of 1 nm to 300 nm.
Abstract: A high fatigue life superelastic nickel-titanium (nitinol) wire, ribbon, sheet, tubing, or the like is disclosed. The nitinol has a 54.5 to 57.0 weight percent nickel with a balance of titanium composition and has less than 30 percent cold work as a final step after a full anneal and before shape setting heat treatment. Through a rotational beam fatigue test, fatigue life improvement of 37 percent has been observed.
Abstract: An anode for the electrowinning of aluminium by the electrolysis of alumina in a molten fluoride electrolyte has an electrochemically active integral outside oxide layer obtainable by surface oxidation of a metal alloy which consists of 20 to 60 weight % nickel; 5 to 15 weight % copper; 1.5 to 5 weight % aluminium; 0 to 2 weight % in total of one or more rare earth metals, in particular yttrium; 0 to 2 weight % of further elements, in particular manganese, silicon and carbon; and the balance being iron. The metal alloy of the anode has a copper/nickel weight ratio in the range of 0.1 to 0.5, preferably 0.2 to 0.3.
Abstract: A nickel powder with an average particle size of 0.05 to 1.0 ?m, which is composed of nickel particles having an oxidized surface layer and containing sulfur, wherein the sulfur content with respect to the total weight of the powder is 100 to 2000 ppm, and the intensity of a peak identified to sulfur bonded to nickel in surface analysis by ESCA of the nickel particles varies in a direction toward the center from the surface of the particles, and this intensity has its maximum at a location deeper than 3 nm from the particle outermost surface. This nickel powder is manufactured by bringing a nickel powder containing sulfur and dispersed in a non-oxidizing gas atmosphere into contact with an oxidizing gas at a high temperature.
Abstract: This invention relates to laser cladding of components used in high temperature-corrosive applications, such as those associated with metallurgical vessels' lances, nozzles and tuyeres, for extending their service life under such severe conditions. In particular, this invention relates to a method for applying a high melting point material onto a substrate, said substrate having a melting point temperature below the melting point temperature of the high melting point material, comprising: (a) moving a laser beam generated from a laser over the surface of said substrate, said laser beam comprised of wavelengths from about 300 to about 10,600 nanometers; (h) providing a metal, alloy, or metal-alloy composite powder to the surface of said substrate; and (c) generating sufficient power to the laser to superficially heat said substrate and to effect a fusion bond between the metal, alloy or metal-alloy composite powder and the surface of said substrate.
Type:
Application
Filed:
June 20, 2006
Publication date:
September 18, 2008
Inventors:
Harold Haruhisa Fukubayashi, Roland C. Gassmann
Abstract: A stamper includes a stamper body including a nickel having a patterned surface by artificial drawing method, and a surface layer of a nickel-vanadium alloy having a vanadium content of less than 3 atomic percent formed on the patterned surface.
Abstract: A nickel based alloy coating and a method for applying the nickel based alloy as a coating to a substrate. The nickel based alloy comprises about 0.1-15% rhenium, about 5-55% of an element selected from the group consisting of cobalt, iron and combinations thereof, sulfur included as a microalloying addition in amounts from about 100 parts per million (ppm) to about 300 ppm, the balance nickel and incidental impurities. The nickel-based alloy of the present invention is applied to a substrate, usually an electromechanical device such as a MEMS, by well-known plating techniques. However, the plating bath must include sufficient sulfur to result in deposition of 100-300 ppm sulfur as a microalloyed element. The coated substrate is heat treated to develop a two phase microstructure in the coating.
Type:
Application
Filed:
June 22, 2007
Publication date:
August 28, 2008
Applicant:
TYCO ELECTRONICS CORPORATION
Inventors:
Robert D. HILTY, Valerie LAWRENCE, George J. CHOU
Abstract: A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions.
Abstract: Bulk amorphous alloys based on a ternary Ni—Nb—Sn alloy system, and the extension of this ternary system to higher order alloys by the addition of one or more alloying elements, methods of casting such alloys and articles made of such alloys are provided.
Type:
Grant
Filed:
July 22, 2003
Date of Patent:
May 6, 2008
Assignee:
California Institute of Technology
Inventors:
Haein Choi Yim, Donghua Xu, William L. Johnson
Abstract: A single phase metal alloy usually for forming a shaped charge liner for a penetrating jet or explosively formed penetrator forming warhead consists essentially of from a trace to 90%, by weight, of cobalt, from 10% to 50% by weight, of tungsten, and the balance nickel and inevitable impurities. One preferred composition is, by weight, from 16% to 22%, cobalt, from 35% to 40% tungsten and the balance is nickel and inevitable impurities. The alloy is worked and recrystallized and then formed into a desired product. In addition to a shaped charge liner, other useful products include a fragmentation warhead, a warhead casing, ammunition, radiation shielding and weighting.
Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The endoprostheses comprise a tubular member capable of maintaining patency of a bodily vessel. The tubular member includes a mixture of at least two compositions, where the presence of the second composition gives the mixture a greater hardness than that of the first composition alone. The first composition includes less than about 25 weight percent chromium, less than about 7 weight percent molybdenum, from about 10 to about 35 weight percent nickel, and iron. The second composition is different from the first and is present from about 0.1 weight percent to about 5 weight percent of the mixture.
Type:
Application
Filed:
March 29, 2007
Publication date:
April 17, 2008
Inventors:
Jonathan S. Stinson, Matthew Cambronne, Richard B. Frank, Richard A. Gleixner, James E. Heilmann
Abstract: An amorphous alloy member including an irregular region having a center line average roughness Ra of about 0.1 ?m to about 1000 ?m on a surface, at least the irregular region including an amorphous alloy having an amorphous phase at a volume ratio of about 50% to about 100%. A process for manufacturing the amorphous alloy member, and an authenticity determination device and an authenticity determination method using the amorphous alloy member.
Abstract: The invention provides a method of manufacturing nickel nanoparticles and nickel nanoparticles thus produced, having superior dispersion stability and smooth surface, by reducing after forming nickel-hydrazine complex in a reverse microemulsion, wherein the method includes (a) forming an aqueous solution including nickel precursor, surfactant, and hydrophobic solvent, (b) forming nickel-hydrazine complex by adding a reducing agent that includes hydrazine to the mixture, (c) producing nickel nanoparticles by adding an reducing agent to the mixture that includes said nickel-hydrazine complex.
Type:
Application
Filed:
February 21, 2007
Publication date:
October 11, 2007
Applicant:
SAMSUNG ELECTRO-MECHANICS CO., LTD.
Inventors:
Young-Il Lee, Jae-Woo Joung, Kwi-Jong Lee
Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
Abstract: The present invention relates to a metallic coating to be deposited on gas turbine engine components. The metallic coating comprises up to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.1 to 1.0 wt % yttrium, up to 0.6 wt % hafnium, up to 0.3 wt % silicon, 3.0 to 10 wt % tantalum, up to 9.0 wt % tungsten, 1.0 to 6.0 wt % rhenium, up to 10 wt % molybdenum, and the balance nickel.
Type:
Grant
Filed:
May 7, 2002
Date of Patent:
July 19, 2005
Assignee:
United Technologies Corporation
Inventors:
Russell Albert Beers, Allan A. Noetzel, Abdus Khan
Abstract: Lead-free chemically produced nickel alloy containing nickel, phosphorus, bismuth and antimony, process for the production of such a nickel alloy by externally electroless metal deposition in an aqueous electrolyte and articles plated therewith.