Abstract: An economical metallic material for absorption and desorption of hydrogen comprising an alloy having the general formula represented by AB.sub.x, wherein A is Ca or a metallic material which is an alloy including Ca, B is Ni or a metallic material which is an alloy including Ni, and x is in the range of 3.8-6.3, and exhibiting a hydrogen dissociation equilibrium pressure (or plateau pressure, pressure of the plateau region of hydrogen dissociation pressure-hydride composition isotherm) below 1 atm at normal temperatures.The material of the invention very easily absorbs large amounts of hydrogen and efficiently releases it at other predetermined temperatures, pressure and electrochemical conditions, whereby it is able to store hydrogen safely, usefully and economically.
Type:
Grant
Filed:
April 22, 1982
Date of Patent:
May 1, 1984
Assignee:
Matsushita Electric Industrial Co., Ltd.
Abstract: A magnet alloy useful for a magnetic recording and reproducing head consist f by weight of 70 to 86% of nickel, more than 1% and less than 14% of niobium, and 0.001 to 3% of beryllium as main ingredients and 0.01 to 10% of total amount of subingredients selected from the group consisting of not more than 8% of molybdenum, not more than 7% of chromium, not more than 10% of tungsten, not more than 7% of titanium, not more than 7% of vanadium, not more than 10% of manganese, not more than 7% of germanium, not more than 5% of zirconium, not more than 2% of rare earth metal, not more than 10% of tantalum, not more than 1% of boron, not more than 5% of aluminum, not more than 5% of silicon, not more than 5% of tin, not more than 5% of antimony, not more than 10% of cobalt and not more than 10% of copper, a small amount of impurities and the remainder iron and having initial permeability of more than 3,000, maximum permeability of more than 5,000, and Vickers hardness of more than 130.
Type:
Grant
Filed:
September 9, 1981
Date of Patent:
April 3, 1984
Assignee:
The Foundation: The Research Institute of Electric and Magnetic Alloys
Abstract: New nickel and cobalt base alloys containing tungsten and carbon are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between 10.sup.5 .degree. to 10.sup.7 .degree. C./sec. The as-quenched ribbon, powder, etc. consists predominantly of amorphous phase. The amorphous phase is subjected to suitable heat treatments so as to produce a transformation to a microcrystalline alloy which includes carbides; this heat treated alloy exhibits high hardness combined with toughness for many applications wherein superhard materials are required.
Abstract: Electroless, polymetallic nickel alloys containing an element of boron or phosphorus and one or more metals selected from tin, tungsten, molybdenum or copper which have unique properties and are produced as a plated deposit in an electroless nickel plating bath containing an ester complex of a polyhydric acid or alcohol such as the diboron ester of glucoheptonic acid.
Abstract: The present invention is a chemically homogeneous microcrystalline powder for deposition onto a substrate. The powder is a B containing alloy based in Fe, Ni, Co or a combination thereof.
Type:
Grant
Filed:
July 22, 1981
Date of Patent:
May 3, 1983
Assignee:
Allied Corporation
Inventors:
James Dickson, Louis F. Nienart, David W. H. Roth, Jr.
Abstract: Binary amorphous alloys of nickel and boron have high mechanical hardness and relatively low melting temperatures. The alloys have the formula Ni.sub.a B.sub.b, where "a" has values of about 81 to 82, 75 and 59 to 72 atom percent and "b" has values of about 18 to 19, 25 and 28 to 41 atom percent.