Acyclic Patents (Class 435/157)
  • Patent number: 9012188
    Abstract: The present invention relates to producing chemicals and biofuels from wood material, e.g. mixed forest biomass. Specifically, the invention concerns a process for conditioning spent liquor produced by SO2-ethanol-water (SEW) fractionation of wood chips for fermentation to butanol, ethanol and acetone/isopropanol (so called ABE process) by Clostridia bacteria.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 21, 2015
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Adriaan Van Heiningen, Evangelos Sklavounos
  • Publication number: 20150093797
    Abstract: Provided herein are compositions and methods for the heterologous production of acetyl-CoA-derived isoprenoids in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an acetaldehyde dehydrogenase, acetylating (ADA, E.C. 1.2.1.10) and an MEV pathway comprising an NADH-using HMG-CoA reductase. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an ADA and an MEV pathway comprising an acetoacetyl-CoA synthase. In some embodiments, the genetically modified host cell further comprises one or more heterologous nucleotide sequences encoding a phosphoketolase and a phosphotransacetylase. In some embodiments, the genetically modified host cell further comprises a functional disruption of the native PDH-bypass. The compositions and methods described herein provide an energy-efficient yet redox balanced route for the heterologous production of acetyl-CoA-derived isoprenoids.
    Type: Application
    Filed: September 2, 2014
    Publication date: April 2, 2015
    Applicant: AMYRIS, INC.
    Inventors: Timothy Stevens GARDNER, Kristy Michelle HAWKINS, Adam Leon MEADOWS, Annie Ening TSONG, Yoseph TSEGAYE
  • Publication number: 20150093790
    Abstract: The disclosure provides thermostable enzymes isolated from Caldicellulosiruptor bescii and fragments thereof useful for the degradation of cellulose and/or hemicellulose, including thermostable cellulases and hemicellulases. The disclosure further provides nucleic acids encoding the thermostable enzymes of the disclosure. The disclosure also provides methods for the conversion of cellulose and hemicellulose into fermentable sugars using thermostable enzymes of the disclosure. The disclosure also provides enzyme cocktails containing multiple enzymes disclosed herein. The enzymes can be used to release sugars present in cellulose or hemicellulose for subsequent fermentation to produce value-added products.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 2, 2015
    Applicant: The Board pf Trustees of the University of Illinois
    Inventors: Yejun Han, Xiaoyun Su, Dylan Dodd, Roderick I. Mackie, Issac K.O. Cann
  • Patent number: 8993285
    Abstract: A non-naturally occurring microbial organism having an isopropanol pathway includes at least one exogenous nucleic acid encoding an isopropanol pathway enzyme. The pathway includes an enzyme selected from a 4-hydroxybutyryl-CoA dehydratase, a crotonase, a 3-hydroxybutyryl-CoA dehydrogenase, an acetoacetyl-CoA synthetase, an acetyl-CoA:acetoacetate-CoA transferase, an acetoacetyl-CoA hydrolase, an acetoacetate decarboxylase, and an acetone reductase. A non-naturally occurring microbial organism having an n-butanol pathway includes at least one exogenous nucleic acid encoding an n-butanol pathway enzyme. Other non-naturally occurring microbial organism have n-butanol or isobutanol pathways. The organisms are cultured to produce isopropanol, n-butanol, or isobutanol.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 31, 2015
    Assignee: Genomatica, Inc.
    Inventor: Anthony P. Burgard
  • Patent number: 8993284
    Abstract: An isolated nucleic acid molecule that encodes a terpene synthase and is selected from among: a) a nucleic acid molecule comprising the sequence of nucleotides set forth in SEQ ID NO: 1, SEQ ID NO: 3 or SEQ ID NO: 5; b) a nucleic acid molecule that is a fragment of (a); c) a nucleic acid molecule comprising a sequence of nucleotides that is complementary to (a) or (b); and d) a nucleic acid molecule that encodes a terpene synthase having at least or at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% identity to any one of (a)-(c); wherein the nucleic acid molecule encodes a terpene synthase.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: March 31, 2015
    Assignees: The University of British Columbia, The University of Western Australia, Forest Products Commission
    Inventors: Katherine Zulak, Christopher Jones, Jessie Moniodis, Joerg Bohlmann
  • Publication number: 20150087028
    Abstract: The invention relates to recombinant expression of variant forms of M. thermophila CBH1a and homologs thereof, having improved thermoactivity, specific activity, and other desirable properties. Also provided are methods for producing ethanol and other valuable organic compounds by combining cellobiohydrolase variants with cellulosic materials.
    Type: Application
    Filed: March 12, 2013
    Publication date: March 26, 2015
    Inventors: Behnaz Behrouzian, Xinkai Xie, Kui Chan, Xiyun Zhang, Vesna Mitchell, Douglas A. Hattendorf
  • Publication number: 20150079627
    Abstract: The invention relates to processes of producing a fermentation product, comprising liquefying a starch containing material with an alpha-amylase; pre-saccharifying and/or saccharifying and fermenting using a fermentation organism in the presence of a carbohydrate source generating enzyme and a cellulolytic composition The invention also relates to methods of dewatering whole stillage.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 19, 2015
    Inventors: Thomas Rasmussen, Jeremy Saunders, James Croonenberghs, Zhengfang Kang, Joyce Craig, Michael John Akerman
  • Publication number: 20150079651
    Abstract: A method to recover and harvest nutrients and volatile gases such as alcohols from a liquid stream using a fixed film bioreactor. The method includes a means of concentrating product gas stripped from a bioreactor.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Inventor: Dennis A. Burke
  • Patent number: 8980578
    Abstract: The present invention provides fungal xylanase and/or beta-xylosidase enzymes suitable for use in saccharification reactions. The present application further provides genetically modified fungal organisms that produce xylanase and/or beta-xylosidases, as well as enzyme mixtures exhibiting enhanced hydrolysis of cellulosic material to fermentable sugars, enzyme mixtures produced by the genetically modified fungal organisms, and methods for producing fermentable sugars from cellulose using such enzyme mixtures.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Ryan Fong, Xiyun Zhang, Chris Noriega, Nicholas Agard, Anupam Gohel, Derek Smith
  • Patent number: 8975049
    Abstract: Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: March 10, 2015
    Assignee: The Regents of the University of California
    Inventors: James C. Liao, Shota Atsumi, Kevin M. Smith, Roa Pu Claire Shen, Anthony F. Cann, Michael R. Connor
  • Publication number: 20150064760
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of crotonyl alcohol, 5-hydroxy-3-ketovaleryl-CoA, 3-ketopent-4-enoyl-CoA, or 3,5-ketovaleryl-CoA to butadiene; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic
  • Publication number: 20150064759
    Abstract: The present disclosure provides a non-naturally occurring microorganism comprising: one or more polynucleotides encoding one or more enzymes in a pathway that produces acetyl-CoA; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of cytosolic acetyl-CoA to 2-propanol; one or more polynucleotides encoding one or more enzymes in a pathway that catalyze a conversion of dihydroxyacetone-phosphate to 1-propanol and/or 1,2-propanediol, wherein the microorganism has reduced levels of pyruvate decarboxylase enzymatic activity (e.g., the microorganism comprises a disruption of one or more enzymes that decarboxylate pyruvate and/or a disruption of one or more transcription factors of one or more enzymes that decarboxylate pyruvate), and wherein the microorganism is capable of growing on a C6 sugar as a sole carbon source under anaerobic conditions.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Johana Rincones Perez, Juan Diego Rojas Rojas, Ane Fernanda Beraldi Zeidler, Aline Silva Romao Dumaresq, Marilene Elizabete Pavan Rodrigues, Iuri Estrada Gouvea, Felipe Galzerani, Daniel Johannes Koch, Lucas Pedersen Parizzi, Mateus Schreiner Garcez Lopes, Thomas Martin Halder, Antonio Luis Ribeiro De Castro Morschbacker, Avram Michael Slovic
  • Publication number: 20150064757
    Abstract: The disclosure relates to variant carboxylic acid reductase (CAR) enzymes for the improved production of fatty alcohols in recombinant host cells.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: REG Life Sciences, LLC
    Inventors: Derek L. Greenfield, Elizabeth J. Clarke, Eli S. Groban, Vikranth Arlagadda, Sungwon Lee, Xuezhi Li, Zhihao Hu
  • Patent number: 8969050
    Abstract: Methods of producing renewable materials may include consuming a fermentation feedstock with a fermentation organism to produce a renewable material in fermentation broth; water may then be separated from the feedstock or broth using one or more phase separations, or the renewable material may be concentrated from the feedstock or broth using one or more phase separations. Methods of producing biofuel components may include consuming a lignocellulosic or sugar fermentation feedstock with a fermentation organism to produce either ethanol or butanol in fermentation broth; cooling the feedstock or broth to solidify at least some water therein; and separating the solidified water from the feedstock or broth using a solid-liquid phase separation.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 3, 2015
    Assignee: BP Corporation North America Inc.
    Inventors: Glen Austin, Binita X. Bhattacharjee, Leslie W. Bolton, Jacob Borden, Martin E. Carrera, Amit A. Gokhale, Chris Horler, Aidan Hurley, Eric T. Mack
  • Publication number: 20150057461
    Abstract: The present invention relates to a transformant which is transformed to express Baeyer-Villiger monooxygenase (BVMO), a method for producing C5-C14 medium-chain ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids, or alcohols from C16-C20 long-chain fatty acids by biotransformation using the transformant, a method for producing a fatty acid derivative having an ester group which is introduced into the chain thereof from keto fatty acid using the BVMO, and novel ?-hydroxy fatty acids which are prepared by the method. Degradation products such as C5 to C14 ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids, alcohols can be produced in a large amount from C16 to C20 long-chain fatty acids contained in a medium by biotransformation using a transformant capable of expressing BVMO of the present invention. Therefore, it can be widely used to produce ?-hydroxy fatty acids, ?,?-dicarboxylic acids, ?-amino fatty acids or alcohols in a more safe and economic manner.
    Type: Application
    Filed: April 5, 2013
    Publication date: February 26, 2015
    Inventors: Jin Byung Park, Ji Won Song, Eun Yeong Jeon
  • Patent number: 8962286
    Abstract: The present disclosure relates to an improved process of producing a fermentation product, in particular ethanol. The present disclosure relates also to the use of enzymes for improving the quality of by-products in the fermentative production process and to compositions comprising enzymes capable of degrading components in the fermented mash in the fermentation process.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: February 24, 2015
    Assignee: Direvo Industrial Biotechnology GmbH
    Inventors: Klaudija Milos, Steffen Köhler, Christian Elend, Léonie Degener
  • Publication number: 20150050700
    Abstract: The objects of the present invention are to provide a cellulase that has activity to produce glucose by hydrolyzing crystalline cellulose and which is suitable for saccharification of crystalline cellulose, such as wood, by enzymatic method; and a method of producing glucose and alcohol from crystalline cellulose by utilizing the cellulase. The objects are solved by cellulase has an exo-cellulase activity to produce glucose as a main product and cellobiose as a by-product by hydrolyzing crystalline cellulose; and a method of producing glucose and alcohol from crystalline cellulose by utilizing the cellulase.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 19, 2015
    Inventor: Hideki Kobayashi
  • Publication number: 20150050707
    Abstract: A process for the treatment of biomass comprising subjecting biomass to microbial digestion to produce volatile fatty acids and/or solvents followed by wet oxidation to reduce biosolid volume while retaining or increasing the concentration of the volatile fatty acids and/or solvents.
    Type: Application
    Filed: February 27, 2014
    Publication date: February 19, 2015
    Inventors: Daniel James Gapes, Trevor Raymond Stuthridge, Peter James Strong, Robert Jason Lei, Anderson Aggrey
  • Publication number: 20150050708
    Abstract: Provided herein are non-naturally occurring microbial organisms having a formaldehyde fixation pathway and a formate assimilation pathway, which can further include a methanol metabolic pathway, a methanol oxidation pathway, a hydrogenase and/or a carbon monoxide dehydrogenase. These microbial organisms can further include a butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol pathway. Additionally provided are methods of using such microbial organisms to produce butadiene, 1,3-butanediol, crotyl alcohol or 3-buten-2-ol.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 19, 2015
    Applicant: Genomatica, Inc.
    Inventors: Anthony P. BURGARD, Robin E. OSTERHOUT, Priti PHARKYA, Stefan ANDRAE
  • Publication number: 20150044742
    Abstract: Processes for starting up of anaerobic, deep tank fermentation systems to anaerobically bioconvert hydrogen and carbon monoxide in a gaseous substrate stream to oxygenated organic compounds and for steady operation of such fermentation systems. In the processes injectors use a motive liquid to introduce gas substrate as a stable gas-in liquid dispersion into the deep tank fermentation reactor where at least one of: (i) adjusting the gas to liquid flow ratio through an injector, (ii) changing the rate of liquid flow through an injector, and (iii) adjusting the carbon monoxide mole fraction in the gas feed by admixture with at least one other gas, wherein the mass transfer of carbon monoxide to an aqueous menstruum in the reactor is controlled to obtain the robust growth of the microorganism and/or continued conversion of gas substrate while maintaining the carbon monoxide concentration below that amount which is unduly adverse to the microorganism.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: Coskata, Inc.
    Inventors: Robert Hickey, Richard E. Tobey, Shih-Perng Tsai
  • Patent number: 8951774
    Abstract: Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 10, 2015
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Gail K. Donaldson, Andrew C. Eliot, Dennis Flint, Lori Ann Maggio-Hall, Vasantha Nagarajan
  • Publication number: 20150040271
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: Suchindra Maiyuran, Randall Kramer, Paul Harris
  • Patent number: 8945890
    Abstract: In various embodiments, the present disclosure provides a method and enzyme for forming various compounds, such as monoterpenes and monoterpenoid compounds. In a specific example, the present disclosure provides a method for producing one or more of (?)-ipsdienol, (?)-ipsenol, ipsenone, and ipsdienone. The present disclosure also provides methods of using compounds formed from the disclosed method and enzyme.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 3, 2015
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Claus Tittiger, Rubi Figueroa-Teran, Gary J. Blomquist
  • Patent number: 8945859
    Abstract: Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Gail K. Donaldson, Andrew C. Eliot, Dennis Flint, Lori Ann Maggio-Hall, Vasantha Nagarajan
  • Publication number: 20150031084
    Abstract: Methods and systems for producing a biofuel using genetically modified sulfur-oxidizing and iron-reducing bacteria (SOIRB) are disclosed. In some embodiments, the methods include the following: providing a SOIRB that have been genetically modified to include a particular metabolic pathway to enable them to generate a biofuel; feeding a first source of ferric iron to the SOIRB; feeding sulfur, water, and carbon dioxide to the SOIRB; producing at least the first particular biofuel, a first source of ferrous iron, sulfate, excess ferric iron, and an SOIRB biomass; electrochemically reducing the excess ferric iron to a second source of ferrous iron; providing an iron-oxidizing bacteria that have been genetically modified to include a particular metabolic pathway to enable them to generate a second biofuel; producing at least the second biofuel, a second source of ferric iron, and an IOB biomass; and feeding the second source of ferric iron to the SOIRB.
    Type: Application
    Filed: February 15, 2013
    Publication date: January 29, 2015
    Inventors: Scott Banta, Alan West, Timothy Kernan
  • Publication number: 20150031079
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Nikolaj Spodsberg
  • Publication number: 20150031080
    Abstract: The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Mark Wogulis
  • Publication number: 20150031082
    Abstract: The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Marc Dominique Morant
  • Publication number: 20150017683
    Abstract: Scalable biomaterial-based bioreactors are described. In one embodiment, the bioreactor may comprise perforated plates stacked such that the assembled bioreactor has the necessary manifolds and chambers to transport gas and liquids to a biomaterial contained within the bioreactor, and to remove the reaction products. In another embodiment, single use bioreactors are described. Methods of operating the bioreactors are also described.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 15, 2015
    Inventors: Zia Abdullah, Michael L. Dickens, Micah Paul McCreery, Randy L. Jones, Elvin Ray Beach, III, Jon-David S. Sears, Erin Suzanne Schultz, Stephanie Ann Smith, Paul E. George, II
  • Publication number: 20150017696
    Abstract: The present disclosure relates to recombinant host cells comprising one or more recombinant polynucleotides encoding enzymes in select pathways that provide the ability to use the cells to produce 1,3-butadiene. The present disclosure also provides methods of manufacturing the recombinant host cells, and methods for the use of the cells to produce 1,3-butadiene, either through formation of the intermediate compound crotonol followed by chemo-catalytic dehydration to 1,3-butadiene, or through the use of a recombinant cell comprising a fully enzymatic pathway capable of converting crotonyl-CoA or crotonyl-ACP to crotonol and then crotonol to 1,3-butadiene.
    Type: Application
    Filed: February 26, 2013
    Publication date: January 15, 2015
    Inventors: Simon Christopher Davis, Nicholas J. Agard, John H. Grate
  • Patent number: 8932845
    Abstract: An isopropyl alcohol-producing Escherichia coli equipped with an isopropyl alcohol production system, having at least one enhanced enzyme activity selected from the group consisting of an enhanced malate dehydrogenase activity, an enhanced NAD(P)+ transhydrogenase (AB-specific) activity, and an enhanced thiolase activity, and an isopropyl alcohol producing method including producing isopropyl alcohol from a plant-derived raw material using the isopropyl alcohol-producing Escherichia coli.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: January 13, 2015
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yoshiko Matsumoto, Junichiro Hirano, Takashi Morishige, Tomokazu Shirai, Hitoshi Takahashi, Koh Amano, Nozomi Takebayashi, Mitsufumi Wada, Hiroshi Shimizu, Chikara Furusawa, Takashi Hirasawa
  • Patent number: 8932840
    Abstract: A xylan-containing feed is contacted, in the first reactor essentially operated at plug flow, with an aqueous solution of an acid at a temperature in the range from equal to or more than 140° C. to equal to or less than 210° C. to produce an intermediate product. Then, the intermediate product is contacted, in the second reactor which comprises a continuously stirred tank reactor, with an aqueous solution of an acid at a temperature in the range from more than 130° C. to equal to or less than 200° C. to produce a final product.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 13, 2015
    Assignee: Shell Oil Company
    Inventors: Evert Van Der Heide, Munro MacKay
  • Publication number: 20150010976
    Abstract: Cytochrome P450 BM-3 from Bacillus megaterium was engineered using a combination of directed evolution and site-directed mutagenesis to hydroxylate linear alkanes regio- and enantioselectively using atmospheric dioxygen as an oxidant. Mutant 9-10A-A328V hydroxylates octane primarily at the 2-position to form S-2-octanol (40% ee). Another mutant, 1-12G, hydroxylates alkanes larger than hexane primarily at the 2-position, but forms R-2-alcohols (40-55% ee). These biocatalysts are highly active for alkane substrates and support thousands of product turnovers. These regio- and enantio-selectivities are retained in whole-cell biotransformations with E. coli, where the engineered P450s can be expressed at high levels and the expensive cofactor is supplied endogenously.
    Type: Application
    Filed: June 2, 2014
    Publication date: January 8, 2015
    Inventors: Frances H. Arnold, Matthew W. Peters, Peter Meinhold
  • Publication number: 20150010968
    Abstract: The present invention relates to method for oxidising an alkene comprising contacting said alkene with an AlkB-type oxidoreductase in the presence of oxygen, and a use of an AlkB-type oxidoreductase, preferably AlkB from Pseudomonas putida GPO1 or a variant thereof, for oxidising an alkene to an alcohol and/or acid.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 8, 2015
    Applicant: Evonik Industries AG
    Inventors: Philip Engel, Thomas Haas, Jan Christoph Pfeffer, Oliver Thum, Christian Gehring
  • Publication number: 20150004656
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Lan Tang, Ye Liu, Junxin Duan, Yu Zhang, Christian Joergensen, Randall Kramer
  • Publication number: 20150004660
    Abstract: Embodiments of the invention relate to the enzymatic conversion of bioderived feedstocks to commercially valuable chemicals. The enzymatic conversions of the embodiments of the invention offer the potential for lower cost routes to these value-added chemicals. Some of the chemicals that are useful include nylon intermediates such as caprolactam, adipic acid, 1,6-hexamethylene diamine; butanediols such as 1,4-butanediol, 1,3-butanediol, and 2,3-butanediol; butanols such as 1-butanol, and 2-butanol; succinic acid, butadiene, isoprene, and 3-hydroxypropanoic acid.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Paul S. Pearlman, Changlin Chen, Adriana Leonora Botes
  • Patent number: 8921090
    Abstract: The invention relates to acyl-CoA-independent methods of producing a wax ester in recombinant host cells engineered to express an acyl-ACP wax ester synthase, and an alcohol-forming acyl-ACP reductase. The methods of the invention may take place in photosynthetic microorganisms, and particularly in cyanobacteria. Isolated nucleotide molecules and vectors expressing an acyl-ACP wax ester synthase and/or an alcohol-forming acyl-ACP reductase, recombinant host cells expressing an acyl-ACP wax ester synthase and optionally an alcohol-forming acyl-ACP reductase, and systems for producing a wax ester via an acyl-CoA-independent pathway, are also provided.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Erik Holtzapple, John H. Verruto
  • Publication number: 20140377822
    Abstract: Ethanol and other liquid products are produced by contacting syngas components such as CO or a mixture of CO2 and H2 with a surface of a membrane under anaerobic conditions and transferring these components into contact with a biofilm on the opposite side of the membrane. These steps provide a stable system for producing liquid products such as ethanol, butanol and other chemicals. The gas fed on the membrane's gas contact side transports through the membrane to form a biofilm of anaerobic microorganisms that converted the syngas to desired liquid products. The system can sustain production with a variety of microorganisms and membrane configurations.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: Robert Hickey, Rathin Datta, Shih-Perng Tsai, Rahul Basu
  • Publication number: 20140377817
    Abstract: The present invention relates to microorganisms and polypeptides for detoxifying aldehydes associated with industrial fermentations. In particular, a heat-stable, NADPH- and iron-dependent alcohol dehydrogenase was cloned from Thermoanaerobacter pseudethanolicus 39E and displayed activity against a number of aldehydes including inhibitory compounds that are produced during the dilute-acid pretreatment process of lignocellulosic biomass before fermentation to biofuels. Methods to use the microorganisms and polypeptides of the invention for improved conversion of bio mass to biofuel are provided as well as use of the enzyme in metabolic engineering strategies for producing longer-chain alcohols from sugars using thermophilic, fermentative microorganisms.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Inventors: James G. Elkins, Sonya M. Clarkson
  • Publication number: 20140377820
    Abstract: The invention provides a non-naturally occurring microbial organism having n-propanol and isopropanol pathways, 1,4-butanediol (14-BDO) and isopropanol pathways, 1,3-butanediol (13-BDO) and isopropanol pathways or methylacrylic acid (MAA) and isopropanol pathways. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in each of the respective n-propanol, 14-BDO, 13-BDO or MAA and isopropanol pathways. The invention additionally provides a method for co-producing n-propanol and isopropanol, 14-BDO and isopropanol, 13-BDO and isopropanol or MAA and isopropanol. The method can include culturing an n-propanol and an isopropanol co-producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an n-propanol, an isopropanol, a 14-BDO, a 13-BDO and/or a MAA pathway enzyme in a sufficient amount to produce each of the respective products, under conditions and for a sufficient period of time to produce each of the respective products.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 25, 2014
    Applicant: Genomatica, Inc.
    Inventors: Priti PHARKYA, Anthony P. BURGARD, Robin E. OSTERHOUT, Mark J. BURK, Jun SUN
  • Publication number: 20140370559
    Abstract: The invention relates to the microbial fermentation of gaseous substrates to produce one or more products. The invention relates to the microbial fermentation of a gaseous substrate derived from the conversion of a biogas stream. The invention relates to the conversion of a biogas stream comprising methane to a gaseous substrate comprising CO or CO plus H2, and the production of one or more products from the microbial fermentation of said gaseous substrate.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 18, 2014
    Applicant: LanzaTech New Zealand Limited
    Inventors: Simon David Oakley, Joss Anton Coombes, Sean Dennis Simpson, Bjorn Daniel Heijstra, Michael Anthony Schultz, Sean Molloy
  • Publication number: 20140370551
    Abstract: This disclosure provides a business method and system for generating sugars and recycling a non-biomass component from a waste stream. In some embodiments, a waste stream comprising cellulose and a non-biomass component is saccharified to produce glucose, followed by recovery of the glucose and non-biomass component, which may be recycled to another site associated with production of a cellulose-containing product that contains the non-biomass component. In certain scenarios, the waste stream is generated at a first location, cellulose pretreatment (if desired) and hydrolysis are conducted at a second location, and the non-biomass component is recycled to the first location or a third location. The non-biomass component may include metals, metal oxides, salts, organic compounds, inorganic compounds, oligomers, or polymers, for example.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Inventors: Theodora RETSINA, Kimberly NELSON
  • Publication number: 20140363847
    Abstract: An acetyl-CoA-producing microorganism, which is capable of efficiently synthesizing acetyl-CoA using carbon dioxide, and a substance production method using the same are provided. An acetyl-CoA-producing microorganism including an acetyl-CoA production cycle obtained by imparting at least one type of enzymatic activity selected from the group consisting of malate thiokinase, malyl-CoA lyase, glyoxylate carboligase, 2-hydroxy-3-oxopropionate reductase, and hydroxypyruvate reductase, to a microorganism.
    Type: Application
    Filed: July 27, 2012
    Publication date: December 11, 2014
    Inventors: Ryota Fujii, Tomokazu Shirai, Tadashi Araki, Koh Amano, Yoshiko Matsumoto, Toshihiro Tateno, Nozomi Takebayashi, Takashi Morishige, Hitoshi Takahashi, Mitsufumi Wada, Hiroshi Shimizu, Chikara Furusawa, Takashi Hirasawa, Tomonori Hidesaki, Ayako Endo, Dominik Lukas Jürgen-Lohmann, Anjali Madhavan
  • Publication number: 20140356915
    Abstract: Processes are described for fractionating lignocellulosic biomass into cellulose, hemicellulose, and lignin, comprising fractionating lignocellulosic biomass in the presence of a solvent for lignin (such as ethanol), a hydrolysis catalyst (such as sulfur dioxide), and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin; hydrolyzing the hemicellulose to produce hemicellulosic monomers; saccharifying the cellulose-rich solids to produce glucose; recovering the hemicellulosic monomers and the glucose, separately or in a combined stream, as fermentable sugars; and fermenting the fermentable sugars to a fermentation product having a higher normal boiling point than water. Process integration of mass and/or energy is disclosed in many specific embodiments. The fermentation product may include an organic acid, an alcohol, a diol, or combinations thereof.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 4, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Theodora RETSINA, Vesa PYLKKANEN, Ryan P. O'CONNOR
  • Publication number: 20140357727
    Abstract: The present disclosure provides methods useful for producing fatty alcohol compositions from recombinant host cells. The disclosure further provides fatty acyl-CoA reductase (FAR) variant enzymes, polynucleotides encoding the FAR variant enzymes, and vectors and host cells comprising polynucleotides encoding the FAR variant enzymes.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 4, 2014
    Inventors: Louis A. Clark, Kristian Karlshoej, Patricia Choudhary
  • Publication number: 20140342417
    Abstract: Techniques, systems, apparatus and material are described for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventor: Roy Edward McAlister
  • Publication number: 20140342408
    Abstract: Provided are isolated polypeptides having xylanase activity, catalytic domains and cellulose binding domains, and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 20, 2014
    Inventors: Yu Zhang, Lan Tang, Junxin Duan, Ye Liu
  • Patent number: 8889385
    Abstract: Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 18, 2014
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Gail K. Donaldson, Andrew C. Eliot, Dennis Flint, Lori Ann Maggio-Hall, Vasantha Nagarajan
  • Patent number: 8889383
    Abstract: The invention features compositions and methods for the increased production of mevalonate, isoprene, isoprenoid precursor molecules, and/or isoprenoids in microorganisms via the heterologous expression of the mvaE and mvaS genes from the organisms Listeria grayi DSM 20601, Enterococcus faecium, Enterococcus gallinarum EG2, and Enterococcus casseliflavus.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 18, 2014
    Assignees: Danisco US Inc., The Goodyear Tire & Rubber Company
    Inventors: Zachary Q. Beck, Michael C. Miller, Caroline M. Peres, Yuliya A. Primak, Jeff P. Pucci, Derek H. Wells
  • Publication number: 20140335570
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Novozymes Inc.
    Inventor: Nikolaj Spodsberg