Making Plural Separate Devices Patents (Class 438/110)
  • Patent number: 8866308
    Abstract: Embodiments that allow both high density and low density interconnection between microelectronic die and motherboard via Direct Chip Attach (DCA) are described. In some embodiments, microelectronic die have a high density interconnect with a small bump pitch located along one edge and a lower density connection region with a larger bump pitch located in other regions of the die. The high density interconnect regions between die are interconnected using an interconnecting bridge made out of a material that can support high density interconnect manufactured into it, such as silicon. The lower density connection regions are used to attach interconnected die directly to a board using DCA. The high density interconnect can utilize current Controlled Collapsed Chip Connection (C4) spacing when interconnecting die with an interconnecting bridge, while allowing much larger spacing on circuit boards.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Intel Corporation
    Inventors: Mihir K Roy, Mathew J Manusharow
  • Patent number: 8860207
    Abstract: A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: October 14, 2014
    Assignees: STMicroelectronics Pte Ltd, STMicroelectronics Grenoble 2 SAS
    Inventors: Yonggang Jin, Romain Coffy, Jerome Teysseyre
  • Patent number: 8844123
    Abstract: A method of manufacturing a hollow surface mount type electronic component has a preparing step, a gluing step and a cutting step. The preparing step includes preparing a baseboard, a clapboard and a cover board, mounting multiple circuit segments and conducting points on two opposite faces of the baseboard at intervals and boring multiple through holes on the clapboard corresponding to the circuit segments. The gluing step includes mounting multiple electronic elements on the baseboard to connected with the circuit segments, gelatinizing glue on the boards to mount the clapboard between the baseboard and the cover board and pressing the boards by a pressing machine. The cutting step includes cutting the boards by a cutting machine to produce multiple single SDM electronic components.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: September 30, 2014
    Inventor: Chin-Chi Yang
  • Patent number: 8847349
    Abstract: An integrated circuit (IC) package including an IC die and a conductive ink printed circuit layer electrically connected to the IC die.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Matthew David Romig, Lance Cole Wright, Leslie Edward Stark, Frank Stepniak, Screenivasan K. Koduri
  • Patent number: 8846452
    Abstract: In one embodiment of the present invention, a method of forming a semiconductor device includes forming a device region in a first region of a semiconductor substrate, and forming an opening in a second region of the semiconductor substrate. The method further includes placing a semiconductor die within the opening, and forming a first metallization level over the semiconductor die and the device region.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Infineon Technologies AG
    Inventor: Dietrich Bonart
  • Patent number: 8846446
    Abstract: In one embodiment, a semiconductor package includes a first insulating body and a first semiconductor chip having a first active surface and a first back surface opposite the first active surface. The first semiconductor chip is disposed within the first insulating body. The first active surface is exposed by the first insulating body. The first back surface is substantially surrounded by the first insulating body. The semiconductor package includes a post within the first insulating body and adjacent to a side of the first semiconductor chip.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pyoung-Wan Kim, Teak-Hoon Lee, Chul-Yong Jang
  • Patent number: 8836097
    Abstract: A semiconductor device has a substrate with a plurality of conductive vias formed through the substrate and conductive layer formed over the substrate. A first encapsulant is deposited over the substrate outside a die attach area of the substrate. The first encapsulant surrounds each die attach area over the substrate and the die attach area is devoid of the first encapsulant. A channel connecting adjacent die attach areas is also devoid of the first encapsulant. A first semiconductor die is mounted over the substrate within the die attach area after forming the first encapsulant. A second semiconductor die is mounted over the first die within the die attach area. An underfill material can be deposited under the first and second die. A second encapsulant is deposited over the first and second die and first encapsulant. The first encapsulant reduces warpage of the substrate during die mounting.
    Type: Grant
    Filed: February 16, 2013
    Date of Patent: September 16, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeWook Yang, SeungWon Kim, MinJung Kim
  • Patent number: 8835224
    Abstract: An integrated circuit with distributed power using through-silicon-vias (TSVs) is presented. The integrated circuit has conducting pads for providing power and ground located within the peripheral region of the top surface. A number of through-silicon-vias are distributed within the peripheral region and a set of TSVs are formed within the non-peripheral region of the integrated circuit. Conducting lines on the bottom surface are coupled between each peripheral through-silicon-via and a corresponding non-peripheral through-silicon-via. Power is distributed from the conducting pads to the TSVs within the non-peripheral region through the TSVs within the peripheral region, thus supplying power and ground to circuits located within the non-peripheral region of the integrated circuit chip.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Altera Corporation
    Inventors: Thomas Henry White, Giles V. Powell, Rakesh H. Patel
  • Patent number: 8822272
    Abstract: To provide a semiconductor device capable of being easily subjected to a physical test without deteriorating characteristics. According to a measuring method of a semiconductor device in which an element layer provided with a test element including a terminal portion is sealed with first and second films having flexibility, the first film formed over the terminal portion is removed to form a contact hole reaching the terminal portion; the contact hole is filled with a resin containing a conductive material; heating is carried out after arranging a wiring substrate having flexibility over the resin with which filling has been performed so that the terminal portion and the wiring substrate having flexibility are electrically connected via the resin containing a conductive material; and a measurement is performed.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuya Tsurume, Etsuko Asano
  • Patent number: 8822268
    Abstract: Embodiments of a method for fabricating Redistributed Chip Packages are provided, as are embodiments of Redistributed Chip Packages. In one embodiment, the method includes the steps/processes of embedding a first semiconductor die and a microelectronic component in a molded panel having a frontside, the first semiconductor die comprising a plurality of bond pads over which a plurality of raised contacts has been formed. The frontside of the molded panel is polished to impart the molded panel with a substantially planar surface through which the terminals of the microelectronic component and the plurality of raised contacts are exposed. Finally, at least one redistribution layer is build or produced over the substantially planar surface to electrically interconnect the first semiconductor die and the microelectronic component.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: September 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Alan J. Magnus
  • Patent number: 8816515
    Abstract: There is provided a semiconductor module capable of being easily manufactured and a manufacturing method thereof, the semiconductor module including a module substrate on which at least one electronic element is mounted, at least one external connection terminal fastened to the module substrate, and a case formed by coupling a first case and a second case, wherein the first case and the second case accommodate the module substrate at both ends of the module substrate and are coupled to each other.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: August 26, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Young Ki Lee, Kwang Soo Kim, Young Hoon Kwak, Sun Woo Yun
  • Patent number: 8816497
    Abstract: An electronic component includes a III-N transistor and a III-N rectifying device both encased in a single package. A gate electrode of the III-N transistor is electrically connected to a first lead of the single package or to a conductive structural portion of the single package, a drain electrode of the III-N transistor is electrically connected to a second lead of the single package and to a first electrode of the III-N rectifying device, and a second electrode of the III-N rectifying device is electrically connected to a third lead of the single package.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: August 26, 2014
    Assignee: Transphorm Inc.
    Inventor: Yifeng Wu
  • Patent number: 8809117
    Abstract: Packaging process tools and packaging methods for semiconductor devices are disclosed. In one embodiment, a packaging process tool for semiconductor devices includes a mechanical structure including a frame. The frame includes a plurality of apertures adapted to retain a plurality of integrated circuit dies therein. The frame includes at least one hollow region.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: August 19, 2014
    Assignee: Taiwain Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Ming-Da Cheng, Wei-Hung Lin, Kuei-Wei Huang, Chih-Wei Lin, Chun-Cheng Lin, Chung-Shi Liu
  • Patent number: 8802508
    Abstract: Forming a packaged semiconductor device includes placing a semiconductor die attached to a carrier into a mold cavity having an injection port, wherein the semiconductor die has an encapsulant exclusion region on a top surface of the semiconductor die within an outer perimeter of the top surface; and flowing an encapsulant over the semiconductor die and carrier from the injection port, wherein the encapsulant flows around the encapsulant exclusion region to surround the encapsulant exclusion region without covering the encapsulant exclusion region. The encapsulant exclusion region has a first length corresponding to a single longest distance across the encapsulant exclusion region, wherein the first length is aligned, within 30 degrees, to a line defined by a shortest distance between an entry point of the injection port into the mold cavity and an outer perimeter of the encapsulant exclusion region.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 12, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Burton J. Carpenter, Boon Yew Low, Shufeng Zhao
  • Patent number: 8791006
    Abstract: A semiconductor device has a first insulating layer formed over a first surface of a polymer matrix composite substrate. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. The second conductive layer is wound to exhibit inductive properties. A third conductive layer is formed between the first conductive layer and second conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. A fourth insulating layer can be formed over a second surface of the polymer matrix composite substrate. Alternatively, the fourth insulating layer can be formed over the first insulating layer prior to forming the first conductive layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 8785244
    Abstract: Wafer level packaging using a lead-frame. When used to package two or more chips, a final product having QFN package-like finish. The final product will also have a performance rivaling or exceeding that of a corresponding monolithic chip because of the very close connection of the two or more chips and the ability to tailor the fabrication processing of each chip to only that required for the devices on that chip. The wafer level packaging can also be used to package monolithic chips, as well as chips having active devices on one chip and passive devices on a second chip. Various exemplary embodiments are disclosed.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 22, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Ahmad R. Ashrafzadeh
  • Patent number: 8785246
    Abstract: A semiconductor circuit design includes an outer seal-ring and an inner seal-ring for each sub-section of the design that may potentially be cut into separate die. The use of multiple seal-rings permits a single circuit design and fabrication run to be used to support flexibly packaging different product releases having different numbers of integrated circuit blocks per packaged unit.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: July 22, 2014
    Assignee: PLX Technology, Inc.
    Inventors: Duc Anh Vu, Jayalakshmana Kumar Pragasam, Vijay Meduri, Seyed Attaran, Michael J. Grubisich, Syed Ahmed, Aniket Singh
  • Patent number: 8785248
    Abstract: Wafer level packaging using a lead-frame. When used to package two or more chips, a final product having QFN package-like finish. The final product will also have a performance rivaling or exceeding that of a corresponding monolithic chip because of the very close connection of the two or more chips and the ability to tailor the fabrication processing of each chip to only that required for the devices on that chip. The wafer level packaging can also be used to package monolithic chips, as well as chips having active devices on one chip and passive devices on a second chip. Various exemplary embodiments are disclosed.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 22, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Ahmad R. Ashrafzadeh
  • Patent number: 8785247
    Abstract: According to an embodiment, a chip package is provided, which includes: a substrate having a first surface and a second surface; a device region formed in the substrate; a passivation layer formed overlying the first surface of the substrate; at least a polymer planarization layer formed overlying the passivation layer; a package substrate disposed overlying the first surface of the substrate; and a spacer layer disposed between the package substrate and the passivation layer, wherein the spacer layer and the package substrate surround a cavity overlying the substrate, wherein the polymer planar layer does not extends to an outer edge of the spacer layer.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 22, 2014
    Inventors: Yu-Lung Huang, Yu-Ting Huang
  • Patent number: 8780561
    Abstract: A method of forming a heat-dissipating structure for semiconductor circuits is provided. First and second semiconductor integrated circuit (IC) chips are provided, where the first and second semiconductor chips each have first and second opposing sides, wherein the first and second semiconductor IC chips are configured to be fixedly attached to a top surface of a substantially planar circuit board along their respective first sides. The respective second opposing sides of each of the first and second semiconductor IC chips are coupled to first and second respective portions of a sacrificial thermal spreader material, the sacrificial thermal spreader material comprising a material that is thermally conductive. The first and second portions of the sacrificial thermal spreader material are planarized to substantially equalize a respective first height of the first semiconductor chip and a respective second height of the second semiconductor chip.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 15, 2014
    Assignee: Raytheon Company
    Inventors: Paul A. Danello, Richard A. Stander, Michael D. Goulet
  • Patent number: 8772088
    Abstract: In a high frequency module, electronic components are mounted on a mounting surface of a collective substrate including a plurality of unit substrates that include a via conductor electrically conducted to a ground potential in a peripheral portion thereof, and the mounting surface and the electronic components are encapsulated with an encapsulation layer. The collective substrate is cut on the encapsulation layer side, thereby forming a half-cut groove penetrating through the encapsulation layer and extending halfway along the collective substrate in a thickness direction such that the via conductor is exposed only at a bottom surface of the half-cut groove. A conductive shield layer is formed to cover the encapsulation layer and is electrically conducted to the exposed via conductor. The collective substrate is then cut into individual unit substrates each including the conductive shield layer electrically conducted to the ground potential through the via conductor.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 8, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takayuki Horibe
  • Patent number: 8772087
    Abstract: Method and apparatus for semiconductor device fabrication using a reconstituted wafer is described. In one embodiment, diced semiconductor chips are placed within openings on a frame. A reconstituted wafer is formed by filling a mold compound into the openings. The mold compound is formed around the chips. Finished dies are formed within the reconstituted wafer. The finished dies are separated from the frame.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: July 8, 2014
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Matthias Hierlemann
  • Patent number: 8765527
    Abstract: A method of assembling Redistributed Chip Package (RCP) semiconductor devices. An active die structure is encapsulated in a molding compound with internal electrical contacts of the active die structure positioned at an active face of an encapsulation layer. A dummy die structure is positioned at a back face of the encapsulation layer. A redistribution layer is formed at an active face of the encapsulation layer. The redistribution layer includes a layer of insulating material and redistribution electrical interconnections. The insulating material is built up with grooves along saw streets. External electrical contacts exposed at a surface of the redistribution layer are connected with the redistribution electrical interconnections. The dummy die structure is removed and then the semiconductor devices are singulated.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: July 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Dominic Koey
  • Patent number: 8759148
    Abstract: A method of mounting a semiconductor chip includes: forming a resin coating on a surface of a path connecting a bonding pad on a surface of a semiconductor chip and an electrode pad formed on a surface of an insulating base material; forming, by laser beam machining, a wiring gutter having a depth that is equal to or greater than a thickness of the resin coating along the path for connecting the bonding pad and the electrode pad; depositing a plating catalyst on a surface of the wiring gutter; removing the resin coating; and forming an electroless plating coating only at a site where the plating catalyst remains.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 24, 2014
    Assignee: Panasonic Corporation
    Inventors: Shingo Yoshioka, Hiroaki Fujiwara
  • Patent number: 8759147
    Abstract: Provided are a semiconductor package and a method of fabricating the same. In one embodiment, to fabricate a semiconductor package, a wafer having semiconductor chips fabricated therein is provided. A heat sink layer is formed over the wafer. The heat sink layer contacts top surfaces of the semiconductor chips. Thereafter, the plurality of semiconductor chips are singulated from the wafer.
    Type: Grant
    Filed: September 17, 2011
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Kyoung Choi, SeYoung Jeong, Kwang-chul Choi, Tae Hong Min, Chungsun Lee, Jung-Hwan Kim
  • Publication number: 20140162406
    Abstract: Provided is a method of transferring semiconductor elements formed on a non-flexible substrate to a flexible substrate. Also, provided is a method of manufacturing a flexible semiconductor device based on the method of transferring semiconductor elements. A semiconductor element grown or formed on the substrate may be efficiently transferred to the resin layer while maintaining an arrangement of the semiconductor elements. Furthermore, the resin layer acts as a flexible substrate supporting the vertical semiconductor elements.
    Type: Application
    Filed: June 17, 2013
    Publication date: June 12, 2014
    Inventors: Eun-hyoung CHO, Jun-hee CHOI, Jin-seung SOHN
  • Patent number: 8748202
    Abstract: A method of fabricating a substrate free light emitting diode (LED), includes arranging LED dies on a tape to form an LED wafer assembly, molding an encapsulation structure over at least one of the LED dies on a first side of the LED wafer assembly, removing the tape, forming a dielectric layer on a second side of the LED wafer assembly, forming an oversized contact region on the dielectric layer to form a virtual LED wafer assembly, and singulating the virtual LED wafer assembly into predetermined regions including at least one LED. The tape can be a carrier tape or a saw tape. Several LED dies can also be electrically coupled before the virtual LED wafer assembly is singulated into predetermined regions including at the electrically coupled LED dies.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 10, 2014
    Assignee: Bridgelux, Inc.
    Inventors: Mike Kwon, Gerry Keller, Scott West, Tao Tong, Babak Imangholi
  • Patent number: 8748291
    Abstract: A method for testing a strip of MEMS devices, the MEMS devices including at least a respective die of semiconductor material coupled to an internal surface of a common substrate and covered by a protection material; the method envisages: detecting electrical values generated by the MEMS devices in response to at least a testing stimulus; and, before the step of detecting, at least partially separating contiguous MEMS devices in the strip. The step of separating includes defining a separation trench between the contiguous MEMS devices, the separation trench extending through the whole thickness of the protection material and through a surface portion of the substrate, starting from the internal surface of the substrate.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: June 10, 2014
    Assignees: STMicroelectronics S.r.l., STMicroelectronics Ltd (Malta)
    Inventors: Mark Anthony Azzopardi, Conrad Cachia, Stefano Pozzi
  • Patent number: 8742555
    Abstract: A semiconductor device lead frame having enhanced mold locking features is provided. The lead frame has a flag with bendable edge features along the edge of the flag. Each edge feature is shaped to resist movement against encapsulating mold material in a plane of the edge feature. By bending a portion of the edge feature, improved mold locking of the flag is provided in multiple planes.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: June 3, 2014
    Inventors: Jian Wen, Darrel R. Frear, William G. McDonald
  • Patent number: 8742568
    Abstract: A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Masayoshi Kondo, Natsuki Makino, Daisuke Fujiwara, Yuka Ito
  • Patent number: 8742572
    Abstract: Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. An embodiment of one such method includes forming a plurality of through holes in a substrate with the through holes arranged in arrays, and attaching a plurality of singulated microelectronic dies to the substrate with an active side of the individual dies facing toward the substrate and with a plurality of terminals on the active side of the individual dies aligned with corresponding holes in the substrate. The singulated dies are attached to the substrate after forming the holes in the substrate.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 3, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Teck Kheng Lee
  • Patent number: 8741691
    Abstract: A method of fabricating a three dimensional integrated circuit comprises forming a redistribution layer on a first side of a packaging component, forming a holding chamber in the redistribution layer, attaching an integrated circuit die on the first side of the packaging component, wherein an interconnect bump of the integrated circuit die is inserted into the holding chamber, applying a reflow process to the integrated circuit die and the packaging component and forming an encapsulation layer on the packaging component.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: June 3, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Chung Yee, Chun Hui Yu
  • Patent number: 8736076
    Abstract: One aspect provides an integrated circuit (IC) packaging assembly that comprises a substrate having conductive traces located thereon, wherein the signal traces are located in an IC device region and the power traces are located in a wafer level fan out (WLFO) region located lateral the IC device region. This embodiment further comprises a first IC device located on a first side of the substrate within the IC device region and that contacts the signal traces in the IC device region. A second IC device is located on a second side of the substrate opposite the first side and overlaps the IC device region and the WLFO region. The second IC device contacts a first portion of the signal traces in the IC device region and contacts a first portion of the power traces in the WLFO region.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: May 27, 2014
    Assignee: LSI Corporation
    Inventor: Donald E. Hawk
  • Publication number: 20140138843
    Abstract: A carrier and a semiconductor chip are provided. A connection layer is applied to a first main face of the semiconductor chip. The connection layer includes a plurality of depressions. A filler is applied to the connection layer or to the carrier. The semiconductor chip is attached to the carrier so that the connection layer is disposed between the semiconductor chip and the carrier. The semiconductor chip is affixed to the carrier.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Georg Meyer-Berg, Khalil Hosseini, Joachim Mahler, Edward Fuergut
  • Patent number: 8723314
    Abstract: Various semiconductor workpieces and methods of dicing the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a channel in a metallization structure on a backside of a semiconductor workpiece. The semiconductor workpiece includes a substrate. The channel is in substantial alignment with a dicing street on a front side of the semiconductor chip.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: May 13, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael Su, Lei Fu, Edward S. Alcid
  • Patent number: 8722461
    Abstract: A semiconductor package comprises a die attach pad and a support member at least partially circumscribing it. Several sets of contact pads are attached to the support member. The support member is able to be etched away thereby electrically isolating the contact pads. A method for making a leadframe and subsequently a semiconductor package comprises partially etching desired features into a copper substrate, and then through etching the substrate to form the support member and several sets of contact pads. Die attach, wirebonding and molding follow. The support member is etched away, electrically isolating the contact pads and leaving a groove in the bottom of the package. The groove is able to be filled with epoxy or mold compound.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 13, 2014
    Assignee: UTAC Thai Limited
    Inventor: Saravuth Sirinorakul
  • Patent number: 8722436
    Abstract: A method of light-emitting diode (LED) packaging includes coupling a number of LED dies to corresponding bonding pads on a sub-mount. A mold apparatus having concave recesses housing LED dies is placed over the sub-mount. The sub-mount, the LED dies, and the mold apparatus are heated in a thermal reflow process to bond the LED dies to the bonding pads. Each recess substantially restricts shifting of the LED die with respect to the bonding pad during the heating.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 13, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chyi Shyuan Chern, Hsin-Hsien Wu, Chih-Kuang Yu, Hung-Yi Kuo
  • Patent number: 8722463
    Abstract: The invention is related to a chip package including: a semiconductor substrate having at least one bonding pad region and at least one device region, wherein the semiconductor substrate includes a plurality of heavily doped regions in the bonding pad region, and two of the heavily doped regions are insulatively isolated; a plurality of conductive pad structures disposed over the bonding pad region; at least one opening disposed at a sidewall of the chip package to expose the heavily doped regions; and a conductive pattern disposed in the opening to electrically contact with the heavily doped region.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: May 13, 2014
    Inventor: Chien-Hung Liu
  • Patent number: 8715802
    Abstract: The invention provides a transferring apparatus for a flexible electronic device and method for fabricating a flexible electronic device. The transferring apparatus for the flexible electronic device includes a carrier substrate. A release layer is disposed on the carrier substrate. An adhesion layer is disposed on a portion of the carrier substrate, surrounding the release layer and adjacent to a sidewall of the release layer. A flexible electronic device is disposed on the release layer and the adhesion layer, wherein the flexible electronic device includes a flexible substrate.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 6, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Pao-Ming Tsai, Liang-You Jiang, Yu-Yang Chang, Hung-Yuan Li
  • Patent number: 8709880
    Abstract: A method of manufacturing semiconductor devices: providing a first device including a first die and second die, where the first die is diced from a first wafer, the second die is diced from a second wafer, the first die is connected to the second die using at least one through-silicon-via; providing a second device including a third die and fourth die, where the third die is diced from a third wafer, the fourth die is diced from a fourth wafer, the third die is connected to the fourth die using at least one through-silicon-via; where the first die includes a first functionality and the third die includes a second functionality, the first functionality is different than the second functionality, a majority of the masks used for processing the first wafer and the third wafer are the same; and the second die size is substantially different than the fourth die size.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: April 29, 2014
    Assignee: Monolithic 3D Inc
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong
  • Patent number: 8703532
    Abstract: Provided is a resin sealed semiconductor device including: a semiconductor element; a plurality of micro-balls including an internal terminal surface and an external connection electrode in two sides of the micro-balls; metal wires for electrically connecting the semiconductor element and an internal terminal surface; and a sealing body for sealing the semiconductor element, a part of each the plurality of the terminals, and metal wires with a sealing resin, in which a back surface of the semiconductor element is exposed from the sealing body, and a part of each the plurality of micro-balls are exposed as the external connection electrodes from a bottom surface of the sealing body in a projection manner.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: April 22, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Noriyuki Kimura
  • Publication number: 20140103488
    Abstract: A device includes a top package bonded to a bottom package. The bottom package includes a molding material, a device die molded in the molding material, a Through Assembly Via (TAV) penetrating through the molding material, and a redistribution line over the device die. The top package includes a discrete passive device packaged therein. The discrete passive device is electrically coupled to the redistribution line.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsu-Hsien Chen, Chih-Hua Chen, En-Hsiang Yeh, Monsen Liu, Chen-Shien Chen
  • Patent number: 8691626
    Abstract: A method of manufacturing is provided that includes placing a removable cover on a surface of a substrate. The substrate includes a first semiconductor chip positioned on the surface. The first semiconductor chip includes a first sidewall. The removable cover includes a second sidewall positioned opposite the first sidewall. A first underfill is placed between the first semiconductor chip and the surface wherein the second sidewall provides a barrier to flow of the first underfill. Various apparatus are also disclosed.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: April 8, 2014
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Michael Z. Su, Lei Fu, Gamal Refai-Ahmed, Bryan Black
  • Patent number: 8691607
    Abstract: A microelectromechanical (MEMS) device is fabricated from a wafer having a plurality of die regions with grooves and MEMS components formed on a wafer surface at each die region. A first metal having a relatively high melting temperature is formed on sidewalls of each groove, and a cap is attached at each die region to provide a closed cavity which encloses the grooves and MEMS components. Bottoms of the grooves are opened by thinning the wafer thereby establishing through-hole vias extending through the wafer at each die region, for accessing the cavity for inserting or removing material. The vias are sealed by interacting a second metal having a relatively low melting temperature with the first metal layer to form intermetallic compounds with higher melting temperature that maintain the seal during subsequent lower temperature operations.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: April 8, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Virgil C. Ararao
  • Patent number: 8685795
    Abstract: A flank wettable semiconductor device is assembled from a lead frame or substrate panel by at least partially undercutting the lead frame or substrate panel with a first cutting tool to expose a flank of the lead frame and applying a coating of tin or tin alloy to the exposed flank prior to singulating the lead frame or substrate panel into individual semiconductor devices. The method includes electrically interconnecting lead frame flanks associated with adjacent semiconductor devices before applying the coating of tin or tin alloy. The lead frame flanks may be electrically interconnected during wire bonding.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Jinquan Wang
  • Patent number: 8673690
    Abstract: A method for manufacturing a semiconductor device according to one embodiment of the present invention includes a step of covering a plurality of base plates in which respective semiconductor chips are mounted, by means of a sealing resin such that a plurality of base plates are spaced apart from each other, and a step of cutting the sealing resin between a plurality of base plates.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitsune Iijima
  • Patent number: 8673686
    Abstract: An embodiment of the present invention provides a manufacturing method of a chip package structure including: providing a first substrate having a plurality of predetermined scribe lines defining a plurality of device regions; bonding a second substrate to the first substrate, wherein a spacing layer is disposed therebetween and has a plurality of chip support rings located in the device regions respectively, a cutting support structure located on peripheries of the chip support rings, a plurality of stop rings surrounding the chip support rings respectively, wherein a gap pattern separating the stop rings from the cutting support structure and the chip support rings; and cutting the first substrate and the second substrate to form a plurality of chip packages. Another embodiment of the present invention provides a chip package structure.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: March 18, 2014
    Inventors: Hung-Jen Lee, Shu-Ming Chang, Chen-Han Chiang, Tsang-Yu Liu, Yen-Shih Ho
  • Patent number: 8673691
    Abstract: A method for manufacturing a semiconductor device has a step of forming a first substrate; a step of facing a first main electrode to the first metal foil, and electrically connecting the first main electrode and the first metal foil; a step of facing a second main electrode to the second metal foil, and electrically connecting the second main electrode and the second metal foil; a step of forming a second substrate; and steps of facing a surface side of the second substrate to a surface side of the first substrate; electrically connecting the third metal foil and a third main electrode provided on a main surface of the first semiconductor element; and electrically connecting the fourth metal foil and a fourth main electrode provided on a main surface of the second semiconductor element.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: March 18, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yoshinari Ikeda, Shin Soyano, Akira Morozumi, Kenji Suzuki, Yoshikazu Takahashi
  • Publication number: 20140070391
    Abstract: A lead carrier provides support for an integrated circuit chip and associated leads during manufacture as packages containing such chips. The lead carrier includes a temporary support member with multiple package sites. Each package site includes a plurality of terminal pads surrounding a die attach region. The pads are formed of sintered electrically conductive material. A chip is placed at the die attach region and wire bonds extend from the chip to the terminal pads. The pads, chip and wire bonds are all encapsulated within a mold compound. The temporary support member can be peeled away and then the individual package sites can be isolated from each other to provide completed packages including multiple surface mount joints for mounting within an electronic system board. Edges of the pads are contoured to cause the pads to engage with the mold compound to securely hold the pads within the package.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 13, 2014
    Applicant: EoPlex Limited
    Inventor: Philip E. Rogren
  • Patent number: 8669657
    Abstract: Stacked semiconductor devices and assemblies including attached lead frames are disclosed herein. One embodiment of a method of manufacturing a semiconductor assembly includes forming a plurality of first side trenches to a first intermediate depth in a molded portion of a molded wafer having a plurality of dies arranged in rows and columns. The method also includes forming a plurality of lateral contacts at sidewall portions of the trenches and electrically connecting first side bond-sites of the dies with corresponding lateral contacts of the trenches. The method further includes forming a plurality of second side channels to a second intermediate depth in the molded portion such that the channels intersect the trenches. The method also includes singulating and stacking the first and second dies with the channels associated with the first die aligned with channels associated with the second die.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Swee Kwang Chua